期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Numerical Investigation of Flow Motion and Performance of A Horizontal Axis Tidal Turbine Subjected to A Steady Current 被引量:8
1
作者 李林娟 郑金海 +2 位作者 彭于轩 张继生 吴修广 《China Ocean Engineering》 SCIE EI CSCD 2015年第2期209-222,共14页
Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerical... Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved. 展开更多
关键词 horizontal axis tidal turbine numerical simulation turbine performance flow motion steady current marine renewable energy
下载PDF
Numerical and Experimental Study of the 3D Effect on Connecting Arm of Vertical Axis Tidal Current Turbine 被引量:2
2
作者 郭伟 康海贵 +2 位作者 陈兵 谢宇 王胤 《China Ocean Engineering》 SCIE EI CSCD 2016年第1期83-96,共14页
Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the p... Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF(User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine. 展开更多
关键词 connecting arm vertical axis tidal current turbine laboratory experimental study 3D numerical simulation UDF
下载PDF
Effect of blade pitch angle on aerodynamic performance of straight-bladed vertical axis wind turbine 被引量:3
3
作者 张立勋 梁迎彬 +1 位作者 刘小红 郭健 《Journal of Central South University》 SCIE EI CAS 2014年第4期1417-1427,共11页
Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct... Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle. 展开更多
关键词 straight-bladed vertical axis wind turbine pitch angle numerical simulation self-starting power coefficient
下载PDF
Effects of Rotor Solidity on the Performance of Impulse Turbine for OWC Wave Energy Converter 被引量:4
4
作者 刘臻 赵环宇 崔莹 《China Ocean Engineering》 SCIE EI CSCD 2015年第5期663-672,共10页
Impulse turbine, working as a typical self-rectifying turbine, is recently utilized for the oscillating water column(OWC) wave energy converters, which can rotate in the same direction under the bi-directional air f... Impulse turbine, working as a typical self-rectifying turbine, is recently utilized for the oscillating water column(OWC) wave energy converters, which can rotate in the same direction under the bi-directional air flows. A numerical model established in Fluent is validated by the corresponding experimental results. The flow fields, pressure distribution and dimensionless evaluating coefficients can be calculated and analyzed. Effects of the rotor solidity varying with the change of blade number are investigated and the suitable solidity value is recommended for different flow coefficients. 展开更多
关键词 wave energy oscillating water column impulse turbine rotor solidity operating performance numerical simulation
下载PDF
Radiation heat transfer model for complex superalloy turbine blade in directional solidification process based on finite element method 被引量:4
5
作者 Dun-ming Liao Liu Cao +4 位作者 Tao Chen Fei Sun Yong-zhen Jia Zi-hao Teng Yu-long Tang 《China Foundry》 SCIE 2016年第2期123-132,共10页
For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is develo... For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process. 展开更多
关键词 directional solidification radiation heat transfer finite element method numerical simulation local matrix superalloy turbine blade
下载PDF
Numerical simulation of hydraulic force on the impeller of reversible pump turbines in generating mode 被引量:9
6
作者 李金伟 张宇宁 +2 位作者 刘凯华 冼海珍 于纪幸 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第4期603-609,共7页
The hydraulic force on the reversible pump turbine might cause serious problems(e.g., the abnormal stops due to large vibrations of the machine), affecting the safe operations of the pumped energy storage power plan... The hydraulic force on the reversible pump turbine might cause serious problems(e.g., the abnormal stops due to large vibrations of the machine), affecting the safe operations of the pumped energy storage power plants. In the present paper, the hydraulic force on the impeller of a model reversible pump turbine is quantitatively investigated through numerical simulations. It is found that both the amplitude of the force and its dominant components strongly depend on the operating conditions(e.g., the turbine mode, the runaway mode and the turbine brake mode) and the guide vane openings. For example, the axial force parallel with the shaft is prominent in the turbine mode while the force perpendicular to the shaft is the dominant near the runaway and the turbine brake modes. The physical origins of the hydraulic force are further revealed by the analysis of the fluid states inside the impeller. 展开更多
关键词 Pump turbine hydraulic force numerical simulation generating mode vortex backflow
原文传递
Application of Numerical Simulation Method to Predict the Performance of Wave Energy Device with Impulse Turbine
7
作者 Ajit Thakker Thirumalisai Dhanasekaran +4 位作者 Hammad Khaleeq Zia Usmani Ali Ansari Manabu Takao Toshiaki Setoguchi 《Journal of Thermal Science》 SCIE EI CAS CSCD 2003年第1期38-43,共6页
This paper presents the work carried out to predict the behavior of a 0.6m impulse turbine with fixed guide vanes with 0.6hub-to-tip(H/T) ratio under real sea conditions.In order to predict the true performance of the... This paper presents the work carried out to predict the behavior of a 0.6m impulse turbine with fixed guide vanes with 0.6hub-to-tip(H/T) ratio under real sea conditions.In order to predict the true performance of the actual Oscillating Water Column(OWC),the numerical technique has been fine tuned by incorporating the compressibility effect.Water surface elevation verses time history based on Pierson Moskowitz Spectra was used as the input data,Standard numerical techniques were employed to solve the non-linear behavior of the sea waves.The effect due to ompressibility inside the air chamber and turbine performance under unsteady and irregular flow condition has been analyzed numerically,Considering the quasi-steady assumptions unidirectional steady flow experimental data was used to simulate the turbine characteristics under irregular unsteady flow conditions.The results show that the performance of this type of turbine is quite stable and efficiency of air chamber and the mean conversion efficiency is reduced around 8% and 5% respectively,due to compressibility inside air chamber. 展开更多
关键词 wave energy impulse turbine numerical simulation irregular.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部