The variational adjoint method was applied to retrieving the turbulivity of the atmospheric Ekman boundary layer along with the regularization principle, The validity of the method was verified by using the idealized ...The variational adjoint method was applied to retrieving the turbulivity of the atmospheric Ekman boundary layer along with the regularization principle, The validity of the method was verified by using the idealized data, and then the turbulivity profile and the geostrophic wind profile were retrieved through it for real observational wind filed data.展开更多
We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical ...We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical formula of the channel capacity of the focused LG beam in the anisotropic ocean turbulence,and analyze the relationship between the capacity and the light source parameters as well as the turbulent ocean parameters.It is found that the focusing mirror can greatly enhance the channel capacity of the system at the geometric focal plane in oceanic turbulence.The results also demonstrate that the communication link can obtain high channel capacity by adopting longer beam wavelength,greater initial beam waist radius,and larger number of transmission channels.Further,the capacity of the system increases with the decrease of the mean squared temperature dissipation rate,temperature-salinity contribution ratio and turbulence outer scale factor,and with the increase of the kinetic energy dissipation rate per unit mass of fluid,turbulence inner scale factor and anisotropy factor.Compared to a Hankel–Bessel beam with diffraction-free characteristics and unfocused LG beam,the focused LG beam shows superior anti-turbulence interference properties,which provide a theoretical reference for research and development of underwater optical communication links using focused LG beams.展开更多
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i...Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU.展开更多
As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ...As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards.展开更多
Turbulence in complex environments such as the atmosphere and biological media has always been a great challenge to the application of beam propagation in optical communication, optical trapping and manipulation. To o...Turbulence in complex environments such as the atmosphere and biological media has always been a great challenge to the application of beam propagation in optical communication, optical trapping and manipulation. To overcome this challenge, this study comprehensively investigates the robust propagation of traditional Gaussian and autofocusing beams in turbulent environments. In order to select stable beams that exhibit high intensity and high field gradient at the focal position in complex environments, Kolmogorov turbulence theory is used to simulate the propagation of beams in atmospheric turbulence based on the multi-phase screen method. We systematically analyze the intensity fluctuations, the variation of the coherence factor and the change in the scintillation index with propagation distance. The analysis reveals that the intensity fluctuations of autofocusing beams are significantly smaller than those of Gaussian beams, and the coherence of autofocusing beams is better than that of Gaussian beams under turbulence. Moreover, autofocusing beams exhibit less oscillation than Gaussian beams, indicating that autofocusing beams propagate in complex environments with less distortion and intensity fluctuation. Overall, this work clearly demonstrates that autofocusing beams exhibit higher stability in propagation compared with Gaussian beams, showing great promise for applications such as optical trapping and manipulation in complex environments.展开更多
Following the reconstruction of the TEXT tokamak at Huazhong University of Science and Technology in China, renamed as J-TEXT, a plethora of experimental and theoretical investigations has been conducted to elucidate ...Following the reconstruction of the TEXT tokamak at Huazhong University of Science and Technology in China, renamed as J-TEXT, a plethora of experimental and theoretical investigations has been conducted to elucidate the intricacies of turbulent transport within the tokamak configuration. These endeavors encompass not only the J-TEXT device's experimental advancements but also delve into critical issues pertinent to the optimization of future fusion devices and reactors. The research includes topics on the suppression of turbulence, flow drive and damping, density limit, non-local transport, intrinsic toroidal flow, turbulence and flow with magnetic islands, turbulent transport in the stochastic layer, and turbulence and zonal flow with energetic particles or helium ash. Several important achievements have been made in the last few years, which will be further elaborated upon in this comprehensive review.展开更多
The interaction of high energy lepton jets composed of electrons and positrons with background electron–proton plasma is investigated numerically based upon particle-in-cell simulation,focusing on the acceleration pr...The interaction of high energy lepton jets composed of electrons and positrons with background electron–proton plasma is investigated numerically based upon particle-in-cell simulation,focusing on the acceleration processes of background protons due to the development of electromagnetic turbulence.Such interaction may be found in the universe when energetic lepton jets propagate in the interstellar media.When such a jet is injected into the background plasma,theWeibel instability is excited quickly,which leads to the development of plasma turbulence into the nonlinear stage.The turbulent electric and magnetic fields accelerate plasma particles via the Fermi II type acceleration,where the maximum energy of both electrons and protons can be accelerated to much higher than that of the incident jet particles.Because of background plasma acceleration,a collisionless electrostatic shock wave is formed,where some pre-accelerated protons are further accelerated when passing through the shock wave front.Dependence of proton acceleration on the beam-plasma density ratio and beam energy is investigated.For a given background plasma density,the maximum proton energy generally increases both with the density and kinetic energy of the injected jet.Moreover,for a homogeneous background plasma,the proton acceleration via both turbulent fields and collisionless shocks is found to be significant.In the case of an inhomogeneous plasma,the proton acceleration in the plasma turbulence is dominant.Our studies illustrate a scenario where protons from background plasma can be accelerated successively by the turbulent fields and collisionless shocks.展开更多
An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather condi...An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather conditions.Past theoretical,numerical,and experimental studies on penetrative convection are reviewed,along with field studies providing insights into turbulence modeling.The physical factors that initiate penetrative convection,including internal heat sources,nonlinear constitutive relationships,centrifugal forces and other complicated factors are summarized.Cutting-edge methods for understanding transport mechanisms and statistical properties of penetrative turbulence are also documented,e.g.,the variational approach and quasilinear approach,which derive scaling laws embedded in penetrative turbulence.Exploring these scaling laws in penetrative convection can improve our understanding of large-scale geophysical and astrophysical motions.To better the model of penetrative turbulence towards a practical situation,new directions,e.g.,penetrative convection in spheres,and radiation-forced convection,are proposed.展开更多
The first results of investigation of the turbulence structure using Doppler backscattering(DBS)on the Globus-M2 tokamak are presented.A one-channel DBS system with a variable probing frequency within the 18–26 GHz r...The first results of investigation of the turbulence structure using Doppler backscattering(DBS)on the Globus-M2 tokamak are presented.A one-channel DBS system with a variable probing frequency within the 18–26 GHz range was installed to investigate the edge plasma at normalized minor radiiρ=0.9–1.1.Radial correlation Doppler reflectometry was used to study the changes in turbulence eddies after the LH transition.Correlation analysis was applied to the phase derivative of complex in-phase and quadrature(IQ)signals of the DBS diagnostic as it contains information about the poloidal plasma rotation velocity.In L-mode,the radial correlation length L_(r)is estimated to be 3 cm and after transition to H-mode reduces to approximately 2 cm.Gyrokinetic modelling in a linear local approximation using code GENE indicates that the instability with positive growth rate at the normalized minor radiusρ=0.75 in L-mode and H-mode on Globus-M2 was the ion temperature gradient(ITG)mode.展开更多
The effect of Stokes drift production(SDP),which includes Coriolis-Stokes forcing,Langmuir circulation,and Craik-Lei-bovich vortexes,on the upper ocean during typhoon passage in the Bohai Sea(BS),China,is investigated...The effect of Stokes drift production(SDP),which includes Coriolis-Stokes forcing,Langmuir circulation,and Craik-Lei-bovich vortexes,on the upper ocean during typhoon passage in the Bohai Sea(BS),China,is investigated by using a coupled wave-current model.The role of SDP in turbulent mixing and the further dynamics during the entire typhoon period are comprehensively stud-ied.Experimental results show that SDP greatly increases turbulent mixing at all depths under typhoon conditions by up to seven times that under normal weather conditions.SDP generally strengthens sea surface cooling by more than 0.4℃,with the maximum reduction in sea surface temperature(SST)at the during-typhoon stage exceeding 2℃,which is approximately seven times larger than that under normal weather conditions.The SDP-induced decrease in current speed can exceed 0.2ms^(-1),and the change in current direction is generally opposite the wind direction.These results suggest that Stokes drift depresses the effect of strong winds on currents by intensifying turbulent mixing.Mixed layer depth(MLD)is distinctly increased by O(1)during typhoons due to SDP and can deepen by more than 5m.In addition,the continuous effects of SDP on SST,current,and MLD at the after-typhoon stage indi-cate a hysteretic response between SDP and typhoon actions.展开更多
The outstanding issue to overcoming atmospheric turbulence on distant imaging is a fundamental interest and technological challenge.We propose a novel scenario and technique to restore the optical image in turbulent e...The outstanding issue to overcoming atmospheric turbulence on distant imaging is a fundamental interest and technological challenge.We propose a novel scenario and technique to restore the optical image in turbulent environmental by referring to Cyclopean image with binocular vision.With human visual intelligence,image distortion resulting from the turbulence is shown to be substantially suppressed.Numerical simulation results taking into account of the atmospheric turbulence,optical image system,image sensors,display and binocular vision perception are presented to demonstrate the robustness of the image restoration,which is compared with a single channel planar optical imaging and sensing.Experiment involving binocular telescope,image recording and the stereo-image display is conducted and good agreement is obtained between the simulation with perceptive experience.A natural extension of the scenario is to enhance the capability of anti-vibration or anti-shaking for general optical imaging with Cyclopean image.展开更多
This paper reports an improved time-delay estimation(TDE)technique for the derivation of turbulence structures based on gas-puff imaging data.The improved TDE technique,integrating an inverse timing search and hierarc...This paper reports an improved time-delay estimation(TDE)technique for the derivation of turbulence structures based on gas-puff imaging data.The improved TDE technique,integrating an inverse timing search and hierarchical strategy,offers superior accuracy in calculating turbulent velocity field maps and analyzing blob dynamics,which has the power to obtain the radial profiles of equilibrium poloidal velocity,blob size and its radial velocity,even the fluctuation analysis,such as geodesic acoustic modes and quasi-coherent mode,etc.This improved technique could provide important 2D information for the study of edge turbulence and blob dynamics,advancing the understanding of edge turbulence physics in fusion plasmas.展开更多
Turbulent fluxes at the air-sea interface were estimated with data collected in 2011-2020 with a low-profile platform named OCARINA during eight experiments in five regions:2011,2015,and 2016 in the Iroise Sea;2012 in...Turbulent fluxes at the air-sea interface were estimated with data collected in 2011-2020 with a low-profile platform named OCARINA during eight experiments in five regions:2011,2015,and 2016 in the Iroise Sea;2012 in the tropical Atlantic;2014 in the Chilie-Peru upwelling;2017 and 2018 in the Mediterranean Sea,and 2018 and 2020 in Barbados.The observations were carried out with moderate winds(2-10 m s^(-1))and average wave heights of 1.5 m.In this study,the authors used the fluxes calculated by the bulk method using OCARINA-sampled data as the input.These data can validate the fluxes estimated from ERAS reanalysis data.The OCARINA and ERA5 data were taken concomitantly.To do this,the authors established an algorithm to extract the OCARINA data as closely as possible to the reanalysis data in time and position.The measurements of the OCARINA platform can conclude on the relevance of the widely used reanalysis data.展开更多
The frontogenetic processes of a submesoscale cold filament driven by the thermal convection turbulence are studied by a non-hydrostatic large eddy simulation.The results show that the periodic changes in the directio...The frontogenetic processes of a submesoscale cold filament driven by the thermal convection turbulence are studied by a non-hydrostatic large eddy simulation.The results show that the periodic changes in the direction of the cross-filament secondary circulations are induced by the inertial oscillation.The change in the direction of the secondary circulations induces the enhancement and reduction of the horizontal temperature gradient during the former and later inertial period,which indicates that the frontogenetical processes of the cold filament include both of frontogenesis and frontolysis.The structure of the cold filament may be broken and restored by frontogenesis and frontolysis,respectively.The magnitude of the down-filament currents has a periodic variation,while its direction is unchanged with time.The coupling effect of the turbulent mixing and the frontogenesis and frontolysis gradually weakens the temperature gradient of the cold filament with time,which reduces frontogenetical intensity and enlarges the width of cold filament.展开更多
Any biogas produced by the anaerobic fermentation of organic materials has the advantage of being an environmentally friendly biofuel.Nevertheless,the relatively low calorific value of such gases makes their effective...Any biogas produced by the anaerobic fermentation of organic materials has the advantage of being an environmentally friendly biofuel.Nevertheless,the relatively low calorific value of such gases makes their effective utilization in practical applications relatively difficult.The present study considers the addition of hydrogen as a potential solution to mitigate this issue.In particular,the properties of turbulent diffusion jet flames and the related pollutant emissions are investigated numerically for different operating pressures.The related numerical simulations are conducted by solving the RANS equations in the frame of the Reynolds Stress Model in combination with the flamelet approach.Radiation effects are also taken into account and the combustion kinetics are described via the GRI-Mech 3.0 reaction model.The considered hydrogen fuel enrichment spans the range from 0%to 50%in terms of volume.Pressure varies between 1 and 10 atm.The results show that both hydrogen addition and pressure increase lead to an improvement in terms of mixing quality and have a significant effect on flame temperature and height.They also reduce CO_(2) emissions but increase NOx production.Prompt NO is shown to be the predominant NO formation mechanism.展开更多
The vector vortex beam(VVB)has attracted significant attention due to its intrinsic diversity of information and has found great applications in both classical and quantum communications.However,a VVB is unavoidably a...The vector vortex beam(VVB)has attracted significant attention due to its intrinsic diversity of information and has found great applications in both classical and quantum communications.However,a VVB is unavoidably affected by atmospheric turbulence(AT)when it propagates through the free-space optical communication environment,which results in detection errors at the receiver.In this paper,we propose a VVB classification scheme to detect VVBs with continuously changing polarization states under AT,where a diffractive deep neural network(DDNN)is designed and trained to classify the intensity distribution of the input distorted VVBs,and the horizontal direction of polarization of the input distorted beam is adopted as the feature for the classification through the DDNN.The numerical simulations and experimental results demonstrate that the proposed scheme has high accuracy in classification tasks.The energy distribution percentage remains above 95%from weak to medium AT,and the classification accuracy can remain above 95%for various strengths of turbulence.It has a faster convergence and better accuracy than that based on a convolutional neural network.展开更多
This focused issue of the Communications on Applied Mathematics and Computation is in Honour of Prof.Rémi Abgrall on the Occasion of His 61th Birthday.Rémi Abgrall has been a student in mathematics(1981–198...This focused issue of the Communications on Applied Mathematics and Computation is in Honour of Prof.Rémi Abgrall on the Occasion of His 61th Birthday.Rémi Abgrall has been a student in mathematics(1981–1985)of Ecole Normale Supérieure de Saint Cloud(now part of ENS Lyon).After his studies in pure mathematics,he changed orientation tofluid mechanics.He did his PhD at the Laboratoire de Météorologie Dynamique(LMD)at Ecole Normale Supérieure under the supervision of Claude Basdevant.He graduated in December 1987 with a thesis on a semi-Lagrangian model of 2D turbulence,refereed by Olivier Pironneau and Marcel Lesieur.展开更多
As a typical nonlinear wave,forward-leaning waves can be frequently encountered in the near-shore areas,which can impact coastal sediment transport significantly.Hence,it is of significance to describe the characteris...As a typical nonlinear wave,forward-leaning waves can be frequently encountered in the near-shore areas,which can impact coastal sediment transport significantly.Hence,it is of significance to describe the characteristics of the boundary layer beneath forward-leaning waves accurately,especially for the turbulent boundary layer.In this work,the linearized turbulent boundary layer model with a linear turbulent viscosity coefficient is applied,and the novel expression of the near-bed orbital velocity that has been worked out by the authors for forward-leaning waves of arbitrary forward-leaning degrees is further used to specify the free stream boundary condition of the bottom boundary layer.Then,a variable transformation is found so as to make the equation of the turbulent boundary layer model be solved analytically through a modified Bessel function.Consequently,an explicit analytical solution of the turbulent boundary layer beneath forward-leaning waves is derived by means of variable separation and variable transformation.The analytical solutions of the velocity profile and bottom shear stress of the turbulent boundary layer beneath forward-leaning waves are verified by comparing the present analytical results with typical experimental data available in the previous literature.展开更多
A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI dat...A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI data.However,with the TDE method it is difficult to analyze the data with fast transient events,such as edge-localized mode(ELM).Consequently,a method called the spatial displacement estimation(SDE)algorithm is developed to estimate the turbulence velocity with high temporal resolution.Based on the SDE algorithm,we make some improvements,including an adaptive median filter and super-resolution technology.After the development of the algorithm,a straight-line movement and a curved-line movement are used to test the accuracy of the algorithm,and the calculated speed agrees well with preset speed.This SDE algorithm is applied to the EAST GPI data analysis,and the derived propagation velocity of turbulence is consistent with that from the TDE method,but with much higher temporal resolution.展开更多
This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1...This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1.00 m in width.The related reflector is made of lined sheets of aluminum,and the tubes are made of stainless steel used for the absorption of heat.They have an outer diameter of 0.051 m and a wall thickness of 0.002 m.Water,used as a heat transfer fluid(HTF),flows through the absorber tube at a mass flow rate of 0.7 kg/s.The dimensions of cylindrical turbulators are 0.04 m in length and 0.047 m in diameter.Simulations are performed using the ANSYS Fluent 2020 R2 software.The PTC performance is evaluated by comparing the experimental and numerical outcomes,namely,the outlet temperature,useful heat,and thermal efficiency for a modified tube(MT)(tube with novel cylindrical turbulators)and a plain tube(PT)(tube without novel cylindrical turbulators).According to the results,the experimental outlet temperatures recorded 63.2°C and 50.5°C for the MT and PT,respectively.The heat gain reaches 1137.5 Win the MT and 685.8 Win the PT.Compared to the PT collector,the PTC exhibited a(1.64 times)higher efficiency.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No:90411006).
文摘The variational adjoint method was applied to retrieving the turbulivity of the atmospheric Ekman boundary layer along with the regularization principle, The validity of the method was verified by using the idealized data, and then the turbulivity profile and the geostrophic wind profile were retrieved through it for real observational wind filed data.
基金This work was supported by the Science and Technology Innovation Training Program of Nanjing University of Posts and Telecommunications(Grant No.CXXZD2023080)the National Natural Science Foundation of China(Grant Nos.61871234 and 62001249)+1 种基金the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY222133)the Open Research Fund of National Laboratory of Solid State Microstructures(Grant No.M36055).
文摘We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical formula of the channel capacity of the focused LG beam in the anisotropic ocean turbulence,and analyze the relationship between the capacity and the light source parameters as well as the turbulent ocean parameters.It is found that the focusing mirror can greatly enhance the channel capacity of the system at the geometric focal plane in oceanic turbulence.The results also demonstrate that the communication link can obtain high channel capacity by adopting longer beam wavelength,greater initial beam waist radius,and larger number of transmission channels.Further,the capacity of the system increases with the decrease of the mean squared temperature dissipation rate,temperature-salinity contribution ratio and turbulence outer scale factor,and with the increase of the kinetic energy dissipation rate per unit mass of fluid,turbulence inner scale factor and anisotropy factor.Compared to a Hankel–Bessel beam with diffraction-free characteristics and unfocused LG beam,the focused LG beam shows superior anti-turbulence interference properties,which provide a theoretical reference for research and development of underwater optical communication links using focused LG beams.
基金supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145)+2 种基金JST Through the Establishment of University Fellowships Towards the Creation of Science Technology Innovation(JPMJFS2115)the National Natural Science Foundation of China(52078382)the State Key Laboratory of Disaster Reduction in Civil Engineering(CE19-A-01)。
文摘Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU.
基金supported by the Meteorological Soft Science Project(Grant No.2023ZZXM29)the Natural Science Fund Project of Tianjin,China(Grant No.21JCYBJC00740)the Key Research and Development-Social Development Program of Jiangsu Province,China(Grant No.BE2021685).
文摘As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11604058)Guangxi Natural Science Foundation (Grant Nos. 2020GXNSFAA297041 and 2023JJA110112)+1 种基金Innovation Project of Guangxi Graduate Education (Grant No. YCSW2023083)Sichuan Science and Technology Program (Grant No. 2023NSFSC0460)。
文摘Turbulence in complex environments such as the atmosphere and biological media has always been a great challenge to the application of beam propagation in optical communication, optical trapping and manipulation. To overcome this challenge, this study comprehensively investigates the robust propagation of traditional Gaussian and autofocusing beams in turbulent environments. In order to select stable beams that exhibit high intensity and high field gradient at the focal position in complex environments, Kolmogorov turbulence theory is used to simulate the propagation of beams in atmospheric turbulence based on the multi-phase screen method. We systematically analyze the intensity fluctuations, the variation of the coherence factor and the change in the scintillation index with propagation distance. The analysis reveals that the intensity fluctuations of autofocusing beams are significantly smaller than those of Gaussian beams, and the coherence of autofocusing beams is better than that of Gaussian beams under turbulence. Moreover, autofocusing beams exhibit less oscillation than Gaussian beams, indicating that autofocusing beams propagate in complex environments with less distortion and intensity fluctuation. Overall, this work clearly demonstrates that autofocusing beams exhibit higher stability in propagation compared with Gaussian beams, showing great promise for applications such as optical trapping and manipulation in complex environments.
基金supported by the National Key R&D Program of China (Nos. 2022YFE03100004, 2017YFE0302000, and 2017YFE0301100)National Natural Science Foundation of China (Nos. 12275097, 12275096, 11875292, 11675059, 11905079, 11305071, and 51821005)+5 种基金the Ministry of Science and Technology of China (No. 2013GB112002)the Project of Science and Technology Department of Sichuan Province (No. 2022NSFSC1791)the Natural Science Foundation of Anhui Province (No. 2208085J39)the Fundamental Research Funds for the Central Universities, HUST: (Nos. 2019kfy XMBZ034 and 2021XXJS007)the Initiative Postdocs Supporting Program of China (No. BX20180105)the US Department of Energy, Office of Science, Office of Fusion Energy Sciences (Nos. DEFG02-04ER54738 and DE-SC-0020287)。
文摘Following the reconstruction of the TEXT tokamak at Huazhong University of Science and Technology in China, renamed as J-TEXT, a plethora of experimental and theoretical investigations has been conducted to elucidate the intricacies of turbulent transport within the tokamak configuration. These endeavors encompass not only the J-TEXT device's experimental advancements but also delve into critical issues pertinent to the optimization of future fusion devices and reactors. The research includes topics on the suppression of turbulence, flow drive and damping, density limit, non-local transport, intrinsic toroidal flow, turbulence and flow with magnetic islands, turbulent transport in the stochastic layer, and turbulence and zonal flow with energetic particles or helium ash. Several important achievements have been made in the last few years, which will be further elaborated upon in this comprehensive review.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12135009,11991074,11975154,and 12005287).
文摘The interaction of high energy lepton jets composed of electrons and positrons with background electron–proton plasma is investigated numerically based upon particle-in-cell simulation,focusing on the acceleration processes of background protons due to the development of electromagnetic turbulence.Such interaction may be found in the universe when energetic lepton jets propagate in the interstellar media.When such a jet is injected into the background plasma,theWeibel instability is excited quickly,which leads to the development of plasma turbulence into the nonlinear stage.The turbulent electric and magnetic fields accelerate plasma particles via the Fermi II type acceleration,where the maximum energy of both electrons and protons can be accelerated to much higher than that of the incident jet particles.Because of background plasma acceleration,a collisionless electrostatic shock wave is formed,where some pre-accelerated protons are further accelerated when passing through the shock wave front.Dependence of proton acceleration on the beam-plasma density ratio and beam energy is investigated.For a given background plasma density,the maximum proton energy generally increases both with the density and kinetic energy of the injected jet.Moreover,for a homogeneous background plasma,the proton acceleration via both turbulent fields and collisionless shocks is found to be significant.In the case of an inhomogeneous plasma,the proton acceleration in the plasma turbulence is dominant.Our studies illustrate a scenario where protons from background plasma can be accelerated successively by the turbulent fields and collisionless shocks.
基金supported by the Heilongjiang Touyan Innovative Program Teammade possible through the generous support of the NSFC (Grant No. 52176065)the Fundamental Research Funds for the Central Universities(Grant No. 2022FRFK060022)
文摘An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather conditions.Past theoretical,numerical,and experimental studies on penetrative convection are reviewed,along with field studies providing insights into turbulence modeling.The physical factors that initiate penetrative convection,including internal heat sources,nonlinear constitutive relationships,centrifugal forces and other complicated factors are summarized.Cutting-edge methods for understanding transport mechanisms and statistical properties of penetrative turbulence are also documented,e.g.,the variational approach and quasilinear approach,which derive scaling laws embedded in penetrative turbulence.Exploring these scaling laws in penetrative convection can improve our understanding of large-scale geophysical and astrophysical motions.To better the model of penetrative turbulence towards a practical situation,new directions,e.g.,penetrative convection in spheres,and radiation-forced convection,are proposed.
基金the financial support of the Ministry of Science and Higher Education of the Russian Federation in the framework of the State Contract in the Field of Science(No.FSEG-2024-0005)。
文摘The first results of investigation of the turbulence structure using Doppler backscattering(DBS)on the Globus-M2 tokamak are presented.A one-channel DBS system with a variable probing frequency within the 18–26 GHz range was installed to investigate the edge plasma at normalized minor radiiρ=0.9–1.1.Radial correlation Doppler reflectometry was used to study the changes in turbulence eddies after the LH transition.Correlation analysis was applied to the phase derivative of complex in-phase and quadrature(IQ)signals of the DBS diagnostic as it contains information about the poloidal plasma rotation velocity.In L-mode,the radial correlation length L_(r)is estimated to be 3 cm and after transition to H-mode reduces to approximately 2 cm.Gyrokinetic modelling in a linear local approximation using code GENE indicates that the instability with positive growth rate at the normalized minor radiusρ=0.75 in L-mode and H-mode on Globus-M2 was the ion temperature gradient(ITG)mode.
基金supported by the National Natural Science Foundation of China(No.42176020)the National Key Research and Development Program(No.2022 YFC3105002).
文摘The effect of Stokes drift production(SDP),which includes Coriolis-Stokes forcing,Langmuir circulation,and Craik-Lei-bovich vortexes,on the upper ocean during typhoon passage in the Bohai Sea(BS),China,is investigated by using a coupled wave-current model.The role of SDP in turbulent mixing and the further dynamics during the entire typhoon period are comprehensively stud-ied.Experimental results show that SDP greatly increases turbulent mixing at all depths under typhoon conditions by up to seven times that under normal weather conditions.SDP generally strengthens sea surface cooling by more than 0.4℃,with the maximum reduction in sea surface temperature(SST)at the during-typhoon stage exceeding 2℃,which is approximately seven times larger than that under normal weather conditions.The SDP-induced decrease in current speed can exceed 0.2ms^(-1),and the change in current direction is generally opposite the wind direction.These results suggest that Stokes drift depresses the effect of strong winds on currents by intensifying turbulent mixing.Mixed layer depth(MLD)is distinctly increased by O(1)during typhoons due to SDP and can deepen by more than 5m.In addition,the continuous effects of SDP on SST,current,and MLD at the after-typhoon stage indi-cate a hysteretic response between SDP and typhoon actions.
基金supported by the National Natural Science Foundation of China(Grant No.61991452)Guangdong Key Project(Grant No.2020B0301030009)the National Key Research and Development Program of China(Grant No.2021YFB2802204).
文摘The outstanding issue to overcoming atmospheric turbulence on distant imaging is a fundamental interest and technological challenge.We propose a novel scenario and technique to restore the optical image in turbulent environmental by referring to Cyclopean image with binocular vision.With human visual intelligence,image distortion resulting from the turbulence is shown to be substantially suppressed.Numerical simulation results taking into account of the atmospheric turbulence,optical image system,image sensors,display and binocular vision perception are presented to demonstrate the robustness of the image restoration,which is compared with a single channel planar optical imaging and sensing.Experiment involving binocular telescope,image recording and the stereo-image display is conducted and good agreement is obtained between the simulation with perceptive experience.A natural extension of the scenario is to enhance the capability of anti-vibration or anti-shaking for general optical imaging with Cyclopean image.
基金partially supported by the National Key R&D Program of China(Nos.2019YFE03030002 and 2022YFE03030001)National Natural Science Foundation of China(Nos.12175186 and 12175055)the Natural Science Foundation of Sichuan Province(Nos.2022NSFSC1820 and 2023NSFSC1289)。
文摘This paper reports an improved time-delay estimation(TDE)technique for the derivation of turbulence structures based on gas-puff imaging data.The improved TDE technique,integrating an inverse timing search and hierarchical strategy,offers superior accuracy in calculating turbulent velocity field maps and analyzing blob dynamics,which has the power to obtain the radial profiles of equilibrium poloidal velocity,blob size and its radial velocity,even the fluctuation analysis,such as geodesic acoustic modes and quasi-coherent mode,etc.This improved technique could provide important 2D information for the study of edge turbulence and blob dynamics,advancing the understanding of edge turbulence physics in fusion plasmas.
文摘Turbulent fluxes at the air-sea interface were estimated with data collected in 2011-2020 with a low-profile platform named OCARINA during eight experiments in five regions:2011,2015,and 2016 in the Iroise Sea;2012 in the tropical Atlantic;2014 in the Chilie-Peru upwelling;2017 and 2018 in the Mediterranean Sea,and 2018 and 2020 in Barbados.The observations were carried out with moderate winds(2-10 m s^(-1))and average wave heights of 1.5 m.In this study,the authors used the fluxes calculated by the bulk method using OCARINA-sampled data as the input.These data can validate the fluxes estimated from ERAS reanalysis data.The OCARINA and ERA5 data were taken concomitantly.To do this,the authors established an algorithm to extract the OCARINA data as closely as possible to the reanalysis data in time and position.The measurements of the OCARINA platform can conclude on the relevance of the widely used reanalysis data.
基金The National Key Research and Development Program of China under contract No.2022YFC3103400the National Natural Science Foundation of China under contract Nos 42076019 and 42076026the Project supported by Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.SML2023SP240.
文摘The frontogenetic processes of a submesoscale cold filament driven by the thermal convection turbulence are studied by a non-hydrostatic large eddy simulation.The results show that the periodic changes in the direction of the cross-filament secondary circulations are induced by the inertial oscillation.The change in the direction of the secondary circulations induces the enhancement and reduction of the horizontal temperature gradient during the former and later inertial period,which indicates that the frontogenetical processes of the cold filament include both of frontogenesis and frontolysis.The structure of the cold filament may be broken and restored by frontogenesis and frontolysis,respectively.The magnitude of the down-filament currents has a periodic variation,while its direction is unchanged with time.The coupling effect of the turbulent mixing and the frontogenesis and frontolysis gradually weakens the temperature gradient of the cold filament with time,which reduces frontogenetical intensity and enlarges the width of cold filament.
文摘Any biogas produced by the anaerobic fermentation of organic materials has the advantage of being an environmentally friendly biofuel.Nevertheless,the relatively low calorific value of such gases makes their effective utilization in practical applications relatively difficult.The present study considers the addition of hydrogen as a potential solution to mitigate this issue.In particular,the properties of turbulent diffusion jet flames and the related pollutant emissions are investigated numerically for different operating pressures.The related numerical simulations are conducted by solving the RANS equations in the frame of the Reynolds Stress Model in combination with the flamelet approach.Radiation effects are also taken into account and the combustion kinetics are described via the GRI-Mech 3.0 reaction model.The considered hydrogen fuel enrichment spans the range from 0%to 50%in terms of volume.Pressure varies between 1 and 10 atm.The results show that both hydrogen addition and pressure increase lead to an improvement in terms of mixing quality and have a significant effect on flame temperature and height.They also reduce CO_(2) emissions but increase NOx production.Prompt NO is shown to be the predominant NO formation mechanism.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62375140 and 62001249)the Open Research Fund of National Laboratory of Solid State Microstructures(Grant No.M36055).
文摘The vector vortex beam(VVB)has attracted significant attention due to its intrinsic diversity of information and has found great applications in both classical and quantum communications.However,a VVB is unavoidably affected by atmospheric turbulence(AT)when it propagates through the free-space optical communication environment,which results in detection errors at the receiver.In this paper,we propose a VVB classification scheme to detect VVBs with continuously changing polarization states under AT,where a diffractive deep neural network(DDNN)is designed and trained to classify the intensity distribution of the input distorted VVBs,and the horizontal direction of polarization of the input distorted beam is adopted as the feature for the classification through the DDNN.The numerical simulations and experimental results demonstrate that the proposed scheme has high accuracy in classification tasks.The energy distribution percentage remains above 95%from weak to medium AT,and the classification accuracy can remain above 95%for various strengths of turbulence.It has a faster convergence and better accuracy than that based on a convolutional neural network.
文摘This focused issue of the Communications on Applied Mathematics and Computation is in Honour of Prof.Rémi Abgrall on the Occasion of His 61th Birthday.Rémi Abgrall has been a student in mathematics(1981–1985)of Ecole Normale Supérieure de Saint Cloud(now part of ENS Lyon).After his studies in pure mathematics,he changed orientation tofluid mechanics.He did his PhD at the Laboratoire de Météorologie Dynamique(LMD)at Ecole Normale Supérieure under the supervision of Claude Basdevant.He graduated in December 1987 with a thesis on a semi-Lagrangian model of 2D turbulence,refereed by Olivier Pironneau and Marcel Lesieur.
基金Project supported by the National Key R&D Program of China(No.2022YFC3204303)the National Natural Science Foundation of China(Nos.12202503,12132018,and 52394254)。
文摘As a typical nonlinear wave,forward-leaning waves can be frequently encountered in the near-shore areas,which can impact coastal sediment transport significantly.Hence,it is of significance to describe the characteristics of the boundary layer beneath forward-leaning waves accurately,especially for the turbulent boundary layer.In this work,the linearized turbulent boundary layer model with a linear turbulent viscosity coefficient is applied,and the novel expression of the near-bed orbital velocity that has been worked out by the authors for forward-leaning waves of arbitrary forward-leaning degrees is further used to specify the free stream boundary condition of the bottom boundary layer.Then,a variable transformation is found so as to make the equation of the turbulent boundary layer model be solved analytically through a modified Bessel function.Consequently,an explicit analytical solution of the turbulent boundary layer beneath forward-leaning waves is derived by means of variable separation and variable transformation.The analytical solutions of the velocity profile and bottom shear stress of the turbulent boundary layer beneath forward-leaning waves are verified by comparing the present analytical results with typical experimental data available in the previous literature.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2022YFE03030001,2022YFE03020004 and 2022YFE 03050003)National Natural Science Foundation of China(Nos.12275310,11975275,12175277 and 11975271)+2 种基金the Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2021-01)the Collaborative Innovation Program of Hefei Science Center,Chinese Academy of Sciences(No.2021HSC-CIP019)the Users with Excellence Program of Hefei Science Center,Chinese Academy of Sciences(Nos.2021HSC-UE014 and 2021HSCUE012)。
文摘A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI data.However,with the TDE method it is difficult to analyze the data with fast transient events,such as edge-localized mode(ELM).Consequently,a method called the spatial displacement estimation(SDE)algorithm is developed to estimate the turbulence velocity with high temporal resolution.Based on the SDE algorithm,we make some improvements,including an adaptive median filter and super-resolution technology.After the development of the algorithm,a straight-line movement and a curved-line movement are used to test the accuracy of the algorithm,and the calculated speed agrees well with preset speed.This SDE algorithm is applied to the EAST GPI data analysis,and the derived propagation velocity of turbulence is consistent with that from the TDE method,but with much higher temporal resolution.
文摘This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1.00 m in width.The related reflector is made of lined sheets of aluminum,and the tubes are made of stainless steel used for the absorption of heat.They have an outer diameter of 0.051 m and a wall thickness of 0.002 m.Water,used as a heat transfer fluid(HTF),flows through the absorber tube at a mass flow rate of 0.7 kg/s.The dimensions of cylindrical turbulators are 0.04 m in length and 0.047 m in diameter.Simulations are performed using the ANSYS Fluent 2020 R2 software.The PTC performance is evaluated by comparing the experimental and numerical outcomes,namely,the outlet temperature,useful heat,and thermal efficiency for a modified tube(MT)(tube with novel cylindrical turbulators)and a plain tube(PT)(tube without novel cylindrical turbulators).According to the results,the experimental outlet temperatures recorded 63.2°C and 50.5°C for the MT and PT,respectively.The heat gain reaches 1137.5 Win the MT and 685.8 Win the PT.Compared to the PT collector,the PTC exhibited a(1.64 times)higher efficiency.