For high-speed railways,the smoothness of the railway line significantly affects the operational speed of trains.When the train passes through the turnout on a long-span bridge,the wheel-rail impacts caused by the tur...For high-speed railways,the smoothness of the railway line significantly affects the operational speed of trains.When the train passes through the turnout on a long-span bridge,the wheel-rail impacts caused by the turnout structure irregularities,and the instability arising from the bridge's flexural deformation lead to a strong coupling effect in the vehicle-turnout-bridge system.This significantly affects both ride comfort and operational safety.For addressing this issue,the present study considered a long-span continuous rigid-frame bridge as an example and established a train-turnout-bridge coupled dynamic model of high-speed railway.Utilizing a selfdeveloped dynamic simulation program,the study analysed the dynamic response characteristics when the train passes through the turnouts on the bridge.It also investigated the influence of different span-to-depth ratios of the bridge on the vehicle dynamic response when the train passes through the main line and branch line of turnouts and then proposed a span-to-depth ratio limit value for a long-span continuous rigid-frame bridge.The research findings suggest that the changes in the span-to-depth ratio have a relatively minor impact on the train’s operational performance but significantly affect the dynamic characteristics of the bridge structure.Based on the findings and a comprehensive assessment of safety indicators,it is advisable to establish a span-to-depth ratio limit of 1/4500 for a long-span continuous rigid-frame bridge.展开更多
The sliding chairs are important components that support the switch rail conversion in the railway turnout.Due to the harsh environmental erosion and the attack from the wheel vibration,the failure rate of the sliding...The sliding chairs are important components that support the switch rail conversion in the railway turnout.Due to the harsh environmental erosion and the attack from the wheel vibration,the failure rate of the sliding chairs accounts for up to 10%of the total failure number in turnout.However,there is little research carried out in the existing literature to diagnose the deterioration states of the sliding chairs.To fill out this gap,by utilizing the images containing the sliding chairs,we propose an improved You Only Look Once version 7(YOLOv7)to identify the state of the sliding chairs.Specifically,to meet the challenge brought by the small inter-class differences among the sliding chair states,we first integrate the Convolutional Block Attention Module(CBAM)into the YOLOv7 backbone to screen the information conducive to state identification.Then,an extra detector for a small object is customized into the YOLOv7 network in order to detect the small-scale sliding chairs in images.Meanwhile,we revise the localization loss in the objective function as the Efficient Intersection over Union(EIoU)to optimize the design of the aspect ratio,which helps the localization of the sliding chairs.Next,to address the issue caused by the varying scales of the sliding chairs,we employ K-means++to optimize the priori selection of the initial anchor boxes.Finally,based on the images collected from real-world turnouts,the proposed method is verified and the results show that our method outperforms the basic YOLOv7 in the state identification of the sliding chairs with 4%improvements in terms of both mean Average Precision@0.5(mAP@0.5)and F1-score.展开更多
Railway turnout is one of the critical equipment of Switch&Crossing(S&C)Systems in railway,related to the train’s safety and operation efficiency.With the advancement of intelligent sensors,data-driven fault ...Railway turnout is one of the critical equipment of Switch&Crossing(S&C)Systems in railway,related to the train’s safety and operation efficiency.With the advancement of intelligent sensors,data-driven fault detection technology for railway turnout has become an important research topic.However,little research in the literature has investigated the capability of data-driven fault detection technology for metro railway turnout.This paper presents a convolutional autoencoder-based fault detection method for the metro railway turnout considering human field inspection scenarios.First,the one-dimensional original time-series signal is converted into a twodimensional image by data pre-processing and 2D representation.Next,a binary classification model based on the convolutional autoencoder is developed to implement fault detection.The profile and structure information can be captured by processing data as images.The performance of our method is evaluated and tested on real-world operational current data in themetro stations.Experimental results show that the proposedmethod achieves better performance,especially in terms of error rate and specificity,and is robust in practical engineering applications.展开更多
Purpose-It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process.The wear will cause the change of railhead profile and the relative posit...Purpose-It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process.The wear will cause the change of railhead profile and the relative positions of the switch rail and the stock rail,which will directly affect the wheel-rail contact state and wheel load transition when a train passes the turnout and will further impose serious impacts on the safety and stability of train operation.The purpose of this paper is to provide suggestions for wear management of high-speed turnout.Design/methodology/approach-The actual wear characteristics of switch rails of high-speed turnouts in different guiding directions were studied based on the monitoring results on site;the authorized wear limits for the switch rails of high-speed turnout were studied through derailment risk analysis and switch rail strength analysis.Findings-The results show that:the major factor for the service life of a curved switch rail is the lateral wear.The wear characteristics of the curved switch rail of a facing turnout are significantly different from those of a trailing turnout.To be specific,the lateral wear of the curved switch rail mainly occurs in the narrower section at its front end for a trailing turnout,but in the wider section at its rear end when for a facing turnout.The maximum lateral wear of a dismounted switch rail from a trailing turnout is found on the 15-mm wide section and is 3.9 mm,which does not reach the specified limit of 6 mm.For comparison,the lateral wear of a dismounted switch rail from a facing turnout is found from the 35-mm wide section to the full-width section and is greater than 7.5 mm,which exceeds the specified limit.Based on this,in addition to meeting the requirements of maintenance rules,the allowed wear of switch rails of high-speed turnout shall be so that the dangerous area with a tangent angle of wheel profile smaller than 43.68 will not contact the switch rail when the wheel is lifted by 2 mm.Accordingly,the lateral wear limit at the 5-mm wide section of the curved switch rail shall be reduced from 6 mm(as specified)to 3.5 mm.Originality/value-The work in this paper is of reference significance to the research on the development law of rail wear in high-speed turnout area and the formulation of relevant standards.展开更多
Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parame...Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parameters of the complex train-turnout system. To reproduce the actual operation conditions of railway turnouts, random distributions of these inputs need to be considered in rail wear simulation. For a given nominal layout of the high-speed railway turnout, 19 input parameters for rail wear simulation in high-speed railway turnouts are investigated based on orthogonal design of experiment. Three dynamic responses(wheel-rail friction work, normal contact force and size of contact patch) are defined as observed values and the significant factors(direction of passage, axle load, running speed, friction coefficient, and wheel and rail profiles) are determined by two unreplicated saturated factorial design methods, including the half-normal probability plot method and Dong 93 method. As part of the associated rail wear simulation, the influence of the wear models and the local elastic deformation on the rail wear was separately investigated. The calculation results for the wear models are quite different, especially for large creep mode. The local elastic deformation has a large effect on the sliding speed and rail wear and needs to be considered in the rail wear simulation.展开更多
The steel turnout is one of the key components in the medium–low-speed maglev line system.However,the vehicle under active control is prone to vehicle–turnout coupled vibration,and thus,it is necessary to identify t...The steel turnout is one of the key components in the medium–low-speed maglev line system.However,the vehicle under active control is prone to vehicle–turnout coupled vibration,and thus,it is necessary to identify the vibration characteristics of this coupled system through field tests.To this end,dynamic performance tests were conducted on a vehicle–turnout coupled system in a medium–low-speed maglev test line.Firstly,the dynamic response data of the coupled system under various operating conditions were obtained.Then,the natural vibration characteristics of the turnout were analysed using the free attenuation method and the finite element method,indicating a good agreement between the simulation results and the measured results;the acceleration response characteristics of the coupled system were analysed in detail,and the ride quality of the vehicle was assessed by Sperling index.Finally,the frequency distribution characteristics of the coupled system were discussed.All these test results could provide references for model validation and optimized design of medium–low-speed maglev transport systems.展开更多
In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is prop...In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is proposed.Firstly,the three-phase current curve of the switch machine recorded by the micro-computer monitoring system is dealt with segmentally and then the feature parameters of the three-phase current are calculated according to the action principle of the switch machine.Due to the high dimension of initial features,the DBSCAN algorithm is used to separate the sensitive features of fault diagnosis and construct the diagnostic sensitive feature set.Then,the particle swarm optimization(PSO)algorithm is used to adjust the weight of SOM network to modify the rules to avoid“dead neurons”.Finally,the PSO-SOM network fault classifier is designed to complete the classification and diagnosis of the samples to be tested.The experimental results show that this method can judge the fault mode of switch control circuit with less training samples,and the accuracy of fault diagnosis is higher than that of traditional SOM network.展开更多
The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. Ho...The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. However, the above problems are not well solved currently because of having the difficulties in how to determine the multi-contact, to preciously present the changeable profiles of the rails and to establish an accurate spatial turnout system dynamics model. Based on a high-speed vehicle-turnout coupled model in which the track is modeled as flexible with rails and sleepers represented by beams, the line tracing extreme point method is introduced to investigate the wheel-rail multiple contact conditions and the key sections of the blade rail, longer nose rail, shorter rail in the switch and nose rail area are discretized to represent the varying profiles of rails in the turnout. The dynamic interaction between the vehicle and turnout is simulated for cases of the vehicle divergently passing the turnout and the multi-point contact is obtained. The tracks of the contact patches on the top of the rails are presented and the wheel-rail impact forces are offered in comparison with the contact patches transference on the rails. The numerical simulation results indicate that the length of two-point contact occurrence of a worn wheel profile and rails is longer than that of the new wheel profile and rails; The two-point contact definitely occurs in the switch and crossing area. Generally, three-point contact doesn’t occur for the new rail profile, which is testified by the wheel-rails interpolation distance and the first order derivative function of the tracing line extreme points. The presented research is not only helpful to optimize the structure of the turnout, but also useful to lower the dynamics of the high speed vehicle-turnout system.展开更多
The paper presents an analytical method of identifying the curvature of the turnout diverging track consisting of sections of varying curvature. Both linear and nonlinear (polynomial) curvatures of the turnout divergi...The paper presents an analytical method of identifying the curvature of the turnout diverging track consisting of sections of varying curvature. Both linear and nonlinear (polynomial) curvatures of the turnout diverging track are identified and evaluated in the paper. The presented method is a universal one;it enables to assume curvature values at the beginning and end point of the geometrical layout of the turnout. The results of dynamics analysis show that widely used in railway practice, clothoid sections with nonzero curvatures at the beginning and end points of the turnout lead to increased dynamic interactions in the track-vehicle system. The turnout with nonlinear curvature reaching zero values at the extreme points of the geometrical layout is indicated in the paper as the most favourable, taking into account dynamic interactions occurring in the track-vehicle system.展开更多
The irregularity is a key factor affecting the wheel-rail contact geometry relationship. In this paper, we calculated the wheel-rail contact points at typical sections and obtained the longitudinal variation of the wh...The irregularity is a key factor affecting the wheel-rail contact geometry relationship. In this paper, we calculated the wheel-rail contact points at typical sections and obtained the longitudinal variation of the wheel-rail geometry relationship with the trace line method. The profile of the key rail sections was matched by cubic spline curve, and the shape interpolation was realized in non-controlling sections. The results show that the roll angles at each typical section increases gradually with the enlargement of track alignment irregularity. When the flange contact occurs, the roll angle increases dramatically. Proper track alignment irregularity towards the switch rail improves the structure irregularity of the turnout.展开更多
Taking the development of high-speed railway in China as background, and referring to the dynamic theory and wheel-rail contact mode, dynamic analysis model was established, considering the setting position of straigh...Taking the development of high-speed railway in China as background, and referring to the dynamic theory and wheel-rail contact mode, dynamic analysis model was established, considering the setting position of straight lines and running conditions of train in high-speed railway station yard. Using the established model, and choosing vehicle lateral acceleration and wheel suspension as the evaluation indexes, dynamic characteristic of vehicle traveling in turnout and adjacent area on main line was analyzed, and effects on travelling safety and stability of train aroused by length variation of straight lines were calculated based on analyzing the damping rules of vibration. The results show that, a certain length of straight lines can alleviate the vibration aroused in turnout and curve(turnout), length of straight lines connecting turnouts in different sections on main line was proposed to meet the demand of traveling stability, and shortening or cancelation of straight line for the scale limitation of station yard has less influence on operation safety of train.展开更多
A space coupling vibration model of the system of wheel and lead curve rails of turnouts is presented, in which the vibration of the straight and curved rails are taken into account and the variations of the elastici...A space coupling vibration model of the system of wheel and lead curve rails of turnouts is presented, in which the vibration of the straight and curved rails are taken into account and the variations of the elasticity of roadbed with the length of switch ties are considered. It is used to investigate the dynamic characteristics of different configuration of lead curve, such as circular curve, cubic spiral and high order transition curves. Based on the numerical analysis, some advantageous configurations of lead curve are suggested.展开更多
Turnout is one of the important signal infrastructure equipment,which will directly affect the safety and efficiency of driving.Base on analysis of the power curve of the turnout,we extract and select the time domain ...Turnout is one of the important signal infrastructure equipment,which will directly affect the safety and efficiency of driving.Base on analysis of the power curve of the turnout,we extract and select the time domain and Haar wavelet transform characteristics of the curve firstly.Then the correlation between the degradation state and the fault state is established by using the clustering algorithm and the Pearson correlation coefficient.Finally,the convolutional neural network(CNN)and the gated recurrent unit(GRU)are used to establish the state prediction model of the turnout to realize the failure prediction.The CNN can directly extract features from the original data of the turnout and reduce the dimension,which simplifies the prediction process.Due to its unique gate structure and time series processing features,GRU has certain advantages over the traditional forecasting methods in terms of prediction accuracy and time.The experimental results show that the accuracy of prediction can reach 94.2%when the feature matrix adopts 40-dimensional input and iterates 50 times.展开更多
By building the finite element model, the track parameters, including the ultimate longitudinal resistance, the length of the intermediate straight line, and the gap between spacer blocks, were analyzed for their infl...By building the finite element model, the track parameters, including the ultimate longitudinal resistance, the length of the intermediate straight line, and the gap between spacer blocks, were analyzed for their influences on the longitudinal forces and displacements of the single turnout and turnout group, respectively. The results indicate that when the longitudinal resistance drops from 32 to 20 N/cm, the maximum additional longitudinal force of the turnout group increases by 19. 2%, and the maximum additional longitudinal displacement of the turnout group grows by 85.3% compared with 50.4% for the single turnout. When the length of intermediate straight line rises from 0 m to infinite, the maximum additional longitudinal force decreases by 38.8%, and the maximum additional longitudinal displacement by 80.3%.展开更多
For the longitudinally coupled baUastless turnout on Leida bridge on Wuhan-Guangzhou passenger dedicated line (PDL) in China, a turnout (cross over)-track slab-bridge deck-pier integrated finite element model was ...For the longitudinally coupled baUastless turnout on Leida bridge on Wuhan-Guangzhou passenger dedicated line (PDL) in China, a turnout (cross over)-track slab-bridge deck-pier integrated finite element model was established, in which two No. 18 jointless turnouts with movable frogs in form of crossover, longitudinally coupled ballastless track, bridges and piers were regarded as one system. Based on this model, the additional forces and displacement regularities of turnouts, track slab, bridges and piers under occasional loading were analyzed, and the effect of occasional loading position was researched. The results show that slab breaking is more influential on the longitudinal force and deformation of the whole system than rail breaking, that slab breaking on one line could deteriorate both the slab force on another line and the forces exerted on the piers and fastener components, and that a great slab force at the left end of the continuous bridge expansion joint should be particularly avoided in design.展开更多
People power is the fundamental concept of democracy and power of the people is exercised though voting. People decide who should be elected to make decisions for them. However, if people do not properly participate i...People power is the fundamental concept of democracy and power of the people is exercised though voting. People decide who should be elected to make decisions for them. However, if people do not properly participate in the voting process and only two-thirds of all eligible voters participate in an election, the democratic institution loses its credibility and becomes vulnerable. This paper investigates various changes in voting institutions throughout the USAwith a simulation model that analyzes the efficacy of such methods to attain higher voter turnout.展开更多
Since the 1990s, the turnout in electoral processes has decreased, taking into account the Mexican context with its democratic transition, this decrease started after the 1994 federal election. The drop in turnout in ...Since the 1990s, the turnout in electoral processes has decreased, taking into account the Mexican context with its democratic transition, this decrease started after the 1994 federal election. The drop in turnout in federal elections had its lowest figure during the midterm elections of 2003, it picked up during the electoral process of 2009 and kept the same level of 2012. The change in the electoral turnout pattern for the federal elections in Mexico after 2009 can be explained as the combined effect of the electoral cycle and the concurrence between federal and local elections. Beginning from the hypothesis that there is a close link between institutions and contexts, the purpose of this study is to prove with the analysis of the electoral processes from 1997 to 2012, the effect of the electoral reforms--specifically the one in Article 116 of the Constitution in 2007-on turnout for federal elections of 2009 and 2012.展开更多
Railway turnouts often develop defects such as chipping,cracks,and wear during use.If not detected and addressed promptly,these defects can pose significant risks to train operation safety and passenger security.Despi...Railway turnouts often develop defects such as chipping,cracks,and wear during use.If not detected and addressed promptly,these defects can pose significant risks to train operation safety and passenger security.Despite advances in defect detection technologies,research specifically targeting railway turnout defects remains limited.To address this gap,we collected images from railway inspectors and constructed a dataset of railway turnout defects in complex environments.To enhance detection accuracy,we propose an improved YOLOv8 model named YOLO-VSS-SOUP-Inner-CIoU(YOLO-VSI).The model employs a state-space model(SSM)to enhance the C2f module in the YOLOv8 backbone,proposed the C2f-VSS module to better capture long-range dependencies and contextual features,thus improving feature extraction in complex environments.In the network’s neck layer,we integrate SPDConv and Omni-Kernel Network(OKM)modules to improve the original PAFPN(Path Aggregation Feature Pyramid Network)structure,and proposed the Small Object Upgrade Pyramid(SOUP)structure to enhance small object detection capabilities.Additionally,the Inner-CIoU loss function with a scale factor is applied to further enhance the model’s detection capabilities.Compared to the baseline model,YOLO-VSI demonstrates a 3.5%improvement in average precision on our railway turnout dataset,showcasing increased accuracy and robustness.Experiments on the public NEU-DET dataset reveal a 2.3%increase in average precision over the baseline,indicating that YOLO-VSI has good generalization capabilities.展开更多
基金supported by the National Key R&D Program of China(2022YFB2602900)the 111 Project(B20040)the China Railway Science and Technology Research and Development Program Project(N2023T011-A(JB)).
文摘For high-speed railways,the smoothness of the railway line significantly affects the operational speed of trains.When the train passes through the turnout on a long-span bridge,the wheel-rail impacts caused by the turnout structure irregularities,and the instability arising from the bridge's flexural deformation lead to a strong coupling effect in the vehicle-turnout-bridge system.This significantly affects both ride comfort and operational safety.For addressing this issue,the present study considered a long-span continuous rigid-frame bridge as an example and established a train-turnout-bridge coupled dynamic model of high-speed railway.Utilizing a selfdeveloped dynamic simulation program,the study analysed the dynamic response characteristics when the train passes through the turnouts on the bridge.It also investigated the influence of different span-to-depth ratios of the bridge on the vehicle dynamic response when the train passes through the main line and branch line of turnouts and then proposed a span-to-depth ratio limit value for a long-span continuous rigid-frame bridge.The research findings suggest that the changes in the span-to-depth ratio have a relatively minor impact on the train’s operational performance but significantly affect the dynamic characteristics of the bridge structure.Based on the findings and a comprehensive assessment of safety indicators,it is advisable to establish a span-to-depth ratio limit of 1/4500 for a long-span continuous rigid-frame bridge.
基金supported by the National Key R&D Program of China(2021YFF0501102)the National Natural Science Foundation of China(52372308,U2368202,U1934219,52202392,52022010,U22A2046,52172322,and 62271486).
文摘The sliding chairs are important components that support the switch rail conversion in the railway turnout.Due to the harsh environmental erosion and the attack from the wheel vibration,the failure rate of the sliding chairs accounts for up to 10%of the total failure number in turnout.However,there is little research carried out in the existing literature to diagnose the deterioration states of the sliding chairs.To fill out this gap,by utilizing the images containing the sliding chairs,we propose an improved You Only Look Once version 7(YOLOv7)to identify the state of the sliding chairs.Specifically,to meet the challenge brought by the small inter-class differences among the sliding chair states,we first integrate the Convolutional Block Attention Module(CBAM)into the YOLOv7 backbone to screen the information conducive to state identification.Then,an extra detector for a small object is customized into the YOLOv7 network in order to detect the small-scale sliding chairs in images.Meanwhile,we revise the localization loss in the objective function as the Efficient Intersection over Union(EIoU)to optimize the design of the aspect ratio,which helps the localization of the sliding chairs.Next,to address the issue caused by the varying scales of the sliding chairs,we employ K-means++to optimize the priori selection of the initial anchor boxes.Finally,based on the images collected from real-world turnouts,the proposed method is verified and the results show that our method outperforms the basic YOLOv7 in the state identification of the sliding chairs with 4%improvements in terms of both mean Average Precision@0.5(mAP@0.5)and F1-score.
基金supported in part by the National Natural Science Foundation of China under Grant U1734211.
文摘Railway turnout is one of the critical equipment of Switch&Crossing(S&C)Systems in railway,related to the train’s safety and operation efficiency.With the advancement of intelligent sensors,data-driven fault detection technology for railway turnout has become an important research topic.However,little research in the literature has investigated the capability of data-driven fault detection technology for metro railway turnout.This paper presents a convolutional autoencoder-based fault detection method for the metro railway turnout considering human field inspection scenarios.First,the one-dimensional original time-series signal is converted into a twodimensional image by data pre-processing and 2D representation.Next,a binary classification model based on the convolutional autoencoder is developed to implement fault detection.The profile and structure information can be captured by processing data as images.The performance of our method is evaluated and tested on real-world operational current data in themetro stations.Experimental results show that the proposedmethod achieves better performance,especially in terms of error rate and specificity,and is robust in practical engineering applications.
基金supported by the Fund of China Academy of Railway Sciences Corporation Limited (Grant Nos.2022YJ177 and 2022YJ088).
文摘Purpose-It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process.The wear will cause the change of railhead profile and the relative positions of the switch rail and the stock rail,which will directly affect the wheel-rail contact state and wheel load transition when a train passes the turnout and will further impose serious impacts on the safety and stability of train operation.The purpose of this paper is to provide suggestions for wear management of high-speed turnout.Design/methodology/approach-The actual wear characteristics of switch rails of high-speed turnouts in different guiding directions were studied based on the monitoring results on site;the authorized wear limits for the switch rails of high-speed turnout were studied through derailment risk analysis and switch rail strength analysis.Findings-The results show that:the major factor for the service life of a curved switch rail is the lateral wear.The wear characteristics of the curved switch rail of a facing turnout are significantly different from those of a trailing turnout.To be specific,the lateral wear of the curved switch rail mainly occurs in the narrower section at its front end for a trailing turnout,but in the wider section at its rear end when for a facing turnout.The maximum lateral wear of a dismounted switch rail from a trailing turnout is found on the 15-mm wide section and is 3.9 mm,which does not reach the specified limit of 6 mm.For comparison,the lateral wear of a dismounted switch rail from a facing turnout is found from the 35-mm wide section to the full-width section and is greater than 7.5 mm,which exceeds the specified limit.Based on this,in addition to meeting the requirements of maintenance rules,the allowed wear of switch rails of high-speed turnout shall be so that the dangerous area with a tangent angle of wheel profile smaller than 43.68 will not contact the switch rail when the wheel is lifted by 2 mm.Accordingly,the lateral wear limit at the 5-mm wide section of the curved switch rail shall be reduced from 6 mm(as specified)to 3.5 mm.Originality/value-The work in this paper is of reference significance to the research on the development law of rail wear in high-speed turnout area and the formulation of relevant standards.
基金Projects(51425804,51378439,51608459)supported by the National Natural Science Foundation of ChinaProjects(U1334203,U1234201)supported by the Key Project of the China’s High-Speed Railway United Fund+1 种基金Project(2016M590898)supported by China Postdoctoral Science FoundationProject(2014GZ0009)supported by Sichuan Provinial Science and Technology support Program,China
文摘Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parameters of the complex train-turnout system. To reproduce the actual operation conditions of railway turnouts, random distributions of these inputs need to be considered in rail wear simulation. For a given nominal layout of the high-speed railway turnout, 19 input parameters for rail wear simulation in high-speed railway turnouts are investigated based on orthogonal design of experiment. Three dynamic responses(wheel-rail friction work, normal contact force and size of contact patch) are defined as observed values and the significant factors(direction of passage, axle load, running speed, friction coefficient, and wheel and rail profiles) are determined by two unreplicated saturated factorial design methods, including the half-normal probability plot method and Dong 93 method. As part of the associated rail wear simulation, the influence of the wear models and the local elastic deformation on the rail wear was separately investigated. The calculation results for the wear models are quite different, especially for large creep mode. The local elastic deformation has a large effect on the sliding speed and rail wear and needs to be considered in the rail wear simulation.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51875483)the Independently Funded Research Project of State Key Laboratory of Traction Power(Grant Nos.2020TPL-T01 and 2020TPL-T04).
文摘The steel turnout is one of the key components in the medium–low-speed maglev line system.However,the vehicle under active control is prone to vehicle–turnout coupled vibration,and thus,it is necessary to identify the vibration characteristics of this coupled system through field tests.To this end,dynamic performance tests were conducted on a vehicle–turnout coupled system in a medium–low-speed maglev test line.Firstly,the dynamic response data of the coupled system under various operating conditions were obtained.Then,the natural vibration characteristics of the turnout were analysed using the free attenuation method and the finite element method,indicating a good agreement between the simulation results and the measured results;the acceleration response characteristics of the coupled system were analysed in detail,and the ride quality of the vehicle was assessed by Sperling index.Finally,the frequency distribution characteristics of the coupled system were discussed.All these test results could provide references for model validation and optimized design of medium–low-speed maglev transport systems.
基金High Education Research Project Funding(No.2018C-11)Natural Science Fund of Gansu Province(Nos.18JR3RA107,1610RJYA034)Key Research and Development Program of Gansu Province(No.17YF1WA 158)。
文摘In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is proposed.Firstly,the three-phase current curve of the switch machine recorded by the micro-computer monitoring system is dealt with segmentally and then the feature parameters of the three-phase current are calculated according to the action principle of the switch machine.Due to the high dimension of initial features,the DBSCAN algorithm is used to separate the sensitive features of fault diagnosis and construct the diagnostic sensitive feature set.Then,the particle swarm optimization(PSO)algorithm is used to adjust the weight of SOM network to modify the rules to avoid“dead neurons”.Finally,the PSO-SOM network fault classifier is designed to complete the classification and diagnosis of the samples to be tested.The experimental results show that this method can judge the fault mode of switch control circuit with less training samples,and the accuracy of fault diagnosis is higher than that of traditional SOM network.
基金supported by National Natural Science Foundation of China (Grant Nos. 51175032, U1134201)National Basic Research Program of China (973 Program, Grant No. 2011CD711104)
文摘The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. However, the above problems are not well solved currently because of having the difficulties in how to determine the multi-contact, to preciously present the changeable profiles of the rails and to establish an accurate spatial turnout system dynamics model. Based on a high-speed vehicle-turnout coupled model in which the track is modeled as flexible with rails and sleepers represented by beams, the line tracing extreme point method is introduced to investigate the wheel-rail multiple contact conditions and the key sections of the blade rail, longer nose rail, shorter rail in the switch and nose rail area are discretized to represent the varying profiles of rails in the turnout. The dynamic interaction between the vehicle and turnout is simulated for cases of the vehicle divergently passing the turnout and the multi-point contact is obtained. The tracks of the contact patches on the top of the rails are presented and the wheel-rail impact forces are offered in comparison with the contact patches transference on the rails. The numerical simulation results indicate that the length of two-point contact occurrence of a worn wheel profile and rails is longer than that of the new wheel profile and rails; The two-point contact definitely occurs in the switch and crossing area. Generally, three-point contact doesn’t occur for the new rail profile, which is testified by the wheel-rails interpolation distance and the first order derivative function of the tracing line extreme points. The presented research is not only helpful to optimize the structure of the turnout, but also useful to lower the dynamics of the high speed vehicle-turnout system.
文摘The paper presents an analytical method of identifying the curvature of the turnout diverging track consisting of sections of varying curvature. Both linear and nonlinear (polynomial) curvatures of the turnout diverging track are identified and evaluated in the paper. The presented method is a universal one;it enables to assume curvature values at the beginning and end point of the geometrical layout of the turnout. The results of dynamics analysis show that widely used in railway practice, clothoid sections with nonzero curvatures at the beginning and end points of the turnout lead to increased dynamic interactions in the track-vehicle system. The turnout with nonlinear curvature reaching zero values at the extreme points of the geometrical layout is indicated in the paper as the most favourable, taking into account dynamic interactions occurring in the track-vehicle system.
基金supported by the National Natural Science Foundation (No. 51008256)the Technological Research and Development Programsof the Ministry of Railways (No. 2010G006-B)
文摘The irregularity is a key factor affecting the wheel-rail contact geometry relationship. In this paper, we calculated the wheel-rail contact points at typical sections and obtained the longitudinal variation of the wheel-rail geometry relationship with the trace line method. The profile of the key rail sections was matched by cubic spline curve, and the shape interpolation was realized in non-controlling sections. The results show that the roll angles at each typical section increases gradually with the enlargement of track alignment irregularity. When the flange contact occurs, the roll angle increases dramatically. Proper track alignment irregularity towards the switch rail improves the structure irregularity of the turnout.
基金Project(2014JBZ012)supported by the Fundamental Research Funds for the Central Universities,China
文摘Taking the development of high-speed railway in China as background, and referring to the dynamic theory and wheel-rail contact mode, dynamic analysis model was established, considering the setting position of straight lines and running conditions of train in high-speed railway station yard. Using the established model, and choosing vehicle lateral acceleration and wheel suspension as the evaluation indexes, dynamic characteristic of vehicle traveling in turnout and adjacent area on main line was analyzed, and effects on travelling safety and stability of train aroused by length variation of straight lines were calculated based on analyzing the damping rules of vibration. The results show that, a certain length of straight lines can alleviate the vibration aroused in turnout and curve(turnout), length of straight lines connecting turnouts in different sections on main line was proposed to meet the demand of traveling stability, and shortening or cancelation of straight line for the scale limitation of station yard has less influence on operation safety of train.
文摘A space coupling vibration model of the system of wheel and lead curve rails of turnouts is presented, in which the vibration of the straight and curved rails are taken into account and the variations of the elasticity of roadbed with the length of switch ties are considered. It is used to investigate the dynamic characteristics of different configuration of lead curve, such as circular curve, cubic spiral and high order transition curves. Based on the numerical analysis, some advantageous configurations of lead curve are suggested.
基金National Natural Science Foundation of China(Nos.61863024,71761023)Funding for Scientific Research Projects of Colleges and Universities in Gansu Province(Nos.2018C-11,2018A-22)Natural Science Fund of Gansu Province(No.18JR3RA130)。
文摘Turnout is one of the important signal infrastructure equipment,which will directly affect the safety and efficiency of driving.Base on analysis of the power curve of the turnout,we extract and select the time domain and Haar wavelet transform characteristics of the curve firstly.Then the correlation between the degradation state and the fault state is established by using the clustering algorithm and the Pearson correlation coefficient.Finally,the convolutional neural network(CNN)and the gated recurrent unit(GRU)are used to establish the state prediction model of the turnout to realize the failure prediction.The CNN can directly extract features from the original data of the turnout and reduce the dimension,which simplifies the prediction process.Due to its unique gate structure and time series processing features,GRU has certain advantages over the traditional forecasting methods in terms of prediction accuracy and time.The experimental results show that the accuracy of prediction can reach 94.2%when the feature matrix adopts 40-dimensional input and iterates 50 times.
基金The Doctoral Fund of Ministry of Educa-tionof China (No. 20050613007)
文摘By building the finite element model, the track parameters, including the ultimate longitudinal resistance, the length of the intermediate straight line, and the gap between spacer blocks, were analyzed for their influences on the longitudinal forces and displacements of the single turnout and turnout group, respectively. The results indicate that when the longitudinal resistance drops from 32 to 20 N/cm, the maximum additional longitudinal force of the turnout group increases by 19. 2%, and the maximum additional longitudinal displacement of the turnout group grows by 85.3% compared with 50.4% for the single turnout. When the length of intermediate straight line rises from 0 m to infinite, the maximum additional longitudinal force decreases by 38.8%, and the maximum additional longitudinal displacement by 80.3%.
文摘For the longitudinally coupled baUastless turnout on Leida bridge on Wuhan-Guangzhou passenger dedicated line (PDL) in China, a turnout (cross over)-track slab-bridge deck-pier integrated finite element model was established, in which two No. 18 jointless turnouts with movable frogs in form of crossover, longitudinally coupled ballastless track, bridges and piers were regarded as one system. Based on this model, the additional forces and displacement regularities of turnouts, track slab, bridges and piers under occasional loading were analyzed, and the effect of occasional loading position was researched. The results show that slab breaking is more influential on the longitudinal force and deformation of the whole system than rail breaking, that slab breaking on one line could deteriorate both the slab force on another line and the forces exerted on the piers and fastener components, and that a great slab force at the left end of the continuous bridge expansion joint should be particularly avoided in design.
文摘People power is the fundamental concept of democracy and power of the people is exercised though voting. People decide who should be elected to make decisions for them. However, if people do not properly participate in the voting process and only two-thirds of all eligible voters participate in an election, the democratic institution loses its credibility and becomes vulnerable. This paper investigates various changes in voting institutions throughout the USAwith a simulation model that analyzes the efficacy of such methods to attain higher voter turnout.
文摘Since the 1990s, the turnout in electoral processes has decreased, taking into account the Mexican context with its democratic transition, this decrease started after the 1994 federal election. The drop in turnout in federal elections had its lowest figure during the midterm elections of 2003, it picked up during the electoral process of 2009 and kept the same level of 2012. The change in the electoral turnout pattern for the federal elections in Mexico after 2009 can be explained as the combined effect of the electoral cycle and the concurrence between federal and local elections. Beginning from the hypothesis that there is a close link between institutions and contexts, the purpose of this study is to prove with the analysis of the electoral processes from 1997 to 2012, the effect of the electoral reforms--specifically the one in Article 116 of the Constitution in 2007-on turnout for federal elections of 2009 and 2012.
文摘Railway turnouts often develop defects such as chipping,cracks,and wear during use.If not detected and addressed promptly,these defects can pose significant risks to train operation safety and passenger security.Despite advances in defect detection technologies,research specifically targeting railway turnout defects remains limited.To address this gap,we collected images from railway inspectors and constructed a dataset of railway turnout defects in complex environments.To enhance detection accuracy,we propose an improved YOLOv8 model named YOLO-VSS-SOUP-Inner-CIoU(YOLO-VSI).The model employs a state-space model(SSM)to enhance the C2f module in the YOLOv8 backbone,proposed the C2f-VSS module to better capture long-range dependencies and contextual features,thus improving feature extraction in complex environments.In the network’s neck layer,we integrate SPDConv and Omni-Kernel Network(OKM)modules to improve the original PAFPN(Path Aggregation Feature Pyramid Network)structure,and proposed the Small Object Upgrade Pyramid(SOUP)structure to enhance small object detection capabilities.Additionally,the Inner-CIoU loss function with a scale factor is applied to further enhance the model’s detection capabilities.Compared to the baseline model,YOLO-VSI demonstrates a 3.5%improvement in average precision on our railway turnout dataset,showcasing increased accuracy and robustness.Experiments on the public NEU-DET dataset reveal a 2.3%increase in average precision over the baseline,indicating that YOLO-VSI has good generalization capabilities.