Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformatio...Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformation to equiaxed dendrite (CET) of twin-roll continuous casting aluminum thin strip solidification was established by means of the principle of metal solidification and modem computer emulational technology. Meantime, based on the cellular automaton, the emulational model of twin-roll continuous casting aluminum thin strip, solidification was established. The foundation for the emulational simulation of twin-roll casting thin strip solidification structure was laid. Meanwhile, the mathematical simulation feasibility was confirmed by using the solidification process of twin-roll continuous casting aluminum thin strip.展开更多
The microstructural distribution along thickness of asymmetric twin-roll cast AZ31 magnesium alloy slab was investigated. It was found that the microstructure along the thickness of the slab was significantly inhomoge...The microstructural distribution along thickness of asymmetric twin-roll cast AZ31 magnesium alloy slab was investigated. It was found that the microstructure along the thickness of the slab was significantly inhomogeneous. There were many deformed bands with flow form near the upper surface of twin-roll cast plate. Very few deformed bands could be seen in the central part of the plate where the dendrites were thick. Fine dendritic structures dominated near the lower surface of the twin-roll cast strip. It is concluded that the shear strain caused by linear velocity difference between surfaces of upper and lower rolls results in the deformed bands of the twin-roll cast slab. Aluminum, zinc and manganese segregate to the boundary of dendrites, while silicon distributes inside the α-Mg solid solution.展开更多
Microstructure and hardness of twin-roll casting (TRC) process and direct-chill casting (DC) for A8006 alloy with and without homogenization were investigated by means of scanning electron microscopy (SEM), X-ra...Microstructure and hardness of twin-roll casting (TRC) process and direct-chill casting (DC) for A8006 alloy with and without homogenization were investigated by means of scanning electron microscopy (SEM), X-ray diffraction analysis and Vickers hardness measurement. The results show that the eutectic phase of the homogenized TRC alloy becomes fine as the microstructure of the as-cast TRC alloy is refined. The short rodlike eutectic phase of the as-cast TRC alloy is dispersed homogeneously, which is similar to the morphology of eutectic phase of the homogenized DC alloy. After homogenization, elements Fe and Mn in DC and TRC alloys are diffused from eutectic phase to A1 matrix, resulting in the decrease of microhardness. The formability of the as-cast TRC alloy is superior to that of the homogenized DC alloy. For TRC A8006 alloy, the homogenizing cycle can be removed from the subsequent processing.展开更多
Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite...Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite element modeling shows that these clusters of hard particles induce the fracture of the nano-scale lubricant oil film at first and further lead to severe deformation in the nearby aluminum foil substrate along the rolling direction. Consequently, the optical property in this region differs from that in the surroundings, resulting in surface defects.展开更多
The temperature field of stainless steel during twin-roll strip casting was simulated by experiment and a finite element (FE) model. By comparing the measured result with the simulated values, it is found that they ...The temperature field of stainless steel during twin-roll strip casting was simulated by experiment and a finite element (FE) model. By comparing the measured result with the simulated values, it is found that they fit close to each other, which indicates this FE model is effective. Based on this model, the effects of roll gap (t) and roll radius (R) on solidification were simulated. The simulated results give the relationship between t or R and the position of the freezing point. The larger the t is and the smaller the R is, the closer the position of the freezing point is to the exit.展开更多
The effects of temperature and strain rate on the flow stress behavior of twin-roll cast, rolled and heat-treated AZ31 magnesium alloys were investigated under uniaxial tension. At high temperatures, dynamic recovery,...The effects of temperature and strain rate on the flow stress behavior of twin-roll cast, rolled and heat-treated AZ31 magnesium alloys were investigated under uniaxial tension. At high temperatures, dynamic recovery, continuous dynamic recrystallization, grain boundary sliding and the activation of additional slip systems lead to an improvement of the ductility of the alloys. The elongation to failure is nearly independent of the strain rate between 473 and 523 K at 10-2 s-1 and 10-1 s-1, which is related to the strain rate dependence of the critical resolved shear stress(CRSS) for nonbasal slip. Despite the high temperature, twins are even observed at 573 K and 10-3 s-1 because they have a low CRSS.展开更多
Twin-roll strip casting is regarded as a prospective technology of near net shape continuous casting. The fluid flow field and level fluctuation in the pool have a strong influence not only on composition and temperat...Twin-roll strip casting is regarded as a prospective technology of near net shape continuous casting. The fluid flow field and level fluctuation in the pool have a strong influence not only on composition and temperature homogeneity of pool, but also on the strip quality. A 1 : 1 water model of a twin-roll strip caster was set up based on the criteria of Froude number and Reynold number similarity. The level fluctuation was measured. The influence of pool depth, casting speed and feeding system configuration on level fluctuation in the pool was studied. The experimental results provided a basis for the optimization of feeding system and process parameters.展开更多
The 1:1 water model of a twin-roll strip caster was set up based on the Froude number and the Reynolds number similarity criteria. A new type metal delivery system was designed for the twin-roll strip caster. The lev...The 1:1 water model of a twin-roll strip caster was set up based on the Froude number and the Reynolds number similarity criteria. A new type metal delivery system was designed for the twin-roll strip caster. The level fluctuation and the fluid flow in the pool of the water model were measured using the level detector and the 3D-LDV (laser Doppler velocimetry) technology. It is shown that a wedged delivery system can produce the desirable level fluctuation and even fluid flow distribution in the pool Numerical simulations for the water model were performed. Comparisons between the numerical and physical simulation results show good agreement near the side dams.展开更多
In twin-roll strip casting process, metal flow and temperature distribution in the molten pool directly affect the stability of the process and the quality of products. In this paper, a 3D coupled thermal-flow fenite ...In twin-roll strip casting process, metal flow and temperature distribution in the molten pool directly affect the stability of the process and the quality of products. In this paper, a 3D coupled thermal-flow fenite element modeling (FEM) simulation for twin-roll strip casting of stainless steel was performed. Influences of the pouring temperature and casting speed on the temperature fields were obtained from the numerical simulation. The micro-segregation of the solutes during the strip casting process of stainless steel was also simulated. A developed micro-segregation model was used to calculate the micro-segregation of solutes in twin-roll casting of stainless steel. The relationship between the solidus fraction in solidification and temperature was given, which was used to determine the LIT (liquid impermeable temperature), ZST (zero strength temperature) and ZDT (zero ductility temperature) in the period of non-equilibrium solidification. The effect of temperature on the micro-segregation was discussed. According to the computational results, the solidification completion temperature in the twin-roll strip casting of stainless steel was then determined, which can provide a basis for controlling the location of solidification completion temperature and analysing the crack of the casting strip.展开更多
The kinetics of recrystallization for twin-roll casting AZ31 magnesium alloy with different thicknesses during homogenization was analyzed.It is shown that fine grains are first formed at the boundaries of deformed ba...The kinetics of recrystallization for twin-roll casting AZ31 magnesium alloy with different thicknesses during homogenization was analyzed.It is shown that fine grains are first formed at the boundaries of deformed bands in the twin-roll casting slab.The recrystallized grains with no strain are gradually substituted for the deformed microstructure of twin-roll casting AZ31 magnesium alloy.The incubation temperature and time for the recrystallization of a twin-roll casting AZ31 magnesium alloy strip with a thickness of 3 mm are lower and shorter than those of the 6-mm thick strip,respectively.The 3-mm thick twin-roll casting magnesium alloy has finer grains than the 6-mm thick strip.The activation energies of recrystallization for twin-roll casting AZ31 magnesium alloy slabs with the thickness of 3 and 6 mm are 88 and 69 kJ/mol,respectively.The kinetics curves of recrystallization for twin-roll casting AZ31 magnesium alloy were obtained.展开更多
Based on traditional twin-roll casting process,Invar/Cu clad strips were successfully fabricated by using solid Invar alloy strip and molten Cu under conditions of high temperature,high pressure and plastic deformatio...Based on traditional twin-roll casting process,Invar/Cu clad strips were successfully fabricated by using solid Invar alloy strip and molten Cu under conditions of high temperature,high pressure and plastic deformation.A series of tests including tensile test,bending test,T-type peeling test and scanning electron microscope(SEM)and energy dispersive spectrometer(EDS)measurements were carried out to analyze the mechanical properties of Invar/Cu clad strips and the micro-morphology of tensile fracture surfaces and bonding interfaces.The results indicate that no delamination phenomenon occurs during the compatible deformation of Invar/Cu in bending test and only one stress platform exists in the tensile stress-strain curve when the bonding strength is large.On the contrary,different mechanical properties of Invar and Cu lead to delamination phenomenon during the uniaxial tensile test,which determines that two stress platforms occur on the stress-strain curve of Invar/Cu clad strips when two elements experience necking.The average peeling strength can be increased from13.85to42.31N/mm after heat treatment at800℃for1h,and the observation of the Cu side at peeling interface shows that more Fe is adhered on the Cu side after the heat treatment.All above illustrate that heat treatment can improve the strength of the bonding interface of Invar/Cu clad strips.展开更多
Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the ...Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the simulations and real experiments, the relational models among casting speed, location, and coefficient of heat transfer between molten metal and rolls in different regions are given. In the simulation, the calculated surface temperatures are in good agreement with the measured values. An on-line model of kiss point is derived by simulations and the geometry of molten pool, corresponding control strategy is also proposed.展开更多
An intelligent fuzzy-PID controller consisting of fuzzy logic controller and PID controller was developed to control the molten steel level of twin-roll strip caster.Additionally,a feedforward differential PID control...An intelligent fuzzy-PID controller consisting of fuzzy logic controller and PID controller was developed to control the molten steel level of twin-roll strip caster.Additionally,a feedforward differential PID controller was used for stopper position control in order to avoid differential kick.It is proved by simulation that the proposed intelligent controller is able to obtain zero steady state error asymptotically and the control system is robust due to its fuggy behavior of the controller.展开更多
The dynamic tensile behavior of twin-roll cast-rolled and hot-rolled AZ31B magnesium alloy was characterized over strainrates ranging from 0.001 to 375 s^-1 at room temperature using an elaborate dynamic tensile testi...The dynamic tensile behavior of twin-roll cast-rolled and hot-rolled AZ31B magnesium alloy was characterized over strainrates ranging from 0.001 to 375 s^-1 at room temperature using an elaborate dynamic tensile testing method, and the relationshipbetween its mechanical properties and microstructures. It is observed that the sheet has a strong initial basal fiber texture andmechanical twinning becomes prevalent to accommodate the high-rate deformation. The yield strength and ultimate tensile strengthmonotonically increase with increasing the strain rate, while the strain hardening exponent proportionally decreases with increasingthe strain rate due to twinning-induced softening. The total elongation at fracture distinctly decreases as the strain rate increasesunder quasi-static tension, while the effect of strain rate on the total elongation is not distinct under dynamic tension. Fractographicanalysis using a scanning electron microscope reveals that the fracture is a mixed mode of ductile and brittle fracture.展开更多
Unequal diameter twin-roll casting(UDTRC)can improve the formability,surface conditions,and production efficiency during the fabrication of clad strips.Using Fluent software,a numerical simulation is used to study the...Unequal diameter twin-roll casting(UDTRC)can improve the formability,surface conditions,and production efficiency during the fabrication of clad strips.Using Fluent software,a numerical simulation is used to study the asymmetric heat transfer characteristics of Cu/Al clad strips fabricated by UDTRC.The effects of roller velocity ratio,Cu strip thickness,and inclination angle on the kissing point position,as well as the entire temperature distribution are obtained.The heat transfer model is established,and the mechanism is discussed.The Cu strip and rollers are found to be the main causes of asymmetric heat transfer,indicating that the roller velocity ratio changes the liquid zone proportion in the molten pool.The Cu strip thickness determines the heat absorption capacity and the variations in thermal resistance between the molten Al and the big roller.The inclination angle of the small roller changes the cooling time of big roller to molten Al.Moreover,the microstructure of Al cladding under different roller velocity ratios is examined.The results show significant grain refinement caused by the shear strain along the thickness direction of Al cladding and the intense heat transfer at the moment of contact between the metal Al cladding and Cu strip.展开更多
Body-fitted coordinate transformation equation was deduced and used to generate the body-fitted grids of molten pool for twin-roll strip casting.The orthogonality of the grids on the boundary was modified by adjusting...Body-fitted coordinate transformation equation was deduced and used to generate the body-fitted grids of molten pool for twin-roll strip casting.The orthogonality of the grids on the boundary was modified by adjusting source item.The energy equation and the boundary conditions were transformed from physical space to computational space.The velocity field model proposed by Hirohiko Takuda was used to calculate the temperature field of molten steel,and the influence of technical factors was also discussed.展开更多
The relationship of true stress and true strain of AZ41M magnesium alloy under twin-roll-cast (TRC) and hot compression was analyzed us- ing a Gleeble 1500 machine. Microstructural evolutions of the TRC magnesium al...The relationship of true stress and true strain of AZ41M magnesium alloy under twin-roll-cast (TRC) and hot compression was analyzed us- ing a Gleeble 1500 machine. Microstructural evolutions of the TRC magnesium alloy under different deformation conditions (strain, sWain rate and deformation temperature) were examined using optical microscopy and discussed. The relationship of true stress and true sWain pre- dicted that lower deformation temperature and higher sWain rate caused sharp strain hardening. Meanwhile, the flow stress curve turned into a steady state at high temperature and lower strain rate. The intermediate temperature and strain rate (623 K and 0.01 s^-1) is appropriate.展开更多
Mathematical model of solute [C] distribution in twin-roll strip casting process has been setup successfully with Calcosoft for the first time. Simulation result shows that in the center of the molten steel pool betwe...Mathematical model of solute [C] distribution in twin-roll strip casting process has been setup successfully with Calcosoft for the first time. Simulation result shows that in the center of the molten steel pool between the two rolls there is a vortex flow, which is a solute enriched area. But the highest solute concentration position is at the solidification front of the columnar grain zone near the cooling roll surface. Another solute enriched position is in the back flow above the nip point. Combined with the formation mechanism of microstruoture in final as cast strip, analysis shows that solute enriched area is in the transitional area between columnar and equiaxed grain zone.展开更多
High temperature tensile properties and microstructure evolutions of twin-roll-cast AZ31B magnesium alloy were investigated over a strain rate range from 10-3 to 1 s-1.It is suggested that the dominant deformation mec...High temperature tensile properties and microstructure evolutions of twin-roll-cast AZ31B magnesium alloy were investigated over a strain rate range from 10-3 to 1 s-1.It is suggested that the dominant deformation mechanism in the lower strain rate regimes is dislocation creep controlled by grain boundary diffusion at lower temperature and by lattice diffusion at higher temperatures,respectively.Furthermore,dislocation glide and twinning are dominant deformation mechanisms at higher strain-rate.The processing map,the effective diffusion coefficient and activation energy map of the alloy were established.The relations of microstructure evolutions to the transition temperature of dominant diffusion process,the activation energy platform and the occurrence of the full dynamic recrystallization with the maximum peak efficiency were analyzed.It is revealed that the optimum conditions for thermo-mechanical processing of the alloy are at a temperature range from 553 to 593 K,and a strain rate range from 7×10-3 to 2×10-3 s-1.展开更多
基金Project (u0837601) supported by the New Joint Fund of National Natural Science Foundation of ChinaProject (50874054) supported by the National Natural Science Foundation of China
文摘Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformation to equiaxed dendrite (CET) of twin-roll continuous casting aluminum thin strip solidification was established by means of the principle of metal solidification and modem computer emulational technology. Meantime, based on the cellular automaton, the emulational model of twin-roll continuous casting aluminum thin strip, solidification was established. The foundation for the emulational simulation of twin-roll casting thin strip solidification structure was laid. Meanwhile, the mathematical simulation feasibility was confirmed by using the solidification process of twin-roll continuous casting aluminum thin strip.
基金Project (2006BAE04B02) supported by the National Key Technology R&D Program during the 11th Five-Year Plan of China
文摘The microstructural distribution along thickness of asymmetric twin-roll cast AZ31 magnesium alloy slab was investigated. It was found that the microstructure along the thickness of the slab was significantly inhomogeneous. There were many deformed bands with flow form near the upper surface of twin-roll cast plate. Very few deformed bands could be seen in the central part of the plate where the dendrites were thick. Fine dendritic structures dominated near the lower surface of the twin-roll cast strip. It is concluded that the shear strain caused by linear velocity difference between surfaces of upper and lower rolls results in the deformed bands of the twin-roll cast slab. Aluminum, zinc and manganese segregate to the boundary of dendrites, while silicon distributes inside the α-Mg solid solution.
基金Project (42-QP-009) supported by Research Fund of the State Key Laboratory of Solidification Processing,ChinaProject (Z2012019) supported by Graduate Starting Seed Fund of Northwestern Polytechnical University,ChinaProject (B08040) supported by 111 Project
文摘Microstructure and hardness of twin-roll casting (TRC) process and direct-chill casting (DC) for A8006 alloy with and without homogenization were investigated by means of scanning electron microscopy (SEM), X-ray diffraction analysis and Vickers hardness measurement. The results show that the eutectic phase of the homogenized TRC alloy becomes fine as the microstructure of the as-cast TRC alloy is refined. The short rodlike eutectic phase of the as-cast TRC alloy is dispersed homogeneously, which is similar to the morphology of eutectic phase of the homogenized DC alloy. After homogenization, elements Fe and Mn in DC and TRC alloys are diffused from eutectic phase to A1 matrix, resulting in the decrease of microhardness. The formability of the as-cast TRC alloy is superior to that of the homogenized DC alloy. For TRC A8006 alloy, the homogenizing cycle can be removed from the subsequent processing.
基金Project(51074117)supported by the National Natural Science Foundation of ChinaProject(2009CDA044)supported by the Foundation for Distinguished Young Scientists of Hubei Province,ChinaProjects(201104493,20100471161)supported by the China Postdoctoral Science Foundation
文摘Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite element modeling shows that these clusters of hard particles induce the fracture of the nano-scale lubricant oil film at first and further lead to severe deformation in the nearby aluminum foil substrate along the rolling direction. Consequently, the optical property in this region differs from that in the surroundings, resulting in surface defects.
文摘The temperature field of stainless steel during twin-roll strip casting was simulated by experiment and a finite element (FE) model. By comparing the measured result with the simulated values, it is found that they fit close to each other, which indicates this FE model is effective. Based on this model, the effects of roll gap (t) and roll radius (R) on solidification were simulated. The simulated results give the relationship between t or R and the position of the freezing point. The larger the t is and the smaller the R is, the closer the position of the freezing point is to the exit.
基金financial support by the European Social Fund (project No. 080943441)
文摘The effects of temperature and strain rate on the flow stress behavior of twin-roll cast, rolled and heat-treated AZ31 magnesium alloys were investigated under uniaxial tension. At high temperatures, dynamic recovery, continuous dynamic recrystallization, grain boundary sliding and the activation of additional slip systems lead to an improvement of the ductility of the alloys. The elongation to failure is nearly independent of the strain rate between 473 and 523 K at 10-2 s-1 and 10-1 s-1, which is related to the strain rate dependence of the critical resolved shear stress(CRSS) for nonbasal slip. Despite the high temperature, twins are even observed at 573 K and 10-3 s-1 because they have a low CRSS.
基金ItemSponsored by Provincial Natural Science Foundation of Inner Mongolia of China (200408020715)
文摘Twin-roll strip casting is regarded as a prospective technology of near net shape continuous casting. The fluid flow field and level fluctuation in the pool have a strong influence not only on composition and temperature homogeneity of pool, but also on the strip quality. A 1 : 1 water model of a twin-roll strip caster was set up based on the criteria of Froude number and Reynold number similarity. The level fluctuation was measured. The influence of pool depth, casting speed and feeding system configuration on level fluctuation in the pool was studied. The experimental results provided a basis for the optimization of feeding system and process parameters.
基金This work was financially supported by the National Natural Science Foundation of Inner Mongolia of China (No.200408020715).
文摘The 1:1 water model of a twin-roll strip caster was set up based on the Froude number and the Reynolds number similarity criteria. A new type metal delivery system was designed for the twin-roll strip caster. The level fluctuation and the fluid flow in the pool of the water model were measured using the level detector and the 3D-LDV (laser Doppler velocimetry) technology. It is shown that a wedged delivery system can produce the desirable level fluctuation and even fluid flow distribution in the pool Numerical simulations for the water model were performed. Comparisons between the numerical and physical simulation results show good agreement near the side dams.
基金The authors thank the financial support by the National Natural Science Foundation of China (No. 50474016).
文摘In twin-roll strip casting process, metal flow and temperature distribution in the molten pool directly affect the stability of the process and the quality of products. In this paper, a 3D coupled thermal-flow fenite element modeling (FEM) simulation for twin-roll strip casting of stainless steel was performed. Influences of the pouring temperature and casting speed on the temperature fields were obtained from the numerical simulation. The micro-segregation of the solutes during the strip casting process of stainless steel was also simulated. A developed micro-segregation model was used to calculate the micro-segregation of solutes in twin-roll casting of stainless steel. The relationship between the solidus fraction in solidification and temperature was given, which was used to determine the LIT (liquid impermeable temperature), ZST (zero strength temperature) and ZDT (zero ductility temperature) in the period of non-equilibrium solidification. The effect of temperature on the micro-segregation was discussed. According to the computational results, the solidification completion temperature in the twin-roll strip casting of stainless steel was then determined, which can provide a basis for controlling the location of solidification completion temperature and analysing the crack of the casting strip.
文摘The kinetics of recrystallization for twin-roll casting AZ31 magnesium alloy with different thicknesses during homogenization was analyzed.It is shown that fine grains are first formed at the boundaries of deformed bands in the twin-roll casting slab.The recrystallized grains with no strain are gradually substituted for the deformed microstructure of twin-roll casting AZ31 magnesium alloy.The incubation temperature and time for the recrystallization of a twin-roll casting AZ31 magnesium alloy strip with a thickness of 3 mm are lower and shorter than those of the 6-mm thick strip,respectively.The 3-mm thick twin-roll casting magnesium alloy has finer grains than the 6-mm thick strip.The activation energies of recrystallization for twin-roll casting AZ31 magnesium alloy slabs with the thickness of 3 and 6 mm are 88 and 69 kJ/mol,respectively.The kinetics curves of recrystallization for twin-roll casting AZ31 magnesium alloy were obtained.
基金Financial supports from The National Natural Science Foundation of China(Nos.51625402,51790483,51801069 and U19A2084)are greatly acknowledgedPartial financial support came from The Science and Technology Devel-opment Program of Jilin Province(Nos.20190901010JC,20190103003JH,20200401025GX and 20200201002JC)The Changjiang Scholars Program(T2017035).
基金Project (51474189) supported by the National Natural Science Foundation of ChinaProject (E2018203446) supported by the Excellent Youth Foundation of Hebei Scientific Committee,ChinaProject (QN2015214) supported by the Educational Commission of Hebei Province,China
文摘Based on traditional twin-roll casting process,Invar/Cu clad strips were successfully fabricated by using solid Invar alloy strip and molten Cu under conditions of high temperature,high pressure and plastic deformation.A series of tests including tensile test,bending test,T-type peeling test and scanning electron microscope(SEM)and energy dispersive spectrometer(EDS)measurements were carried out to analyze the mechanical properties of Invar/Cu clad strips and the micro-morphology of tensile fracture surfaces and bonding interfaces.The results indicate that no delamination phenomenon occurs during the compatible deformation of Invar/Cu in bending test and only one stress platform exists in the tensile stress-strain curve when the bonding strength is large.On the contrary,different mechanical properties of Invar and Cu lead to delamination phenomenon during the uniaxial tensile test,which determines that two stress platforms occur on the stress-strain curve of Invar/Cu clad strips when two elements experience necking.The average peeling strength can be increased from13.85to42.31N/mm after heat treatment at800℃for1h,and the observation of the Cu side at peeling interface shows that more Fe is adhered on the Cu side after the heat treatment.All above illustrate that heat treatment can improve the strength of the bonding interface of Invar/Cu clad strips.
基金supported by National Key Research Development Planning Project of China (2004CB619108).
文摘Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the simulations and real experiments, the relational models among casting speed, location, and coefficient of heat transfer between molten metal and rolls in different regions are given. In the simulation, the calculated surface temperatures are in good agreement with the measured values. An on-line model of kiss point is derived by simulations and the geometry of molten pool, corresponding control strategy is also proposed.
基金Item Sponsored by National Natural Science Foundation of China(59995440)State Key Fundamental Research Project of China(G2000067208-4)
文摘An intelligent fuzzy-PID controller consisting of fuzzy logic controller and PID controller was developed to control the molten steel level of twin-roll strip caster.Additionally,a feedforward differential PID controller was used for stopper position control in order to avoid differential kick.It is proved by simulation that the proposed intelligent controller is able to obtain zero steady state error asymptotically and the control system is robust due to its fuggy behavior of the controller.
基金supported by the German Aerospace Center (DLR) project “Next Generation Car”
文摘The dynamic tensile behavior of twin-roll cast-rolled and hot-rolled AZ31B magnesium alloy was characterized over strainrates ranging from 0.001 to 375 s^-1 at room temperature using an elaborate dynamic tensile testing method, and the relationshipbetween its mechanical properties and microstructures. It is observed that the sheet has a strong initial basal fiber texture andmechanical twinning becomes prevalent to accommodate the high-rate deformation. The yield strength and ultimate tensile strengthmonotonically increase with increasing the strain rate, while the strain hardening exponent proportionally decreases with increasingthe strain rate due to twinning-induced softening. The total elongation at fracture distinctly decreases as the strain rate increasesunder quasi-static tension, while the effect of strain rate on the total elongation is not distinct under dynamic tension. Fractographicanalysis using a scanning electron microscope reveals that the fracture is a mixed mode of ductile and brittle fracture.
基金Project(51974278)supported by the National Natural Science Foundation of ChinaProject(E2018203446)supported by the Natural Science Foundation of Hebei Province Distinguished Young Fund Project,ChinaProject(2018YFA0707303)supported by the National Key Research and Development Project of China。
文摘Unequal diameter twin-roll casting(UDTRC)can improve the formability,surface conditions,and production efficiency during the fabrication of clad strips.Using Fluent software,a numerical simulation is used to study the asymmetric heat transfer characteristics of Cu/Al clad strips fabricated by UDTRC.The effects of roller velocity ratio,Cu strip thickness,and inclination angle on the kissing point position,as well as the entire temperature distribution are obtained.The heat transfer model is established,and the mechanism is discussed.The Cu strip and rollers are found to be the main causes of asymmetric heat transfer,indicating that the roller velocity ratio changes the liquid zone proportion in the molten pool.The Cu strip thickness determines the heat absorption capacity and the variations in thermal resistance between the molten Al and the big roller.The inclination angle of the small roller changes the cooling time of big roller to molten Al.Moreover,the microstructure of Al cladding under different roller velocity ratios is examined.The results show significant grain refinement caused by the shear strain along the thickness direction of Al cladding and the intense heat transfer at the moment of contact between the metal Al cladding and Cu strip.
文摘Body-fitted coordinate transformation equation was deduced and used to generate the body-fitted grids of molten pool for twin-roll strip casting.The orthogonality of the grids on the boundary was modified by adjusting source item.The energy equation and the boundary conditions were transformed from physical space to computational space.The velocity field model proposed by Hirohiko Takuda was used to calculate the temperature field of molten steel,and the influence of technical factors was also discussed.
基金supported by the Natural Science Foundation of Shandong Province (Nos Y2008F27 and ZR2009FL003)the S&T Developing Program of Shandong Province, China (2007GG10004013)the Doctoral Foundation of University of Jinan (XBS0830)
文摘The relationship of true stress and true strain of AZ41M magnesium alloy under twin-roll-cast (TRC) and hot compression was analyzed us- ing a Gleeble 1500 machine. Microstructural evolutions of the TRC magnesium alloy under different deformation conditions (strain, sWain rate and deformation temperature) were examined using optical microscopy and discussed. The relationship of true stress and true sWain pre- dicted that lower deformation temperature and higher sWain rate caused sharp strain hardening. Meanwhile, the flow stress curve turned into a steady state at high temperature and lower strain rate. The intermediate temperature and strain rate (623 K and 0.01 s^-1) is appropriate.
基金supported by the National Natural Science Foundation of China(No.50434040)
文摘Mathematical model of solute [C] distribution in twin-roll strip casting process has been setup successfully with Calcosoft for the first time. Simulation result shows that in the center of the molten steel pool between the two rolls there is a vortex flow, which is a solute enriched area. But the highest solute concentration position is at the solidification front of the columnar grain zone near the cooling roll surface. Another solute enriched position is in the back flow above the nip point. Combined with the formation mechanism of microstruoture in final as cast strip, analysis shows that solute enriched area is in the transitional area between columnar and equiaxed grain zone.
基金Project(3093024) supported by the Natural Science Foundation of Beijing, China Project(2007XM035) supported by the Science Foundation of Beijing Jiaotong University
文摘High temperature tensile properties and microstructure evolutions of twin-roll-cast AZ31B magnesium alloy were investigated over a strain rate range from 10-3 to 1 s-1.It is suggested that the dominant deformation mechanism in the lower strain rate regimes is dislocation creep controlled by grain boundary diffusion at lower temperature and by lattice diffusion at higher temperatures,respectively.Furthermore,dislocation glide and twinning are dominant deformation mechanisms at higher strain-rate.The processing map,the effective diffusion coefficient and activation energy map of the alloy were established.The relations of microstructure evolutions to the transition temperature of dominant diffusion process,the activation energy platform and the occurrence of the full dynamic recrystallization with the maximum peak efficiency were analyzed.It is revealed that the optimum conditions for thermo-mechanical processing of the alloy are at a temperature range from 553 to 593 K,and a strain rate range from 7×10-3 to 2×10-3 s-1.