Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of th...Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.展开更多
The ultra-stable zeolite DASY-0.0 was prepared by hydrothermal method in commercial scale. Its structure was further modified via the treatment for cleaning of pores (CP). The zeolite samples before and after CP tre...The ultra-stable zeolite DASY-0.0 was prepared by hydrothermal method in commercial scale. Its structure was further modified via the treatment for cleaning of pores (CP). The zeolite samples before and after CP treating were analyzed and characterized by XRF, XRD, NMR, IR, BET and DTA. The results showed that, in comparison with the conventional ultra-stable zeolite DASY-0.0 prepared by the hydrothermal process, the CP-modified zeolite SOY0 exhibited a higher relative crystallinity, a larger surface area and pore volume, a higher thermal stability and contained less amorohous non-framework A1.展开更多
We present two cavity-stabilized lasers at 1555 nm, which are built to be the frequency source for a transportable photonic microwave generation system. The frequency instability reaches the thermal noise limit (7 ...We present two cavity-stabilized lasers at 1555 nm, which are built to be the frequency source for a transportable photonic microwave generation system. The frequency instability reaches the thermal noise limit (7 ×10-16) of the 10-cm ultra-low expansion glass cavity at 1-10s averaging time and the beat signal of the two lasers reveals a remarkable linewidth of 185mHz.展开更多
Small-cell HSY-S zeolite prepared by the gas-phase ultra-stable method had been researched and developed,and industrial preparation tests of HSY-S have been successfully carried out for the first time.The acid resista...Small-cell HSY-S zeolite prepared by the gas-phase ultra-stable method had been researched and developed,and industrial preparation tests of HSY-S have been successfully carried out for the first time.The acid resistance of industrially prepared HSY-S was investigated by acid solutions with different pH values.The structures and properties of HSY-S and its acid-treated samples were characterized by XRD,XRF,BET,and IR.Results show that the HSY-S samples have the characteristics of high crystallinity,good stability,large specific surface area,and good acid resistance.展开更多
Two-photon luminescence with near-infrared(NIR)excitation of upconversion nanoparticles(NPs)is of great importance in biological imaging due to deep penetration in high-scattering tissues,low auto-luminescence and goo...Two-photon luminescence with near-infrared(NIR)excitation of upconversion nanoparticles(NPs)is of great importance in biological imaging due to deep penetration in high-scattering tissues,low auto-luminescence and good sectioning ability.Unfortunately,common two-photon luminescence is in visible band with an extremely high exciation power density,which limits its application.Here,we synthesized NaYF_(4):Yb/Tm@NaYF_(4)upconversion NPs with strong twophoton NIR emission and a low excitation power density.Furthermore,NaYF_(4):Yb/Tm@NaYF_(4)@SiO_(2)@OTMS@F127 NPs with high chemical stability were obtained by a modified multilayer coating method which was applied to upconversion NPs for thefirst time.In addition,it is shown that the as-prepared hydrophillic upconversion NPs have great biocompatibility and kept stable for 6 hours during in vivo whole-body imaging.The vessels with two-photon luminescence were clear even under an excitation power density as low as 25mW/cm^(2).Vivid visualizations of capillaries and vessels in a mouse brain were also obtained with low background and high contrast.Because of cheaper instruments and safer power density,the NIR two-photon luminescence of NaYF_(4):Yb/Tm@NaYF_(4)upconversion NPs could promote wider application of two-photon technology.The modified multilayer coating method could be widely used for upconversion NPs to increase the stable time of the in vivo circulation.Our work possesses a great potential for deep imaging and imaging-guided treatment in the future.展开更多
Exploring electrode materials with attractive specific capacity and prominent cyclic durability is of the essence for promoting lithium ion batteries(LIBs).In2O3 has shown an extraordinary promise for LIBs with advant...Exploring electrode materials with attractive specific capacity and prominent cyclic durability is of the essence for promoting lithium ion batteries(LIBs).In2O3 has shown an extraordinary promise for LIBs with advantageous gravimetric capacity(theoretically 965 mA h g-1) and low working voltage.However,In2O3 still suffers from the inherent weaknesses of metal oxides in practical application,especially low conductivity and incorrigible volume expansion upon the cycling process.Here,we demonstrate the architecture of metal-organic framework(MOF)-derived In2O3 nanocrystals/hierarchically porous nitrogen-doped carbon composite(In2O3/HPNC) for ultra-stable LIBs anode.This hierarchically porous structure(micro/meso/macro-pores) with nitrogen doping not only ensures exceptional mechanical strength and accommodates the volume expansion of In2O3 nanocrystals,but also offers electrons and lithium ions efficient interpenetrating pathways to migrate rapidly during charge/discharge processes.Thus,In2O3/HPNC exhibits excellent cyclic stability with a high specific capacity of 623 mA h g-1 over2000 cycles at 1000 mA g-1,corresponding to an ultra-low specific capacity decay of 0.017% per cycle(the best among the ln203-based anode for LIBs),and outstanding rate performance,suggesting a critical step toward achieving long-life and high-rate LIBs in practical devices.展开更多
Quantum dot(QD)light-emitting diodes(QLEDs)have been considered one of the most promising candidates for nextgeneration lighting and displays.However,the suboptimal carrier dynamics at the interface between QDs and th...Quantum dot(QD)light-emitting diodes(QLEDs)have been considered one of the most promising candidates for nextgeneration lighting and displays.However,the suboptimal carrier dynamics at the interface between QDs and the hole transport layer(HTL),such as leakage and quenching induced by the accumulation of electrons at high brightness,severely deteriorates the device’s efficiency and stability.Here,we introduced the influence of carrier modulation by nanoshell engineering on the extermal quantum efficiency(EQE)and operation lifetime for QLEDs with large-sized QDs.The shell-driven engineering of energy level positions and band bending effectively eliminates the hole injection barrier and promotes charge injection balance.Photo-assisted Kelvin probe technique reveals that the ZnCdSe/ZnSeS QD/TFB(TFB=poly(9,9-dioctylfluorene-co-N-(4-(3-methylpropyl))diphenylamine))interface presents an increased surface potential and quasi-Fermi level splitting,reducing heat generation during device operation at high brightness.The shell-driven carrier engineering strategy reveals that our devices exhibit a high external quantum efficiency of 26.44%and an ultralong operation time(exceeding 50,000 h)to 95%of the initial luminance at 1000 cd/m2(T95@1000 cd/m2).We anticipate that our results provide insights into resolving the issues at the QDHTL interface and demonstrate the importance of carrier management driven by QD nanostructure tailoring for the commercialization of QLEDs.展开更多
Sodium metal batteries are arousing extensive interest owing to their high energy density,low cost and wide resource.However,the practical development of sodium metal batteries is inherently plagued by the severe volu...Sodium metal batteries are arousing extensive interest owing to their high energy density,low cost and wide resource.However,the practical development of sodium metal batteries is inherently plagued by the severe volume expansion and the dendrite growth of sodium metal anode during long cycles under high current density.Herein,a simple electrospinning method is applied to construct the uniformly nitrogen-doped porous carbon fiber skeleton and used as three-dimensional(3D)current collector for sodium metal anode,which has high specific surface area(1,098 m^2/g)and strong binding to sodium metal.As a result,nitrogen-doped carbon fiber current collector shows a low sodium deposition overpotential and a highly stable cyclability for 3,500 h with a high coulombic effciency of 99.9%at 2 mA/cm^2 and 2 mAh/cm^2.Moreover,the full cells using carbon coated sodium vanadium phosphate as cathode and sodium pre-plated nitrogen-doped carbon fiber skeleton as hybrid anode can stably cycle for 300 times.These results illustrate an effective strategy to construct a 3D uniformly nitrogen-doped carbon skeleton based sodium metal hybrid anode without the formation of dendrites,which provide a prospect for further development and research of high performance sodium metal batteries.展开更多
Producing ultra-stabilized radicals via light irradiation has raised considerable concern but remains a tremendous challenge in functional materials. Herein, optically actuating ultra-stable radicals are discovered in...Producing ultra-stabilized radicals via light irradiation has raised considerable concern but remains a tremendous challenge in functional materials. Herein, optically actuating ultra-stable radicals are discovered in a sterically encumbered and large π-conjugated tri(4-pyridyl)-1,3,5-triazine(TPT) ligands constructed photochromic compound Cu_(3)(H-HEDP)_(2)TPT_(2)·2H_(2)O(QDU-12;HEDP=hydroxyethylidene diphosphonate). The photogeneration of TPT· radicals is the photoactive behavior of electron transfer from HEDP motifs to TPT units. The ultra-long-lived radicals are contributed from strong interchain π-π interactions between the large π-conjugated TPT components, with the radical lifetime maintained for about 18 months under ambient conditions. Moreover, the antiferromagnetic couplings between TPT· radicals and Cu^(2+)ions plummeted the demagnetization to 35% of its original state after light irradiation, showing the largest room temperature photodemagnetization in the current radicalbased photochromic materials.展开更多
The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag...The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications.展开更多
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern...Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.展开更多
A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first t...A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first time in the world. The porestructure characteristics of the NSZ zeolite prepared for industrial use were analyzed and characterized using BET. The resultsindicate a significant increase in the secondary pore volume of NSZ zeolite compared to the existing ultra-stable zeolite HSZ-5, which is produced through a conventional gas-phase method. The average secondary pore volume to total pore volume ratioin NSZ zeolite was found to be 58.96% higher. The catalytic cracking performance of NSZ zeolite was evaluated. The resultsshowed that the NSC-LTA catalyst, with NSZ as the active component, outperformed the HSC-LTA catalyst with HSZ-5 zeolitein terms of obtaining more high-value products (gasoline and liquefied petroleum gas) during the hydrogenated light cycle oilprocessing. Additionally, the NSC-LTA catalyst showed a significant improvement in coke selectivity.展开更多
The optical atomic clocks have the potential to transform global timekeeping,relying on the state-of-the-art accuracy and stability,and greatly improve the measurement precision for a wide range of scientific and tech...The optical atomic clocks have the potential to transform global timekeeping,relying on the state-of-the-art accuracy and stability,and greatly improve the measurement precision for a wide range of scientific and technological applications.Herein we report on the development of the optical clock based on 171Yb atoms confined in an optical lattice.A minimum width of 1.92-Hz Rabi spectra has been obtained with a new 578-nm clock interrogation laser.The in-loop fractional instability of the 171Yb clock reaches 9.1×10-18 after an averaging over a time of 2.0×104 s.By synchronous comparison between two clocks,we demonstrate that our 171Yb optical lattice clock achieves a fractional instability of 4.60×10-16/√τ.展开更多
We demonstrate the ultra-stable frequency sources aiming to improve the short-time instability of primary frequency standards.These sources are realized by using photonic generation approach,and composed of ultra-stab...We demonstrate the ultra-stable frequency sources aiming to improve the short-time instability of primary frequency standards.These sources are realized by using photonic generation approach,and composed of ultra-stable lasers,optical-frequency-combs,optical signal detecting parts,and synthesizers.Preliminary evaluation shows that the sources produce fixed-frequency at 9.54(/9.63)GHz,10 MHz,and tunable-frequency around 9.192 GHz with relative frequency instability of 10^(-15) for short terms.展开更多
In this paper, the technological progress on Chinese gravity exploration satellites is presented. Novel features such as ultra-stable structure, high accurate thermal control, drag-free and attitude control, micro-thr...In this paper, the technological progress on Chinese gravity exploration satellites is presented. Novel features such as ultra-stable structure, high accurate thermal control, drag-free and attitude control, micro-thrusters, aerodynamic configuration, the ability to perform micro-vibration analyses, microwave ranging system and mass center trimmer are described.展开更多
Aqueous hybrid supercapacitors are attracting increasing attention due to their potential low cost,high safety and eco-friendliness.However,the narrow operating potential window of aqueous electrolyte and the lack of ...Aqueous hybrid supercapacitors are attracting increasing attention due to their potential low cost,high safety and eco-friendliness.However,the narrow operating potential window of aqueous electrolyte and the lack of suitable negative electrode materials seriously hinder its future applications.Here,we explore high concentrated lithium acetate with high ionic conductivity of 65.5 mS cm−1 as a green“water-in-salt”electrolyte,providing wide voltage window up to 2.8 V.It facilitates the reversible function of niobium tungsten oxide,Nb18W16O93,that otherwise only operations in organic electrolytes previously.The Nb18W16O93 with lithium-ion intercalation pseudocapacitive behavior exhibits excellent rate performance,high areal capacity,and ultra-long cycling stability.An aqueous lithium-ion hybrid capacitor is developed by using Nb18W16O93 as negative electrode combined with graphene as positive electrode in lithium acetate-based“water-in-salt”electrolyte,delivering a high energy density of 41.9 W kg−1,high power density of 20,000 W kg−1 and unexceptionable stability of 50,000 cycles.展开更多
Thanks to the excellent optoelectronic properties,lead halide perovskites(LHPs)have been widely employed in highperformance optoelectronic devices such as solar cells and lightemitting diodes.However,overcoming their ...Thanks to the excellent optoelectronic properties,lead halide perovskites(LHPs)have been widely employed in highperformance optoelectronic devices such as solar cells and lightemitting diodes.However,overcoming their poor stability against water has been one of the biggest challenges for most applications.Herein,we report a novel hot-injection method in a Pb-poor environment combined with a well-designed purification process to synthesize water-dispersible CsPbBr_(3) nanocrystals(NCs).The as-prepared NCs sustain their superior photoluminescence(91%quantum yield in water)for more than 200 days in an aqueous environment,which is attributed to a passivation effect induced by excess CsBr salts.Thanks to the ultra-stability of these LHP NCs,for the first time,we report a new application of LHP NCs,in which they are applied to electrocatalysis of CO_(2) reduction reaction.Noticeably,they show significant electrocatalytic activity(faradaic yield:32%for CH4,40%for CO)and operation stability(>350 h).展开更多
In this paper,we present a remote time-base-free technique for a coherent optical frequency transfer system via fiber.At the remote site,the thermal noise of the optical components is corrected along with the link pha...In this paper,we present a remote time-base-free technique for a coherent optical frequency transfer system via fiber.At the remote site,the thermal noise of the optical components is corrected along with the link phase noise caused by environmental effects.In this system,a 1×2 acousto-optic modulator(AOM)is applied at the remote site,with the first light being used to eliminate the noise of the remote time base and interface with remote users while the zeroth light is used to establish an active noise canceling loop.With this technique,a 10 MHz commercial oscillator,used as a time base at the remote site,does not contribute to the noise of the transferred signal.An experimental system is constructed using a 150 km fiber spool to validate the proposed technique.After compensation,the overlapping Allan deviation of the transfer link is 7.42×10^(-15)at 1 s integration time and scales down to 1.07×10^(-18)at 10,000 s integration time.The uncertainty of the transmitted optical frequency is on the order of a few 10-19.This significantly reduces the time-base requirements and costs for multi-user applications without compromising transfer accuracy.Meanwhile,these results show great potential for transferring ultra-stable optical frequency signals to remote sites,especially for point-to-multi-users.展开更多
We demonstrate an all-fiber-based photonic microwave generation with 10^(-15) frequency instability.The system consists of an ultra-stable laser by optical fiber delay line,an all-fiber-based"figure-of-nine"...We demonstrate an all-fiber-based photonic microwave generation with 10^(-15) frequency instability.The system consists of an ultra-stable laser by optical fiber delay line,an all-fiber-based"figure-of-nine"optical frequency comb,a high signal-tonoise ratio photonic detection unit,and a microwave frequency synthesizer.The whole optical links are made from optical fiber and optical fiber components,which renders the whole system compactness,reliability,and robustness with respect to environmental influences.Frequency instabilities of 3.5×10^(-15) at 100 s for 6.834 GHz signal and 4.3×10^(-15) at 100 s for9.192 GHz signal were achieved.展开更多
Solar-driven evaporators are promising for tackling freshwater scarcity but still challenged in simultaneously realizing comprehensive performances at one platform for sustainable and efficient application in real-wor...Solar-driven evaporators are promising for tackling freshwater scarcity but still challenged in simultaneously realizing comprehensive performances at one platform for sustainable and efficient application in real-world environments,such as stablefloating,scalability,salt-resistance,efficient vaporization,and anti-oil-fouling property.Herein,we design a hybrid organohydrogel evaporator to achieve the enduring oil contamination repulsion with maintaining accelerated evaporation process,and integrate capacities of ultra-stable floating,hindered salt-crystallization,large-scale fabrication for practical purification of seawater and polluted solutions.The raised water surface surrounding evaporators,induced by low density of organogel-phase,results in oil contamination resistance through the lateral capillary repulsion effect.Meanwhile,the organogel-phase containing photo-thermal carbon-nanotubes with low thermal capacity and conduction can form locally confined hot dots under solar irradiation and reduce heat dissipation on heating excessive water.Therefore,based on this approach,accelerated long-term practical purification of oilcontaminated solutions without any extra disposal is realized.Considering other properties of ultra-stable floating,large-scale fabrication,and anti-salt crystallization,these innovative organohydrogel evaporators open pathways for purifying oil-slickpolluted water via interfacial evaporation and are anticipated accelerating industrialization of efficient and sustainable solar-driven water purification.展开更多
基金supported by the Preparation and Characterization of Fogging Agents,Cooperative Project of China(Grant No.1900030040)Preparation and Test of Fogging Agents,Cooperative Project of China(Grant No.2200030085)。
文摘Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.
文摘The ultra-stable zeolite DASY-0.0 was prepared by hydrothermal method in commercial scale. Its structure was further modified via the treatment for cleaning of pores (CP). The zeolite samples before and after CP treating were analyzed and characterized by XRF, XRD, NMR, IR, BET and DTA. The results showed that, in comparison with the conventional ultra-stable zeolite DASY-0.0 prepared by the hydrothermal process, the CP-modified zeolite SOY0 exhibited a higher relative crystallinity, a larger surface area and pore volume, a higher thermal stability and contained less amorohous non-framework A1.
基金Supported by the National Natural Science Foundation of China under Grant No 91536217the West Light Foundation of the Chinese Academy of Sciences under Grant No 2013ZD02the Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant No 2015334
文摘We present two cavity-stabilized lasers at 1555 nm, which are built to be the frequency source for a transportable photonic microwave generation system. The frequency instability reaches the thermal noise limit (7 ×10-16) of the 10-cm ultra-low expansion glass cavity at 1-10s averaging time and the beat signal of the two lasers reveals a remarkable linewidth of 185mHz.
基金The authors gratefully acknowledge the funding of the project by SINOPEC(No.118001-6).
文摘Small-cell HSY-S zeolite prepared by the gas-phase ultra-stable method had been researched and developed,and industrial preparation tests of HSY-S have been successfully carried out for the first time.The acid resistance of industrially prepared HSY-S was investigated by acid solutions with different pH values.The structures and properties of HSY-S and its acid-treated samples were characterized by XRD,XRF,BET,and IR.Results show that the HSY-S samples have the characteristics of high crystallinity,good stability,large specific surface area,and good acid resistance.
基金This work is partially supported by National Key Research and Development Program of China(Grant No.2018YFC1407503)the Fundamental Research Funds for the Central Universities(2018FZA5001)The National Natural Science Foundation of China(Grant No.11621101).
文摘Two-photon luminescence with near-infrared(NIR)excitation of upconversion nanoparticles(NPs)is of great importance in biological imaging due to deep penetration in high-scattering tissues,low auto-luminescence and good sectioning ability.Unfortunately,common two-photon luminescence is in visible band with an extremely high exciation power density,which limits its application.Here,we synthesized NaYF_(4):Yb/Tm@NaYF_(4)upconversion NPs with strong twophoton NIR emission and a low excitation power density.Furthermore,NaYF_(4):Yb/Tm@NaYF_(4)@SiO_(2)@OTMS@F127 NPs with high chemical stability were obtained by a modified multilayer coating method which was applied to upconversion NPs for thefirst time.In addition,it is shown that the as-prepared hydrophillic upconversion NPs have great biocompatibility and kept stable for 6 hours during in vivo whole-body imaging.The vessels with two-photon luminescence were clear even under an excitation power density as low as 25mW/cm^(2).Vivid visualizations of capillaries and vessels in a mouse brain were also obtained with low background and high contrast.Because of cheaper instruments and safer power density,the NIR two-photon luminescence of NaYF_(4):Yb/Tm@NaYF_(4)upconversion NPs could promote wider application of two-photon technology.The modified multilayer coating method could be widely used for upconversion NPs to increase the stable time of the in vivo circulation.Our work possesses a great potential for deep imaging and imaging-guided treatment in the future.
基金the financial support from the Fundamental Research Funds of the Central Universities(No.531118010112)the Double First-Class University Initiative of Hunan University(No.531109100004)+1 种基金the Fundamental Research Funds of the Central Universities(no.531107051048)the support from the Hunan Key Laboratory of Two-Dimensional Materials(No.801200005)
文摘Exploring electrode materials with attractive specific capacity and prominent cyclic durability is of the essence for promoting lithium ion batteries(LIBs).In2O3 has shown an extraordinary promise for LIBs with advantageous gravimetric capacity(theoretically 965 mA h g-1) and low working voltage.However,In2O3 still suffers from the inherent weaknesses of metal oxides in practical application,especially low conductivity and incorrigible volume expansion upon the cycling process.Here,we demonstrate the architecture of metal-organic framework(MOF)-derived In2O3 nanocrystals/hierarchically porous nitrogen-doped carbon composite(In2O3/HPNC) for ultra-stable LIBs anode.This hierarchically porous structure(micro/meso/macro-pores) with nitrogen doping not only ensures exceptional mechanical strength and accommodates the volume expansion of In2O3 nanocrystals,but also offers electrons and lithium ions efficient interpenetrating pathways to migrate rapidly during charge/discharge processes.Thus,In2O3/HPNC exhibits excellent cyclic stability with a high specific capacity of 623 mA h g-1 over2000 cycles at 1000 mA g-1,corresponding to an ultra-low specific capacity decay of 0.017% per cycle(the best among the ln203-based anode for LIBs),and outstanding rate performance,suggesting a critical step toward achieving long-life and high-rate LIBs in practical devices.
基金support from the National Natural Science Foundation of China(Nos.U22A2072,22205054,and 61922028)the National Key Research and Development Program of China(No.2023YFE0205000)+2 种基金Zhongyuan High Level Talents Special Support Plan(No.244200510009)Key Research and Development and Promotion Project of Henan Province(Science and Technology Tackling Key Problems,No.222102210271)Postdoctoral Research Grant in Henan Province(No.202103041).
文摘Quantum dot(QD)light-emitting diodes(QLEDs)have been considered one of the most promising candidates for nextgeneration lighting and displays.However,the suboptimal carrier dynamics at the interface between QDs and the hole transport layer(HTL),such as leakage and quenching induced by the accumulation of electrons at high brightness,severely deteriorates the device’s efficiency and stability.Here,we introduced the influence of carrier modulation by nanoshell engineering on the extermal quantum efficiency(EQE)and operation lifetime for QLEDs with large-sized QDs.The shell-driven engineering of energy level positions and band bending effectively eliminates the hole injection barrier and promotes charge injection balance.Photo-assisted Kelvin probe technique reveals that the ZnCdSe/ZnSeS QD/TFB(TFB=poly(9,9-dioctylfluorene-co-N-(4-(3-methylpropyl))diphenylamine))interface presents an increased surface potential and quasi-Fermi level splitting,reducing heat generation during device operation at high brightness.The shell-driven carrier engineering strategy reveals that our devices exhibit a high external quantum efficiency of 26.44%and an ultralong operation time(exceeding 50,000 h)to 95%of the initial luminance at 1000 cd/m2(T95@1000 cd/m2).We anticipate that our results provide insights into resolving the issues at the QDHTL interface and demonstrate the importance of carrier management driven by QD nanostructure tailoring for the commercialization of QLEDs.
基金The authors gratefully acknowledge financial support from the Fundamental Research Funds for the Central Universities of China(No.20720190013)the Guangdong Basic and Applied Basic Research Foundation(Nos.2019A1515011070 and 2019B151502045)the National Natural Science Foundation of China(Nos.51972351 and 51802361).
文摘Sodium metal batteries are arousing extensive interest owing to their high energy density,low cost and wide resource.However,the practical development of sodium metal batteries is inherently plagued by the severe volume expansion and the dendrite growth of sodium metal anode during long cycles under high current density.Herein,a simple electrospinning method is applied to construct the uniformly nitrogen-doped porous carbon fiber skeleton and used as three-dimensional(3D)current collector for sodium metal anode,which has high specific surface area(1,098 m^2/g)and strong binding to sodium metal.As a result,nitrogen-doped carbon fiber current collector shows a low sodium deposition overpotential and a highly stable cyclability for 3,500 h with a high coulombic effciency of 99.9%at 2 mA/cm^2 and 2 mAh/cm^2.Moreover,the full cells using carbon coated sodium vanadium phosphate as cathode and sodium pre-plated nitrogen-doped carbon fiber skeleton as hybrid anode can stably cycle for 300 times.These results illustrate an effective strategy to construct a 3D uniformly nitrogen-doped carbon skeleton based sodium metal hybrid anode without the formation of dendrites,which provide a prospect for further development and research of high performance sodium metal batteries.
基金supported by the National Natural Science Foundation of China(21901133,22071125,22071126,21571111)the Key Research and Development Project of Shandong Province(2019GGX102006)。
文摘Producing ultra-stabilized radicals via light irradiation has raised considerable concern but remains a tremendous challenge in functional materials. Herein, optically actuating ultra-stable radicals are discovered in a sterically encumbered and large π-conjugated tri(4-pyridyl)-1,3,5-triazine(TPT) ligands constructed photochromic compound Cu_(3)(H-HEDP)_(2)TPT_(2)·2H_(2)O(QDU-12;HEDP=hydroxyethylidene diphosphonate). The photogeneration of TPT· radicals is the photoactive behavior of electron transfer from HEDP motifs to TPT units. The ultra-long-lived radicals are contributed from strong interchain π-π interactions between the large π-conjugated TPT components, with the radical lifetime maintained for about 18 months under ambient conditions. Moreover, the antiferromagnetic couplings between TPT· radicals and Cu^(2+)ions plummeted the demagnetization to 35% of its original state after light irradiation, showing the largest room temperature photodemagnetization in the current radicalbased photochromic materials.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(2021R1A4A2000934).
文摘The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications.
基金the National Natural Science Foundation of China(Nos.52272046,52090030,52090031,52122301,51973191)the Natural Science Foundation of Zhejiang Province(LR23E020003)+4 种基金Shanxi-Zheda Institute of New Materials and Chemical Engineering(2021SZ-FR004,2022SZ-TD011,2022SZ-TD012,2022SZ-TD014)Hundred Talents Program of Zhejiang University(188020*194231701/113,112300+1944223R3/003,112300+1944223R3/004)the Fundamental Research Funds for the Central Universities(Nos.226-2023-00023,226-2023-00082,2021FZZX001-17,K20200060)National Key R&D Program of China(NO.2022YFA1205300,NO.2022YFA1205301,NO.2020YFF0204400,NO.2022YFF0609801)“Pioneer”and“Leading Goose”R&D Program of Zhejiang 2023C01190.
文摘Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.
基金the National Key R&D Program of China(2022YFA1504404)the SINOPEC Research Program(121036-5).
文摘A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first time in the world. The porestructure characteristics of the NSZ zeolite prepared for industrial use were analyzed and characterized using BET. The resultsindicate a significant increase in the secondary pore volume of NSZ zeolite compared to the existing ultra-stable zeolite HSZ-5, which is produced through a conventional gas-phase method. The average secondary pore volume to total pore volume ratioin NSZ zeolite was found to be 58.96% higher. The catalytic cracking performance of NSZ zeolite was evaluated. The resultsshowed that the NSC-LTA catalyst, with NSZ as the active component, outperformed the HSC-LTA catalyst with HSZ-5 zeolitein terms of obtaining more high-value products (gasoline and liquefied petroleum gas) during the hydrogenated light cycle oilprocessing. Additionally, the NSC-LTA catalyst showed a significant improvement in coke selectivity.
基金Project supported by the National Key Basic Research and Development Program of China(Grant Nos.2016YFA0302103,2017YFF0212003,and 2016YFB0501601)the Municipal Science and Technology Major Project of Shanghai,China(Grant No.2019SHDZX01)+1 种基金the National Natural Science Foundation of China(Grant No.11134003)the Excellent Academic Leaders Program of Shanghai,China(Grant No.12XD1402400).
文摘The optical atomic clocks have the potential to transform global timekeeping,relying on the state-of-the-art accuracy and stability,and greatly improve the measurement precision for a wide range of scientific and technological applications.Herein we report on the development of the optical clock based on 171Yb atoms confined in an optical lattice.A minimum width of 1.92-Hz Rabi spectra has been obtained with a new 578-nm clock interrogation laser.The in-loop fractional instability of the 171Yb clock reaches 9.1×10-18 after an averaging over a time of 2.0×104 s.By synchronous comparison between two clocks,we demonstrate that our 171Yb optical lattice clock achieves a fractional instability of 4.60×10-16/√τ.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91536217,61127901,and 11775253)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2015334)The authors would like to thank special funds for scientific equipment development(YZ201518)from Chinese academy of sciences for the use of the developed equipment
文摘We demonstrate the ultra-stable frequency sources aiming to improve the short-time instability of primary frequency standards.These sources are realized by using photonic generation approach,and composed of ultra-stable lasers,optical-frequency-combs,optical signal detecting parts,and synthesizers.Preliminary evaluation shows that the sources produce fixed-frequency at 9.54(/9.63)GHz,10 MHz,and tunable-frequency around 9.192 GHz with relative frequency instability of 10^(-15) for short terms.
基金support provided by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(51121004,41274041,51207033,and 11275055)
文摘In this paper, the technological progress on Chinese gravity exploration satellites is presented. Novel features such as ultra-stable structure, high accurate thermal control, drag-free and attitude control, micro-thrusters, aerodynamic configuration, the ability to perform micro-vibration analyses, microwave ranging system and mass center trimmer are described.
基金Shengyang Dong and Yi Wang contributed equally to this work.This work was supported by the National Natural Science Foundation of China(Nos.U1802256,51672128,51802154)the Key Research and Development Program in Jiangsu Province(BE2018122)+1 种基金Jiangsu Specially-Appointed Professors Program,the Fundamental Research Funds for the Central Universities(NE2016005)the Startup Foundation for Introducing Talent of NUIST(1441622001004).
文摘Aqueous hybrid supercapacitors are attracting increasing attention due to their potential low cost,high safety and eco-friendliness.However,the narrow operating potential window of aqueous electrolyte and the lack of suitable negative electrode materials seriously hinder its future applications.Here,we explore high concentrated lithium acetate with high ionic conductivity of 65.5 mS cm−1 as a green“water-in-salt”electrolyte,providing wide voltage window up to 2.8 V.It facilitates the reversible function of niobium tungsten oxide,Nb18W16O93,that otherwise only operations in organic electrolytes previously.The Nb18W16O93 with lithium-ion intercalation pseudocapacitive behavior exhibits excellent rate performance,high areal capacity,and ultra-long cycling stability.An aqueous lithium-ion hybrid capacitor is developed by using Nb18W16O93 as negative electrode combined with graphene as positive electrode in lithium acetate-based“water-in-salt”electrolyte,delivering a high energy density of 41.9 W kg−1,high power density of 20,000 W kg−1 and unexceptionable stability of 50,000 cycles.
基金This research was supported by the National Natural Science Foundation of China(Nos.11674258,51602305,51702219,61975134,11904250)Guangdong Basic and Applied Basic Research Foundation(2020B1515020051)+2 种基金the Science and Technology Innovation Commission of Shenzhen(JCYJ20180305125345378)Shenzhen Nanshan District Pilotage Team Program(LHTD20170006)Partial support from The Institute For Lasers,Photonics and Biophotonics at The University at Buffalo is also acknowledged.T.Z.and I.Z.were supported by the U.S.DOE,Office of Science BES,Award No.DE-SC0004890.
文摘Thanks to the excellent optoelectronic properties,lead halide perovskites(LHPs)have been widely employed in highperformance optoelectronic devices such as solar cells and lightemitting diodes.However,overcoming their poor stability against water has been one of the biggest challenges for most applications.Herein,we report a novel hot-injection method in a Pb-poor environment combined with a well-designed purification process to synthesize water-dispersible CsPbBr_(3) nanocrystals(NCs).The as-prepared NCs sustain their superior photoluminescence(91%quantum yield in water)for more than 200 days in an aqueous environment,which is attributed to a passivation effect induced by excess CsBr salts.Thanks to the ultra-stability of these LHP NCs,for the first time,we report a new application of LHP NCs,in which they are applied to electrocatalysis of CO_(2) reduction reaction.Noticeably,they show significant electrocatalytic activity(faradaic yield:32%for CH4,40%for CO)and operation stability(>350 h).
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB21000000)the Open Project Fund of State Key Laboratory of Transient Optics and Photonics,Chinese Academy of Sciences(No.SKLST202011)+1 种基金the National Natural Science Foundation of China(Nos.12103059,12103059,12303076,and 12303077)the Planned Project of Xi’an Bureau of Science and Technology,China(No.E019XK104).
文摘In this paper,we present a remote time-base-free technique for a coherent optical frequency transfer system via fiber.At the remote site,the thermal noise of the optical components is corrected along with the link phase noise caused by environmental effects.In this system,a 1×2 acousto-optic modulator(AOM)is applied at the remote site,with the first light being used to eliminate the noise of the remote time base and interface with remote users while the zeroth light is used to establish an active noise canceling loop.With this technique,a 10 MHz commercial oscillator,used as a time base at the remote site,does not contribute to the noise of the transferred signal.An experimental system is constructed using a 150 km fiber spool to validate the proposed technique.After compensation,the overlapping Allan deviation of the transfer link is 7.42×10^(-15)at 1 s integration time and scales down to 1.07×10^(-18)at 10,000 s integration time.The uncertainty of the transmitted optical frequency is on the order of a few 10-19.This significantly reduces the time-base requirements and costs for multi-user applications without compromising transfer accuracy.Meanwhile,these results show great potential for transferring ultra-stable optical frequency signals to remote sites,especially for point-to-multi-users.
基金This work was supported by the National Natural Science Foundation of China(Nos.11034008,11274324,11604353,and 61805262)。
文摘We demonstrate an all-fiber-based photonic microwave generation with 10^(-15) frequency instability.The system consists of an ultra-stable laser by optical fiber delay line,an all-fiber-based"figure-of-nine"optical frequency comb,a high signal-tonoise ratio photonic detection unit,and a microwave frequency synthesizer.The whole optical links are made from optical fiber and optical fiber components,which renders the whole system compactness,reliability,and robustness with respect to environmental influences.Frequency instabilities of 3.5×10^(-15) at 100 s for 6.834 GHz signal and 4.3×10^(-15) at 100 s for9.192 GHz signal were achieved.
基金support from the National Key R&D Program of China(Nos.2018YFA0209500 and 2019YFA0709300)the National Natural Science Foundation of China(Nos.21621091,21972155,21975209,22005255,22035008,and 52025132)+1 种基金Projects of International Cooperation and Exchanges NSFC(No.1A1111KYSB20200010)National Program for Special Support of Eminent Professionals and the Fundamental Research Funds for Central Universities(No.20720190037).
文摘Solar-driven evaporators are promising for tackling freshwater scarcity but still challenged in simultaneously realizing comprehensive performances at one platform for sustainable and efficient application in real-world environments,such as stablefloating,scalability,salt-resistance,efficient vaporization,and anti-oil-fouling property.Herein,we design a hybrid organohydrogel evaporator to achieve the enduring oil contamination repulsion with maintaining accelerated evaporation process,and integrate capacities of ultra-stable floating,hindered salt-crystallization,large-scale fabrication for practical purification of seawater and polluted solutions.The raised water surface surrounding evaporators,induced by low density of organogel-phase,results in oil contamination resistance through the lateral capillary repulsion effect.Meanwhile,the organogel-phase containing photo-thermal carbon-nanotubes with low thermal capacity and conduction can form locally confined hot dots under solar irradiation and reduce heat dissipation on heating excessive water.Therefore,based on this approach,accelerated long-term practical purification of oilcontaminated solutions without any extra disposal is realized.Considering other properties of ultra-stable floating,large-scale fabrication,and anti-salt crystallization,these innovative organohydrogel evaporators open pathways for purifying oil-slickpolluted water via interfacial evaporation and are anticipated accelerating industrialization of efficient and sustainable solar-driven water purification.