期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Composition optimization and performance prediction for ultra-stable water-based aerosol based on thermodynamic entropy theory
1
作者 Tingting Kang Canjun Yan +6 位作者 Xinying Zhao Jingru Zhao Zixin Liu Chenggong Ju Xinyue Zhang Yun Zhang Yan Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期437-446,共10页
Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of th... Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security. 展开更多
关键词 ultra-stable Water-based aerosol Thermodynamic entropy Composition optimization Performance prediction
下载PDF
Study on Modification of Ultra-Stable Zeolite Prepared by Hydrothermal Method 被引量:2
2
作者 Zhang Weilin Zhou Lingping +4 位作者 Shen Shimin Li Zheng Zhu Yuxia Tian Huiping Long Jun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2007年第2期55-59,共5页
The ultra-stable zeolite DASY-0.0 was prepared by hydrothermal method in commercial scale. Its structure was further modified via the treatment for cleaning of pores (CP). The zeolite samples before and after CP tre... The ultra-stable zeolite DASY-0.0 was prepared by hydrothermal method in commercial scale. Its structure was further modified via the treatment for cleaning of pores (CP). The zeolite samples before and after CP treating were analyzed and characterized by XRF, XRD, NMR, IR, BET and DTA. The results showed that, in comparison with the conventional ultra-stable zeolite DASY-0.0 prepared by the hydrothermal process, the CP-modified zeolite SOY0 exhibited a higher relative crystallinity, a larger surface area and pore volume, a higher thermal stability and contained less amorohous non-framework A1. 展开更多
关键词 ZEOLITE ultra-stable MODIFICATION thermal stability
下载PDF
Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth 被引量:6
3
作者 Zhao-Yang Tai Lu-Lu Yan +4 位作者 Yan-Yan Zhang Xiao-Fei Zhang Wen-Ge Guo Shou-Gang Zhang Hai-Feng Jiang 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第9期33-36,共4页
We present two cavity-stabilized lasers at 1555 nm, which are built to be the frequency source for a transportable photonic microwave generation system. The frequency instability reaches the thermal noise limit (7 &#... We present two cavity-stabilized lasers at 1555 nm, which are built to be the frequency source for a transportable photonic microwave generation system. The frequency instability reaches the thermal noise limit (7 ×10-16) of the 10-cm ultra-low expansion glass cavity at 1-10s averaging time and the beat signal of the two lasers reveals a remarkable linewidth of 185mHz. 展开更多
关键词 Transportable 1555-nm ultra-stable Laser with Sub-0.185-Hz Linewidth
下载PDF
Industrial Preparation and Acid Resistance of Ultra-stable Y Zeolite with Small Cell Size Produced by Gas-phase Method 被引量:1
4
作者 Zhang Jing Jia Jishun +4 位作者 Sha Hao Lu Guanqun Yan Jiasong Wang Shengji Zhou Lingping 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2022年第2期85-90,共6页
Small-cell HSY-S zeolite prepared by the gas-phase ultra-stable method had been researched and developed,and industrial preparation tests of HSY-S have been successfully carried out for the first time.The acid resista... Small-cell HSY-S zeolite prepared by the gas-phase ultra-stable method had been researched and developed,and industrial preparation tests of HSY-S have been successfully carried out for the first time.The acid resistance of industrially prepared HSY-S was investigated by acid solutions with different pH values.The structures and properties of HSY-S and its acid-treated samples were characterized by XRD,XRF,BET,and IR.Results show that the HSY-S samples have the characteristics of high crystallinity,good stability,large specific surface area,and good acid resistance. 展开更多
关键词 zeolite small unit cell size gas-phase ultra-stable acid resistance industrial preparation
下载PDF
Ultra-stable near-infrared Tm^(3+)-doped upconversion nanoparticles for in vivo wide-field two-photon angiography with a low excitation intensity 被引量:1
5
作者 Wen Liu Runze Chen Sailing He 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2019年第3期67-77,共11页
Two-photon luminescence with near-infrared(NIR)excitation of upconversion nanoparticles(NPs)is of great importance in biological imaging due to deep penetration in high-scattering tissues,low auto-luminescence and goo... Two-photon luminescence with near-infrared(NIR)excitation of upconversion nanoparticles(NPs)is of great importance in biological imaging due to deep penetration in high-scattering tissues,low auto-luminescence and good sectioning ability.Unfortunately,common two-photon luminescence is in visible band with an extremely high exciation power density,which limits its application.Here,we synthesized NaYF_(4):Yb/Tm@NaYF_(4)upconversion NPs with strong twophoton NIR emission and a low excitation power density.Furthermore,NaYF_(4):Yb/Tm@NaYF_(4)@SiO_(2)@OTMS@F127 NPs with high chemical stability were obtained by a modified multilayer coating method which was applied to upconversion NPs for thefirst time.In addition,it is shown that the as-prepared hydrophillic upconversion NPs have great biocompatibility and kept stable for 6 hours during in vivo whole-body imaging.The vessels with two-photon luminescence were clear even under an excitation power density as low as 25mW/cm^(2).Vivid visualizations of capillaries and vessels in a mouse brain were also obtained with low background and high contrast.Because of cheaper instruments and safer power density,the NIR two-photon luminescence of NaYF_(4):Yb/Tm@NaYF_(4)upconversion NPs could promote wider application of two-photon technology.The modified multilayer coating method could be widely used for upconversion NPs to increase the stable time of the in vivo circulation.Our work possesses a great potential for deep imaging and imaging-guided treatment in the future. 展开更多
关键词 ultra-stable upconversion nanoparticles two-photon luminescence in vivo brain angiography low excitation power density
下载PDF
Ultra-stable and High-rate Lithium Ion Batteries Based on Metal-organic Framework-derived ln2O3 Nanocrystals/Hierarchically Porous Nitrogen-doped Carbon Anode 被引量:4
6
作者 Hanjiao Xu Lei Wang +7 位作者 Jiang Zhong Tao Wang Jinhui Cao Yaya Wang Xiuqi Li Huilong Fei Jian Zhu Xidong Duan 《Energy & Environmental Materials》 2020年第2期177-185,共9页
Exploring electrode materials with attractive specific capacity and prominent cyclic durability is of the essence for promoting lithium ion batteries(LIBs).In2O3 has shown an extraordinary promise for LIBs with advant... Exploring electrode materials with attractive specific capacity and prominent cyclic durability is of the essence for promoting lithium ion batteries(LIBs).In2O3 has shown an extraordinary promise for LIBs with advantageous gravimetric capacity(theoretically 965 mA h g-1) and low working voltage.However,In2O3 still suffers from the inherent weaknesses of metal oxides in practical application,especially low conductivity and incorrigible volume expansion upon the cycling process.Here,we demonstrate the architecture of metal-organic framework(MOF)-derived In2O3 nanocrystals/hierarchically porous nitrogen-doped carbon composite(In2O3/HPNC) for ultra-stable LIBs anode.This hierarchically porous structure(micro/meso/macro-pores) with nitrogen doping not only ensures exceptional mechanical strength and accommodates the volume expansion of In2O3 nanocrystals,but also offers electrons and lithium ions efficient interpenetrating pathways to migrate rapidly during charge/discharge processes.Thus,In2O3/HPNC exhibits excellent cyclic stability with a high specific capacity of 623 mA h g-1 over2000 cycles at 1000 mA g-1,corresponding to an ultra-low specific capacity decay of 0.017% per cycle(the best among the ln203-based anode for LIBs),and outstanding rate performance,suggesting a critical step toward achieving long-life and high-rate LIBs in practical devices. 展开更多
关键词 hierarchically porous structure In203 nanocrystals metal-organic frameworks nitrogen-doping carbon ultra-stable lithium ion batteries
下载PDF
Nanoshell-driven carrier engineering of large quantum dots enables ultra-stable and efficient LEDs
7
作者 Dandan Zhang Jianshun Li +5 位作者 Lei Wang Yaqi Guo Weipeng Liu Qingli Lin Lin Song Li Huaibin Shen 《Nano Research》 SCIE EI CSCD 2024年第12期10453-10459,共7页
Quantum dot(QD)light-emitting diodes(QLEDs)have been considered one of the most promising candidates for nextgeneration lighting and displays.However,the suboptimal carrier dynamics at the interface between QDs and th... Quantum dot(QD)light-emitting diodes(QLEDs)have been considered one of the most promising candidates for nextgeneration lighting and displays.However,the suboptimal carrier dynamics at the interface between QDs and the hole transport layer(HTL),such as leakage and quenching induced by the accumulation of electrons at high brightness,severely deteriorates the device’s efficiency and stability.Here,we introduced the influence of carrier modulation by nanoshell engineering on the extermal quantum efficiency(EQE)and operation lifetime for QLEDs with large-sized QDs.The shell-driven engineering of energy level positions and band bending effectively eliminates the hole injection barrier and promotes charge injection balance.Photo-assisted Kelvin probe technique reveals that the ZnCdSe/ZnSeS QD/TFB(TFB=poly(9,9-dioctylfluorene-co-N-(4-(3-methylpropyl))diphenylamine))interface presents an increased surface potential and quasi-Fermi level splitting,reducing heat generation during device operation at high brightness.The shell-driven carrier engineering strategy reveals that our devices exhibit a high external quantum efficiency of 26.44%and an ultralong operation time(exceeding 50,000 h)to 95%of the initial luminance at 1000 cd/m2(T95@1000 cd/m2).We anticipate that our results provide insights into resolving the issues at the QDHTL interface and demonstrate the importance of carrier management driven by QD nanostructure tailoring for the commercialization of QLEDs. 展开更多
关键词 large-sized quantum dots shell-driven carrier engineering band bending ultra-stable operation lifetime
原文传递
3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode 被引量:7
8
作者 Ben Liu Danni Lei +8 位作者 Jin Wang Qingfei Zhang Yinggan Zhang Wei He Hongfei Zheng Baisheng Sa Qingshui Xie Dong-Liang Peng Baihua Qu 《Nano Research》 SCIE EI CAS CSCD 2020年第8期2136-2142,共7页
Sodium metal batteries are arousing extensive interest owing to their high energy density,low cost and wide resource.However,the practical development of sodium metal batteries is inherently plagued by the severe volu... Sodium metal batteries are arousing extensive interest owing to their high energy density,low cost and wide resource.However,the practical development of sodium metal batteries is inherently plagued by the severe volume expansion and the dendrite growth of sodium metal anode during long cycles under high current density.Herein,a simple electrospinning method is applied to construct the uniformly nitrogen-doped porous carbon fiber skeleton and used as three-dimensional(3D)current collector for sodium metal anode,which has high specific surface area(1,098 m^2/g)and strong binding to sodium metal.As a result,nitrogen-doped carbon fiber current collector shows a low sodium deposition overpotential and a highly stable cyclability for 3,500 h with a high coulombic effciency of 99.9%at 2 mA/cm^2 and 2 mAh/cm^2.Moreover,the full cells using carbon coated sodium vanadium phosphate as cathode and sodium pre-plated nitrogen-doped carbon fiber skeleton as hybrid anode can stably cycle for 300 times.These results illustrate an effective strategy to construct a 3D uniformly nitrogen-doped carbon skeleton based sodium metal hybrid anode without the formation of dendrites,which provide a prospect for further development and research of high performance sodium metal batteries. 展开更多
关键词 sodium metal anode porous carbon skeleton NITROGEN-DOPING sodium affinity ultra-stable cyclability
原文传递
Optically actuating ultra-stable radicals in a large π-conjugated ligand constructed photochromic complex 被引量:3
9
作者 Ji-Xiang Hu Xiao-Fan Jiang +5 位作者 Yu-Juan Ma Xue-Ru Liu Bang-Di Ge A-Ni Wang Qi Wei Guo-Ming Wang 《Science China Chemistry》 SCIE EI CAS CSCD 2021年第3期432-438,共7页
Producing ultra-stabilized radicals via light irradiation has raised considerable concern but remains a tremendous challenge in functional materials. Herein, optically actuating ultra-stable radicals are discovered in... Producing ultra-stabilized radicals via light irradiation has raised considerable concern but remains a tremendous challenge in functional materials. Herein, optically actuating ultra-stable radicals are discovered in a sterically encumbered and large π-conjugated tri(4-pyridyl)-1,3,5-triazine(TPT) ligands constructed photochromic compound Cu_(3)(H-HEDP)_(2)TPT_(2)·2H_(2)O(QDU-12;HEDP=hydroxyethylidene diphosphonate). The photogeneration of TPT· radicals is the photoactive behavior of electron transfer from HEDP motifs to TPT units. The ultra-long-lived radicals are contributed from strong interchain π-π interactions between the large π-conjugated TPT components, with the radical lifetime maintained for about 18 months under ambient conditions. Moreover, the antiferromagnetic couplings between TPT· radicals and Cu^(2+)ions plummeted the demagnetization to 35% of its original state after light irradiation, showing the largest room temperature photodemagnetization in the current radicalbased photochromic materials. 展开更多
关键词 electron transfer gigantic photodemagnetization π-conjugated ligands PHOTOCHROMIC ultra-stable radicals
原文传递
Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion 被引量:1
10
作者 Roshan M.Bhattarai Kisan Chhetri +5 位作者 Nghia Le Debendra Acharya Shirjana Saud Mai Cao Hoang Phuong Lan Nguyen Sang Jae Kim Young Sun Mok 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期72-93,共22页
The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag... The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications. 展开更多
关键词 carbon cloth energy conversion energy storage FLEXIBLE metal embedding ultra-stable
下载PDF
Highly Thermally Conductive and Structurally Ultra‑Stable Graphitic Films with Seamless Heterointerfaces for Extreme Thermal Management
11
作者 Peijuan Zhang Yuanyuan Hao +17 位作者 Hang Shi Jiahao Lu Yingjun Liu Xin Ming Ya Wang Wenzhang Fang Yuxing Xia Yance Chen Peng Li Ziqiu Wang Qingyun Su Weidong Lv Ji Zhou Ying Zhang Haiwen Lai Weiwei Gao Zhen Xu Chao Gao 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期383-397,共15页
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern... Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics. 展开更多
关键词 Highly thermally conductive Structurally ultra-stable Graphitic film Extreme thermal management Liquid nitrogen bubbling
下载PDF
Development and Catalytic Cracking Performance of Ultrastable Y Zeolite Rich in Secondary Pores
12
作者 Li Jiaxing Wang Shengji +3 位作者 Sha Hao Wang Juan Zhou Lingping Wang Lixia 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期13-21,共9页
A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first t... A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first time in the world. The porestructure characteristics of the NSZ zeolite prepared for industrial use were analyzed and characterized using BET. The resultsindicate a significant increase in the secondary pore volume of NSZ zeolite compared to the existing ultra-stable zeolite HSZ-5, which is produced through a conventional gas-phase method. The average secondary pore volume to total pore volume ratioin NSZ zeolite was found to be 58.96% higher. The catalytic cracking performance of NSZ zeolite was evaluated. The resultsshowed that the NSC-LTA catalyst, with NSZ as the active component, outperformed the HSC-LTA catalyst with HSZ-5 zeolitein terms of obtaining more high-value products (gasoline and liquefied petroleum gas) during the hydrogenated light cycle oilprocessing. Additionally, the NSC-LTA catalyst showed a significant improvement in coke selectivity. 展开更多
关键词 GAS-PHASE ultra-stable ZEOLITE CATALYST catalytic cracking
下载PDF
Study of optical clocks based on ultracold ^171Yb atoms 被引量:3
13
作者 Di Ai Hao Qiao +8 位作者 Shuang Zhang Li-Meng Luo Chang-Yue Sun Sheng Zhang Cheng-Quan Peng Qi-Chao Qi Tao-Yun Jin Min Zhou Xin-Ye Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第9期79-83,共5页
The optical atomic clocks have the potential to transform global timekeeping,relying on the state-of-the-art accuracy and stability,and greatly improve the measurement precision for a wide range of scientific and tech... The optical atomic clocks have the potential to transform global timekeeping,relying on the state-of-the-art accuracy and stability,and greatly improve the measurement precision for a wide range of scientific and technological applications.Herein we report on the development of the optical clock based on 171Yb atoms confined in an optical lattice.A minimum width of 1.92-Hz Rabi spectra has been obtained with a new 578-nm clock interrogation laser.The in-loop fractional instability of the 171Yb clock reaches 9.1×10-18 after an averaging over a time of 2.0×104 s.By synchronous comparison between two clocks,we demonstrate that our 171Yb optical lattice clock achieves a fractional instability of 4.60×10-16/√τ. 展开更多
关键词 cold ytterbium atoms optical clocks ultra-stable clock lasers clock-transition spectra instability and uncertainty
下载PDF
Photonic generation of RF and microwave signal with relative frequency instability of 10^(-15) 被引量:3
14
作者 Lu-Lu Yan Wen-Yu Zhao +8 位作者 Yan-Yan Zhang Zhao-Yang Tai Pan Zhang Bing-Jie Rao Kai Ning Xiao-Fei Zhang Wen-Ge Guo Shou-Gang Zhang Hai-Feng Jiang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期197-200,共4页
We demonstrate the ultra-stable frequency sources aiming to improve the short-time instability of primary frequency standards.These sources are realized by using photonic generation approach,and composed of ultra-stab... We demonstrate the ultra-stable frequency sources aiming to improve the short-time instability of primary frequency standards.These sources are realized by using photonic generation approach,and composed of ultra-stable lasers,optical-frequency-combs,optical signal detecting parts,and synthesizers.Preliminary evaluation shows that the sources produce fixed-frequency at 9.54(/9.63)GHz,10 MHz,and tunable-frequency around 9.192 GHz with relative frequency instability of 10^(-15) for short terms. 展开更多
关键词 ultra-stable laser optical frequency comb photonic microwave generation
下载PDF
Progress on the use of satellite technology for gravity exploration
15
作者 Ding Yanwei Ma Li +14 位作者 Xu Zhiming Li Ming Huo Hongqing Tan Shuping Gou Xingyu Wang Xudong Yang Fuquan Mao Wei Liu Yingna Zhong Xingwang Xi Dongxue Hu Lingyun Huang Lin Li Songming Zhang Xiaomin 《Geodesy and Geodynamics》 2015年第4期299-306,共8页
In this paper, the technological progress on Chinese gravity exploration satellites is presented. Novel features such as ultra-stable structure, high accurate thermal control, drag-free and attitude control, micro-thr... In this paper, the technological progress on Chinese gravity exploration satellites is presented. Novel features such as ultra-stable structure, high accurate thermal control, drag-free and attitude control, micro-thrusters, aerodynamic configuration, the ability to perform micro-vibration analyses, microwave ranging system and mass center trimmer are described. 展开更多
关键词 ultra-stable structure Precision thermal control Drag-free Micro-thruster K-band ranging Aerodynamics Micro-vibration Gravity satellite
下载PDF
Niobium Tungsten Oxide in a Green Water‑in‑Salt Electrolyte Enables Ultra‑Stable Aqueous Lithium‑Ion Capacitors 被引量:5
16
作者 Shengyang Dong Yi Wang +2 位作者 Chenglong Chen Laifa Shen Xiaogang Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期106-116,共11页
Aqueous hybrid supercapacitors are attracting increasing attention due to their potential low cost,high safety and eco-friendliness.However,the narrow operating potential window of aqueous electrolyte and the lack of ... Aqueous hybrid supercapacitors are attracting increasing attention due to their potential low cost,high safety and eco-friendliness.However,the narrow operating potential window of aqueous electrolyte and the lack of suitable negative electrode materials seriously hinder its future applications.Here,we explore high concentrated lithium acetate with high ionic conductivity of 65.5 mS cm−1 as a green“water-in-salt”electrolyte,providing wide voltage window up to 2.8 V.It facilitates the reversible function of niobium tungsten oxide,Nb18W16O93,that otherwise only operations in organic electrolytes previously.The Nb18W16O93 with lithium-ion intercalation pseudocapacitive behavior exhibits excellent rate performance,high areal capacity,and ultra-long cycling stability.An aqueous lithium-ion hybrid capacitor is developed by using Nb18W16O93 as negative electrode combined with graphene as positive electrode in lithium acetate-based“water-in-salt”electrolyte,delivering a high energy density of 41.9 W kg−1,high power density of 20,000 W kg−1 and unexceptionable stability of 50,000 cycles. 展开更多
关键词 Aqueous hybrid capacitors Water-in-salt electrolyte Niobium tungsten oxide ultra-stability High power density
下载PDF
Water‑Dispersible CsPbBr_(3) Perovskite Nanocrystals with Ultra‑Stability and its Application in Electrochemical CO_(2) Reduction
17
作者 Keqiang Chen Kun Qi +8 位作者 Tong Zhou Tingqiang Yang Yupeng Zhang Zhinan Guo Chang‑Keun Lim Jiayong Zhang Igor Zutic Han Zhang Paras N.Prasad 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第11期190-202,共13页
Thanks to the excellent optoelectronic properties,lead halide perovskites(LHPs)have been widely employed in highperformance optoelectronic devices such as solar cells and lightemitting diodes.However,overcoming their ... Thanks to the excellent optoelectronic properties,lead halide perovskites(LHPs)have been widely employed in highperformance optoelectronic devices such as solar cells and lightemitting diodes.However,overcoming their poor stability against water has been one of the biggest challenges for most applications.Herein,we report a novel hot-injection method in a Pb-poor environment combined with a well-designed purification process to synthesize water-dispersible CsPbBr_(3) nanocrystals(NCs).The as-prepared NCs sustain their superior photoluminescence(91%quantum yield in water)for more than 200 days in an aqueous environment,which is attributed to a passivation effect induced by excess CsBr salts.Thanks to the ultra-stability of these LHP NCs,for the first time,we report a new application of LHP NCs,in which they are applied to electrocatalysis of CO_(2) reduction reaction.Noticeably,they show significant electrocatalytic activity(faradaic yield:32%for CH4,40%for CO)and operation stability(>350 h). 展开更多
关键词 CsPbBr_(3)nanocrystals Water-dispersible ultra-stability Electrochemical CO_(2)reduction
下载PDF
Optical frequency transfer link with remote site compensation
18
作者 Qi Zang Xiang Zhang +9 位作者 Xue Deng Qian Zhou Dan Wang Yucan Zhang Jing Gao Dongdong Jiao Guanjun Xu Tao Liu Ruifang Dong Shougang Zhang 《Chinese Optics Letters》 SCIE EI CAS CSCD 2024年第9期68-73,共6页
In this paper,we present a remote time-base-free technique for a coherent optical frequency transfer system via fiber.At the remote site,the thermal noise of the optical components is corrected along with the link pha... In this paper,we present a remote time-base-free technique for a coherent optical frequency transfer system via fiber.At the remote site,the thermal noise of the optical components is corrected along with the link phase noise caused by environmental effects.In this system,a 1×2 acousto-optic modulator(AOM)is applied at the remote site,with the first light being used to eliminate the noise of the remote time base and interface with remote users while the zeroth light is used to establish an active noise canceling loop.With this technique,a 10 MHz commercial oscillator,used as a time base at the remote site,does not contribute to the noise of the transferred signal.An experimental system is constructed using a 150 km fiber spool to validate the proposed technique.After compensation,the overlapping Allan deviation of the transfer link is 7.42×10^(-15)at 1 s integration time and scales down to 1.07×10^(-18)at 10,000 s integration time.The uncertainty of the transmitted optical frequency is on the order of a few 10-19.This significantly reduces the time-base requirements and costs for multi-user applications without compromising transfer accuracy.Meanwhile,these results show great potential for transferring ultra-stable optical frequency signals to remote sites,especially for point-to-multi-users. 展开更多
关键词 optical frequency measurement remote site compensation ultra-stable laser fiber network
原文传递
All-fiber-based photonic microwave generation with 10^(-15) frequency instability 被引量:2
19
作者 Yifei Duan Yafeng Huang +8 位作者 Yanli Li Yating Wang Meifeng Ye Ming Li Yinnan Chen Jiaqi Zhou Lingke Wang Liang Liu Tang Li 《Chinese Optics Letters》 SCIE EI CAS CSCD 2022年第2期96-99,共4页
We demonstrate an all-fiber-based photonic microwave generation with 10^(-15) frequency instability.The system consists of an ultra-stable laser by optical fiber delay line,an all-fiber-based"figure-of-nine"... We demonstrate an all-fiber-based photonic microwave generation with 10^(-15) frequency instability.The system consists of an ultra-stable laser by optical fiber delay line,an all-fiber-based"figure-of-nine"optical frequency comb,a high signal-tonoise ratio photonic detection unit,and a microwave frequency synthesizer.The whole optical links are made from optical fiber and optical fiber components,which renders the whole system compactness,reliability,and robustness with respect to environmental influences.Frequency instabilities of 3.5×10^(-15) at 100 s for 6.834 GHz signal and 4.3×10^(-15) at 100 s for9.192 GHz signal were achieved. 展开更多
关键词 ultra-stable laser optical frequency comb photonic microwave generation
原文传递
Oil-polluted water purification via the carbon-nanotubes-doped organohydrogel platform 被引量:1
20
作者 Xuetao Xu Xizi Wan +6 位作者 Haonan Li Yikai Zhang Wen He Shuli Wang Miao Wang Xu Hou Shutao Wang 《Nano Research》 SCIE EI CSCD 2022年第6期5653-5662,共10页
Solar-driven evaporators are promising for tackling freshwater scarcity but still challenged in simultaneously realizing comprehensive performances at one platform for sustainable and efficient application in real-wor... Solar-driven evaporators are promising for tackling freshwater scarcity but still challenged in simultaneously realizing comprehensive performances at one platform for sustainable and efficient application in real-world environments,such as stablefloating,scalability,salt-resistance,efficient vaporization,and anti-oil-fouling property.Herein,we design a hybrid organohydrogel evaporator to achieve the enduring oil contamination repulsion with maintaining accelerated evaporation process,and integrate capacities of ultra-stable floating,hindered salt-crystallization,large-scale fabrication for practical purification of seawater and polluted solutions.The raised water surface surrounding evaporators,induced by low density of organogel-phase,results in oil contamination resistance through the lateral capillary repulsion effect.Meanwhile,the organogel-phase containing photo-thermal carbon-nanotubes with low thermal capacity and conduction can form locally confined hot dots under solar irradiation and reduce heat dissipation on heating excessive water.Therefore,based on this approach,accelerated long-term practical purification of oilcontaminated solutions without any extra disposal is realized.Considering other properties of ultra-stable floating,large-scale fabrication,and anti-salt crystallization,these innovative organohydrogel evaporators open pathways for purifying oil-slickpolluted water via interfacial evaporation and are anticipated accelerating industrialization of efficient and sustainable solar-driven water purification. 展开更多
关键词 solar-driven evaporation organohydrogel anti-oil-fouling thermal management ultra-stable floating
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部