Objective: To investigate damage effects of ultraviolet irradiation on eternal keratinocyte-HaCaT cells and to evaluate photo-protective efficiency of hydroxychloroqine and Traditional Chinese Medicines(epigallocatech...Objective: To investigate damage effects of ultraviolet irradiation on eternal keratinocyte-HaCaT cells and to evaluate photo-protective efficiency of hydroxychloroqine and Traditional Chinese Medicines(epigallocatechingallate[EGCG], baikal skullcap root and szechwan lovge rhizome) on HaCaT cells damaged by middle wave ultraviolet(UVB) irradiation. Methods: Subconfluent HaCaT cells were sham or UVB irradiated and treated with above TCM agents. The damage degree of HaCaT cells was observed by a light microscop. Cell growth was recorded by cell count and cellular activity was detected by MTT method. The secretion amount of IL-6 and TNF-α was measured by ELISA. Results: The irradiation damage of HaCaT cells was depended on the irradiated dosages and cellular activity was reduced by 36%-80%, with a maximum decrease over 90% after 72 h. The intervention of the above drugs may increase the cellular activity by 10%-72%. The photo-protective efficiency was more apparent in EGCG (from 1.19±0.07 to 1.28±0.06, P<0.01) than that in hydroxychloroqine (from 0.43±0.04 to 0.96±0.04, P<0.05). The other two tested drugs also showed photo-protective effect(from 0.44±0.07 to 1.21±0.02, P<0.05). As to cytokine secretion, EGCG could decline the secretion amount of IL-6 and TNF-α apparently. Hydroxychloroqine and baikal skullcap root baikal skullcap root could only reduce the secretion of IL-6. The secretion of IL-6 and TNF-α could not be inhibited by szechwan lovge rhizome. Conclusion: The injury effect of UVB irradiation on cultured keratinocytes is dose-dependent and the tested drugs have photo-protective potency. Inhibition of cytokine secretion may be one of the mechanisms related to reducing the damage effect of UVB irradiation.展开更多
The reductive perturbation method is applied to investigate the dust acoustic soliton in dusty plasmas with streaming ions under ultraviolet irradiation theoretically and numerically.The self-consistent dust charge va...The reductive perturbation method is applied to investigate the dust acoustic soliton in dusty plasmas with streaming ions under ultraviolet irradiation theoretically and numerically.The self-consistent dust charge variation is taken into account.It is shown that the ultraviolet irradiation can significantly lower the magnitude of the dust negative charge,and ion streaming velocity firstly raise the magnitude of the dust negative charge and then lower it.With the growth of(Ultraviolet) UV photo flux or ion streaming velocity,the phase velocity and width of the solitary waves decrease, whereas its amplitude increases.展开更多
A high turnover number was achieved in the photocatalytic carbonylation of C - H bonds of cyclohexane catalyzed by Co (acac)2 under ambient conditions (1 atm,25℃) to give mainly cyclohexanecarboxaldehyde.
Hydrogel has been widely used in the research of bionic articular cartilage due to their similarity in structure and functional properties to natural articular cartilage.In this research,polyvinyl alcohol and betaine ...Hydrogel has been widely used in the research of bionic articular cartilage due to their similarity in structure and functional properties to natural articular cartilage.In this research,polyvinyl alcohol and betaine monomer were used as raw materials to prepare a high-strength double-network hydrogel by a combination of ultraviolet(UV)irradiation and freeze–thaw methods.The structure of samples was characterized by Fourier transform infrared spectroscopy and X-ray diff raction,and the morphology of the samples was characterized by scanning electron microscope and three-dimensional white light interferometer.In addition,we also studied the swelling ratio,water content,mechanical properties and tribological properties of the samples.We found that the addition of betaine monomer and the UV irradiation time had a positive eff ect on the mechanical properties and tribological properties of the samples.展开更多
A successful approach to assemble Au core Pd shell (Au@Pd) nanoparticles on the surface of multi-walled carbon nanotubes functionalized by methylene blue (MB) (Au@Pd/fuv-MWCNTs) was reported. In this method, MWC...A successful approach to assemble Au core Pd shell (Au@Pd) nanoparticles on the surface of multi-walled carbon nanotubes functionalized by methylene blue (MB) (Au@Pd/fuv-MWCNTs) was reported. In this method, MWCNTs were functionalized under ultraviolet irradiation. UV-Vis analysis and high-angle annular dark-field trans- mission electron microscope (HAADF-TEM) image prove that core-shell structure of Au@Pd nanoparticles forms. TEM results indicate that Au@Pd nanoparticles ( - 5.2 nm) are well-dispersed on the surface of fuv-MWCNTs. X-ray photoelectron spectroscopy (XPS) reveals that ultraviolet irradiation can promote the interaction between Au@Pd nanoparticles and the functional groups on the surface of MWCNTs. Cyclic voltammograms (CV), chronoampero- grams (CA), and electrochemical impedance spectroscopy (EIS) results demonstrate that the Au@Pd/fuv-MWCNTs catalysts show excellent electrocatalytic performance for methanol oxidation in alkaline media. The catalytic activity of the Au@Pd/fuv-MWCNTs is ~ 2 times higher than that of the commercial Pd/C catalysts. This is mostly attributed to that ultraviolet irradiation can make the moieties of MB provide a uniform surface with active and anchoring sites, and improves the functional effect of MB on the surface of MWCNTs. Especially, ultraviolet irradiation modifies electronic structure of Pd and is beneficial for the enhance- ment of catalytic activity.展开更多
Antibiotic resistance is a serious public health risk that may spread via potable and reclaimed water. Effective disinfection is important for inactivation of antibiotic-resistant bacteria and disruption of antibiotic...Antibiotic resistance is a serious public health risk that may spread via potable and reclaimed water. Effective disinfection is important for inactivation of antibiotic-resistant bacteria and disruption of antibiotic resistance genes. Ampicillin is a widely prescribed antibiotic but its effectiveness is increasingly undermined by resistance. In this study, changes in ampicillin resistance for Escherichia coli (E. coli) CGMCC 1.1595 were analyzed after exposure to different doses of ultraviolet (UV) or chlorine, and damage incurred by the plasmid encoding ampicillin resistance gene blaTEM-1 was assessed. We reported a greater stability in ampicillinresistant E. coli CGMCC 1.1595 after UV irradiation or chlorination when compared with previously published data for other E. coli strains. UV irradiation and chlorination led to a shift in the mortality frequency distributions of ampicillin-resistant E. coli when subse-quently exposed to ampicillin. The ampicillin hemiinhibitory concentration (IC5o) without disinfection was 3800mg·L^-1, and an increment was observed after UV irradiation or chlorination. The IC50 of ampicillin-resistant E. coli was 1.5-fold higher at a UV dose of 40 mJ·cm^-2, and was 1.4-fold higher when exposed to 2.0 mg·L^-1 chlorine. These results indicate that UV irradiation and chlorination can potentially increase the risk of selection for E. coli strains with high ampicillin resistance. There was no evident damage to blaTEM-1 after 1-10 mg Cl2· L^-1 chlorination, while a UV dose of 80 mJ·cm^-2 yielded a damage ratio for blaTEM-1 of approximately 1.2-log.Therefore, high UV doses are required for effective disruption of antibiotic resistance genes in bacteria.展开更多
Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have bee...Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have been extensively utilized to improved high-temperature capacitive performance of dielectric polymers,the presence of thermodynamically incompatible organic and inorganic components may lead to concern about the long-term stability and also complicate film processing.Herein,zero-dimensional polymer dots with high electron affinity are introduced into photoactive allyl-containing poly(aryl ether sulfone)to form the all-organic polymer composites for hightemperature capacitive energy storage.Upon ultraviolet irradiation,the crosslinked polymer composites with polymer dots are efficient in suppressing electrical conduction at high electric fields and elevated temperatures,which significantly reduces the high-field energy loss of the composites at 200℃.Accordingly,the ultraviolet-irradiated composite film exhibits a discharged energy density of 4.2 J cm^(−3)at 200℃.Along with outstanding cyclic stability of capacitive performance at 200℃,this work provides a promising class of dielectric materials for robust high-performance all-organic dielectric nanocomposites.展开更多
Objective:To study the therapy effect of ultraviolet blood irradiation and oxygenation (UBIO) on blood AChe activity and lung injury due to acute soman intoxication in rabbits. Methods:Forty rabbits were randomly di...Objective:To study the therapy effect of ultraviolet blood irradiation and oxygenation (UBIO) on blood AChe activity and lung injury due to acute soman intoxication in rabbits. Methods:Forty rabbits were randomly divided into 4 groups: normal control group, intoxication group, routine therapy group and UBIO therapy group. Blood AChe activity and artery blood gas were analyzed 2 h after intoxication. ACP and AKP activities in BALF were determined respectively. Results:Blood AChe activity in intoxication group was lower than that in normal control group (P<0.05). BALF ACP and AKP activities in intoxication group were higher than that in normal control group. Blood AChe activities in UBIO therapy group increased and were higher than that in intoxication and routine therapy groups. Compared with intoxication group, BALF ACP and AKP activities were decreased (P<0.05) in UBIO therapy group, while artery blood pH, PaO2 and SaO2 increased (P<0.05). Conclusion: UBIO therapy can elevate blood AChe activity and alleviate lung injury induced by soman intoxication. So it may be a new way to treat acute soman intoxication.展开更多
BACKGROUND: Ultraviolet blood irradiation and oxygenation (UBIO) has obtained better clinical effect in treating acute cerebral infarction, but the mechanism underlying this effect remains unclear. OBJECTIVE: To o...BACKGROUND: Ultraviolet blood irradiation and oxygenation (UBIO) has obtained better clinical effect in treating acute cerebral infarction, but the mechanism underlying this effect remains unclear. OBJECTIVE: To observe the effect of UBIO on the nerve function and activities of K^+-Na^+-ATPase and Ca2^+-Mg2^+-ATPase activities on the red blood cell (RBC) membrane of patients with acute cerebral infarction. DESIGN: A randomized and controlled study.SETTING: Department of Neurology, Xiangfan Central Hospital.PARTICIPANTS: From January 2000 to December 2001, excluding those above 70 years old, 58 cases of 700 patients with acute cerebral infarction admitted in the Department of Neurology, Xiangfan Central Hospital, were recruited and divided into two groups according to the random number table: UBIO treated group (n=28), including 17 males and 11 females, aged 40-68 years; and control group (n=30), including 20 males and 10 females, aged 44-69 years. All the patients agreed to participate in the therapeutic program and detected items. The general informations were comparable without obvious differences between the two groups (P 〉 0.05).METHODS: ① The patients in both groups received routine treatments, besides, those in the UBIO treated group were given UBIO treatment by using the XL-200 type therapeutic apparatus produced in Shijiazhuang, whose ultraviolet wave was set at 253.7 nm with the energy density of 0.568 J/m^2 per second, UBIO treatment started from the second day after admission, once every other day, with a single course consisting of 5-7 treatments. ② In the UBIO treated group, the venous blood was sampled before and after the first, third and the completion of the treatment course respectively, the venous blood was taken at each corresponding time point in the control group. After centrifugation of the blood at 10 000 rounds per minute, the RBC membrane was separated and then the activities of K^+-Na^+-ATPase and Ca2^+-Mg2^+-ATPase were detected by means of phosphorus determination.③ The nerve function was scored before and after treatment in both groups with European stroke scale, which included 13 items, the total score was 0-100 points, the higher the score, the better the nerve function. MAIN OUTCOME MEASURES :①Score of European stroke scale before and after treatment in both groups.② Comparison of the activities of K^+-Na^+-ATPase and Ca2^+-Mg2^+-ATPase on RBC membrane between the two groups before treatment and after the first, third and the completion of the treatment. RESULTS: All the 58 patients with cerebral infarction were involved in the analysis of results.① The score of European stroke scale had no obvious difference between the two groups [(49.31±11.48), (50.58±12.63), P 〉 0.05], and it was obviously higher in the UBIO treated group than in the control group after treatment [84.66±13.75), (77.05±11.17), P 〈 0.05].②The activity of K^+-Na^+-ATPase on RBC membrane in the UBIO treated group was significantly increased after the first and third treatment as compared with before treatment [(31.56±19.25), (27.64±15.83), (17.67±13.83), P 〈 0.01], it was still higher after the completion of the treatment than before treatment without obvious difference [(20.86±14.53), P 〉 0.05]. After the first and third treatment, it was obviously higher in the UBIO treated group than in the control group [19.31±11.88), (17.44±10.42), P 〈 0.01]. ③ In the UBIO treated group, Ca2^+-Mg2^+-ATPase activity on RBC membrane significantly increased after the first treatment and remained higher than the pre-treatment level throughout the treatment [(27.49±14.72), (17.41±4.82), P 〈 0.01]. The activity of Ca2^+-Mg2^+-ATPase on RBC membrane was markedly higher in the UBIO treated group than in the control group after after the first, third and the completion of treatment respectively [(24.83±12.88), (17.70±5.69); (28.08±13.44), (16.32±5.29); (17.42±6.04), P〈 0.05-0.01]. CONCLUSION: The effect of UBIO treatment against acute cerebral infarction may be mediated by the increased K^+-Na^+ ATPase and Ca2^+-Mg2^+-ATPase activities on RBC membrane, which enhances the RBC transformation ability so as to lower RBC aggregation and correct high blood viscosity.展开更多
Objective: To investigate the effect of ultraviolet blood irradiation and oxygenation (UBIO) on the metabolism of oxygen free radicals in rabbits with acute soman intoxication. Methods: One hundred rabbits were random...Objective: To investigate the effect of ultraviolet blood irradiation and oxygenation (UBIO) on the metabolism of oxygen free radicals in rabbits with acute soman intoxication. Methods: One hundred rabbits were randomly divided into 5 groups: normal control group, intoxication group, routine therapy group. UBIO therapy group and combined therapy group. After 14 d, the concentration of malondiadehyde(MDA) and activity of superoxide dismutase(SOD), glutathionperoxidase(GSH-Px), catalase (CAT) and total antioxidative capacity (T-AOC) in serum were determined respectively. Results: Compared with the normal control group, the concentration of MDA and activity of CAT in the intoxication group were significantly higher (P < 0. 05). but SOD. GSH-Px activity and T-AOC were significantly lower (P<0. 05). After UBIO or combined therapy, serum MDA level was significantly lower in comparison with intoxication group (P<0. 05). but the activity of SOD. GSH-Px, CAT and T-AOC were higher than intoxication group(P<0. 05). Conclusion: There is an obvious oxygen free radical injury in rabbits with a-cute soman intoxication. UBIO can improve the antioxidation ability of rabbits and may be applied to treat acute soman intoxication as adjunctive therapy.展开更多
AIM:To investigate the roles of the ribonucleotide reductase M2 (RRM2) subunit in colorectal cancer (CRC) and ultraviolet (UV)-induced DNA damage repair. METHODS:Immunohistochemical staining of tissue microarray was p...AIM:To investigate the roles of the ribonucleotide reductase M2 (RRM2) subunit in colorectal cancer (CRC) and ultraviolet (UV)-induced DNA damage repair. METHODS:Immunohistochemical staining of tissue microarray was performed to detect the expression of RRM2. Seven CRC cell lines were cultured and three human colon cancer cell lines, i.e., HCT116, SW480 and SW620, were used. Reverse transcription polymerase chain reaction and Western blotting were performed to determine the mRNA and protein expression levels of RRM2, respectively. Cell proliferation assay, cell cycle analysis were performed. Cell apoptosis was evaluated by double staining with fluorescein isothiocyanate-conjugated Annexin Ⅴ and propidium iodide (PI) usingAnnexin Ⅴ/PI apoptosis kit. The motility and invasion of CRC cells were assessed by the Transwell chamber assay. Cells were irradiated with a 254 nm UV-C lamp to detect the UV sensitivity after RRM2 depletion. RESULTS:Immunohistochemical staining revealed elevated RRM2 levels in CRC tissues. RRM2 overexpression was positively correlated with invasion depth (P < 0.05), poorly differentiated type (P = 0.0051), and tumor node metastasis stage (P = 0.0015). The expression of RRM2 in HCT116 cells was downregulated after transfection, and HCT116 cell proliferation was obviously suppressed compared to control groups (P < 0.05). In the invasion test, the number of cells that passed through the chambers in the RRM2-siRNA group was 81 ± 3, which was lower than that in the negative control (289 ± 7) and blank control groups (301 ± 7.2). These differences were statistically significant (P < 0.01). Our data suggest that RRM2 overexpression may be associated with CRC progression. RRM2 silencing by siRNA may inhibit the hyperplasia and invasiveness of CRC cells, suggesting that RRM2 may play an important role in the infiltration and metastasis of CRC, which is a potential therapeutic strategy in CRC. In addition, RRM2 depletion increased UV sensitivity. CONCLUSION:These findings suggest that RRM2 may be a facilitating factor in colorectal tumorigenesis and UV-induced DNA damage repair.展开更多
High photoactive TiO2 catalyst was prepared using the sol-gel method through UV irradiation during the formation stage of nuclei. The surface morphology and microstructure of the prepared catalyst were characterized u...High photoactive TiO2 catalyst was prepared using the sol-gel method through UV irradiation during the formation stage of nuclei. The surface morphology and microstructure of the prepared catalyst were characterized using scanning electron microscopy (SEM), X-ray diffraction patterns (XRD), and Fourier transform infrared spectroscopy (FF-IR). The photoactivity was evaluated by the degradation of methylene blue. The results show that the photocatalysis of the prepared catalyst is higher than that of conventional heat-treated particles. The higher photoactivity is a combined result of favorable microstructure, appropriate hydroxyl groups, and active sites of Ti^3+ ions on the surface of TiO2. It is concluded that the ultraviolet irradiation-induced sol-gel method is an effective method to enhance the photocatalysis of TiO2.展开更多
The purpose of the present study was to compare the effects of different doses of ultraviolet radiation A1 (UVA1) on human fibroblast proliferation and collagen level in a mouse model of scleroderma, so as to identi...The purpose of the present study was to compare the effects of different doses of ultraviolet radiation A1 (UVA1) on human fibroblast proliferation and collagen level in a mouse model of scleroderma, so as to identify appropriate irradiation doses for clinical treatment of scleroderma. Monolayer from human fibroblasts was cultured in vitro, and a mouse model of scleroderma was established by subcutaneous injection of 100 μL of 400 μg/mL bleomycin into the back of BALB/c mice for 4 weeks. The mouse models and human fibroblasts were divided into UVA1- exposed (100, 60 and 20 J/cm2) and UVA-unexposed groups. At 0, 24 and 48 h after exposure, cell proliferation and levels of hydroxyproline and collagen were detected. UVA1 irradiation was performed 3 times weekly for 10 weeks, and the pathological changes of skin tissues, skin thickness and collagen level were observed after phototherapy. Cell proliferation and the levels of hydroxyproline and collagen were inhibited after phototherapy, and there was a significant difference between the UVAl-exposed cells and UVAl-unexposed cells (P 〈 0.001). In addition, UVA1 phototherapy improved dermal sclerosis and softened the skin, and there were significant differences between the high-dose UVA1 group and the model group, and the negative group (P 〈 0.05). It is concluded that UVA1 radiation can reduce cell proliferation, and decrease hydroxyproline and collagen levels in a dose-dependent manner in vitro. High-dose UVA1 phototherapy has marked therapeutic effect on scleroderma in the mouse model. Decreased collagen level may be related to the reduced number and activity of cells, as well as inhibition of collagen synthesis.展开更多
Nano-silver/polyvinylpyrrolidone(PVP)composite materials were successfully synthesized bi-insitu from silver nitrate solution with N-vinyl pyrrolidone (NVP) monomer,containing neither initiator nor reductant, in ultra...Nano-silver/polyvinylpyrrolidone(PVP)composite materials were successfully synthesized bi-insitu from silver nitrate solution with N-vinyl pyrrolidone (NVP) monomer,containing neither initiator nor reductant, in ultraviolet irradiation conditions.The resultant Ag/PVP nanocomposites were characterized by infrared spectroscopy (FT-IR), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD).TEM show that nano silver particles are homogeneously dispersed in PVP polymer matrix, and the mean size of spherical silver particles is about 5 nm.The spectroscopy of XPS and FTIR showed that there is an interaction between nano silver not only with carbonyl oxygen but also with the nitrogen group within the NVP molecule through the p-π conjugation effect in the nano-silver/PVP composites system.展开更多
UV irradiation hydrogen peroxide (H202) system is used as an effective, easy and low-cost combined depolymerization technique to produce oligosaccharides from chitosan. UV-Vis spectroscopic studies explained that wi...UV irradiation hydrogen peroxide (H202) system is used as an effective, easy and low-cost combined depolymerization technique to produce oligosaccharides from chitosan. UV-Vis spectroscopic studies explained that with increasing treatment time, the absorption of the depolymerized chitosan solution has increased, indicating the increase in the carbonyl and amino groups in their structure. Fourier transform infrared spectroscopy and nuclear magnetic resonance (1H NMR) analysis showed that the 1,4-β-D-glucoside linkages of chitosan are degraded without important changes in chemical structure of decomposed samples. X-ray diffraction patterns verified the polymerization of chitosan to produce oligomers, changing in structure from crystalline to amorphous. Viscosity-average molecular weight measurements of fragmented chitosan samples and MarkHouwink equation are used to demonstrate the efficiency of this depolymerization method. Finally, the obtained results ascertained that this combined method could produce water soluble chitosan with significant efficiency and no essential change in its chemical structure.UV irradiation hydrogen peroxide (H202) system is used as an effective, easy and low-cost combined depolymerization technique to produce oligosaccharides from chitosan. UV-Vis spectroscopic studies explained that with increasing treatment time, the absorption of the depolymerized chitosan solution has increased, indicating the increase in the carbonyl and amino groups in their structure. Fourier transform infrared spectroscopy and nuclear magnetic resonance (1H NMR) analysis showed that the 1,4-β-D-glucoside linkages of chitosan are degraded without important changes in chemical structure of decomposed samples. X-ray diffraction patterns verified the polymerization of chitosan to produce oligomers, changing in structure from crystalline to amorphous. Viscosity-average molecular weight measurements of fragmented chitosan samples and MarkHouwink equation are used to demonstrate the efficiency of this depolymerization method. Finally, the obtained results ascertained that this combined method could produce water soluble chitosan with significant efficiency and no essential change in its chemical structure.展开更多
Bormate (BrO3^-) is a carcinogenic chemical produced in ozonation or chlorination of bromide-containing water. Although its formation in seawater with or without sunlight has been previously investigated, the format...Bormate (BrO3^-) is a carcinogenic chemical produced in ozonation or chlorination of bromide-containing water. Although its formation in seawater with or without sunlight has been previously investigated, the formation of bromate in dilute solutions, particularly raw water for water treatment plant, is unknown. In this article, the results of bench scale tests to measure the formation rates of bromate formation in dilute solutions, including de-ionized water and raw water from Yangtze River, were presented in dark chlorination and ultraviolet (UV)/chlorination processes. And the effects of initial pH, initial concentration of NaOCl, and UV light intensity on bromate formation in UV/chlorination of the diluted solutions were investigated. Detectable bromate was formed in dark chlorination of the two water samples with a relatively slow production rate. Under routine disinfecting conditions, the amount of formed bromate is not likely to exceed the national standards (10 μg/L). UV irradiation enhanced the decay of free chlorine, and, simultaneously, 6.6%-32% of Br^- was oxidized to BrO3^-. And the formation of bromate exhibited three stages: rapid stage, slow stage and plateau. Under the experimental conditions (pH = 4.41-11.07, CCl2= 1.23-4.50 mg/L), low pH and high chlorine concentration favored the generation of bromate. High light intensity promoted the production rate of bromate, but decreased its total generation amount due to acceleration of chlorine decomposition.展开更多
The new version (version 8) TOMS (Total Ozone Mapping Spectrometer) ozone and noontime erythemal ultraviolet (UV) irradiance products are used to analyze their long-term changes in this paper. It is shown that t...The new version (version 8) TOMS (Total Ozone Mapping Spectrometer) ozone and noontime erythemal ultraviolet (UV) irradiance products are used to analyze their long-term changes in this paper. It is shown that the summer UV irradiance has increased significantly from Central China to the northern and western parts of China, especially in Central China near Chongqing, Shaanxi, and Hubei provinces; whereas the UV irradiance has decreased significantly in the southern part of China, especially in South China. In July, when UV irradiance is at its maximum and hence when the most serious potential damage may happen, the results indicate an increase in the UV irradiance in Central China and the Yangtze River- Huaihe River valley and a decrease in South China and the eastern part of North China. At the same time, the total ozone amount is lower over China in summer with the most serious depletion occurring in Northeast China and Northwest China. It is found that the thinning of the ozone layer is not the main reason for the UV irradiance trend in the eastern and southern parts of China, but that the rainfall and the related cloud variations may dominate the long-term changes of the UV irradiance there. In addition, the future UV irradiance trend in China is also estimated.展开更多
Commercial biaxially oriented polypropylene(BOPP)film capacitors have been widely applied in the fields of electrical and electronic engineering.However,due to the sharp increase in electrical conduction loss as the t...Commercial biaxially oriented polypropylene(BOPP)film capacitors have been widely applied in the fields of electrical and electronic engineering.However,due to the sharp increase in electrical conduction loss as the temperature rises,the energy storage performance of BOPP films seriously degrades at elevated temperatures.In this study,the grafting modification method is facile and suitable for large-scale industrial manufacturing and has been proposed to increase the high-temperature energy storage performance of com-mercial BOPP films for the first time.Specifically,acrylic acid(AA)as a polar organic molecular is used to graft onto the surface of commercial BOPP films by using ultraviolet irradiation(abbreviated as BOPP-AA).The results demonstrate that the AA grafting modification not only slightly increases the dielectric constant,but also significantly reduces the leakage current density at high-temperature,greatly improving the high-temperature energy storage performance.The modified BOPP-AA films display a discharged energy density of 1.32 J/cm3 with an efficiency of>90%at 370 kV/mm and 125℃℃,which is 474%higher than that of the pristine BOPP films.This work manifests that utilizing ultraviolet grafting modification is a very efficient way to improve the high-temperature energy storage performance of commercial BOPP films as well as provides a hitherto unexplored opportunity for large-scalable production applications.展开更多
The hydrophobically modi fied ceramic membranes have great potential for energy-ef ficient membrane distillation.In this work,flat-sheet ceramic membranes with a superhydrophobic surface were fabricated by grafting 1H...The hydrophobically modi fied ceramic membranes have great potential for energy-ef ficient membrane distillation.In this work,flat-sheet ceramic membranes with a superhydrophobic surface were fabricated by grafting 1H,1H,2H,2H-per fluorooctyltrichlorosilane or 1H,1H,2H,2H-per fluorodecyltriethoxysilane and followed by ultraviolet irradiation.The surface water contact angle was improved from 46° of original ceramic membrane to 159°,which exhibited a stable and excellent superhydrophobic effect.The modi fied membranes showed a high flux of 27.28 kg·m^(-2)·h^(-1) and simultaneously maintained an excellent retention rate of 99.99%,when used in vacuum membrane distillation process for treatment of a 1 wt% NaCl(75 °C) aqueous solution.These results suggested that superhydrophobic modi fication of ceramic surface is a facile and cost-effective way to achieve higher membrane distillation performance.The superhydrophobically-modi fied ceramic membrane with an excellent desalination capacity would show considerable potential in practical membrane distillation utilizations.展开更多
文摘Objective: To investigate damage effects of ultraviolet irradiation on eternal keratinocyte-HaCaT cells and to evaluate photo-protective efficiency of hydroxychloroqine and Traditional Chinese Medicines(epigallocatechingallate[EGCG], baikal skullcap root and szechwan lovge rhizome) on HaCaT cells damaged by middle wave ultraviolet(UVB) irradiation. Methods: Subconfluent HaCaT cells were sham or UVB irradiated and treated with above TCM agents. The damage degree of HaCaT cells was observed by a light microscop. Cell growth was recorded by cell count and cellular activity was detected by MTT method. The secretion amount of IL-6 and TNF-α was measured by ELISA. Results: The irradiation damage of HaCaT cells was depended on the irradiated dosages and cellular activity was reduced by 36%-80%, with a maximum decrease over 90% after 72 h. The intervention of the above drugs may increase the cellular activity by 10%-72%. The photo-protective efficiency was more apparent in EGCG (from 1.19±0.07 to 1.28±0.06, P<0.01) than that in hydroxychloroqine (from 0.43±0.04 to 0.96±0.04, P<0.05). The other two tested drugs also showed photo-protective effect(from 0.44±0.07 to 1.21±0.02, P<0.05). As to cytokine secretion, EGCG could decline the secretion amount of IL-6 and TNF-α apparently. Hydroxychloroqine and baikal skullcap root baikal skullcap root could only reduce the secretion of IL-6. The secretion of IL-6 and TNF-α could not be inhibited by szechwan lovge rhizome. Conclusion: The injury effect of UVB irradiation on cultured keratinocytes is dose-dependent and the tested drugs have photo-protective potency. Inhibition of cytokine secretion may be one of the mechanisms related to reducing the damage effect of UVB irradiation.
基金Supported by the National Natural Science Fundation of China(Y05033A030)
文摘The reductive perturbation method is applied to investigate the dust acoustic soliton in dusty plasmas with streaming ions under ultraviolet irradiation theoretically and numerically.The self-consistent dust charge variation is taken into account.It is shown that the ultraviolet irradiation can significantly lower the magnitude of the dust negative charge,and ion streaming velocity firstly raise the magnitude of the dust negative charge and then lower it.With the growth of(Ultraviolet) UV photo flux or ion streaming velocity,the phase velocity and width of the solitary waves decrease, whereas its amplitude increases.
文摘A high turnover number was achieved in the photocatalytic carbonylation of C - H bonds of cyclohexane catalyzed by Co (acac)2 under ambient conditions (1 atm,25℃) to give mainly cyclohexanecarboxaldehyde.
基金supported by National Natural Science Foundation of China(Grant No.51975296)Jiangsu Key Laboratory of Advanced Micro/Nano Materials and Technologies.
文摘Hydrogel has been widely used in the research of bionic articular cartilage due to their similarity in structure and functional properties to natural articular cartilage.In this research,polyvinyl alcohol and betaine monomer were used as raw materials to prepare a high-strength double-network hydrogel by a combination of ultraviolet(UV)irradiation and freeze–thaw methods.The structure of samples was characterized by Fourier transform infrared spectroscopy and X-ray diff raction,and the morphology of the samples was characterized by scanning electron microscope and three-dimensional white light interferometer.In addition,we also studied the swelling ratio,water content,mechanical properties and tribological properties of the samples.We found that the addition of betaine monomer and the UV irradiation time had a positive eff ect on the mechanical properties and tribological properties of the samples.
基金financially supported by the National Natural Science Foundation of China (Nos. 51164017, 51374117, and 21363012)
文摘A successful approach to assemble Au core Pd shell (Au@Pd) nanoparticles on the surface of multi-walled carbon nanotubes functionalized by methylene blue (MB) (Au@Pd/fuv-MWCNTs) was reported. In this method, MWCNTs were functionalized under ultraviolet irradiation. UV-Vis analysis and high-angle annular dark-field trans- mission electron microscope (HAADF-TEM) image prove that core-shell structure of Au@Pd nanoparticles forms. TEM results indicate that Au@Pd nanoparticles ( - 5.2 nm) are well-dispersed on the surface of fuv-MWCNTs. X-ray photoelectron spectroscopy (XPS) reveals that ultraviolet irradiation can promote the interaction between Au@Pd nanoparticles and the functional groups on the surface of MWCNTs. Cyclic voltammograms (CV), chronoampero- grams (CA), and electrochemical impedance spectroscopy (EIS) results demonstrate that the Au@Pd/fuv-MWCNTs catalysts show excellent electrocatalytic performance for methanol oxidation in alkaline media. The catalytic activity of the Au@Pd/fuv-MWCNTs is ~ 2 times higher than that of the commercial Pd/C catalysts. This is mostly attributed to that ultraviolet irradiation can make the moieties of MB provide a uniform surface with active and anchoring sites, and improves the functional effect of MB on the surface of MWCNTs. Especially, ultraviolet irradiation modifies electronic structure of Pd and is beneficial for the enhance- ment of catalytic activity.
基金The author thanks the National Natural Science Foundation of China (Key Project, Grant No. 51138006) and State Key Joint Laboratory of Environment Simulation and Pollution Control (Project, No. 13L01ESPC) for financial support. The research is also supported by the Collaborative Innovation Center for Regional Environmental Quality.
文摘Antibiotic resistance is a serious public health risk that may spread via potable and reclaimed water. Effective disinfection is important for inactivation of antibiotic-resistant bacteria and disruption of antibiotic resistance genes. Ampicillin is a widely prescribed antibiotic but its effectiveness is increasingly undermined by resistance. In this study, changes in ampicillin resistance for Escherichia coli (E. coli) CGMCC 1.1595 were analyzed after exposure to different doses of ultraviolet (UV) or chlorine, and damage incurred by the plasmid encoding ampicillin resistance gene blaTEM-1 was assessed. We reported a greater stability in ampicillinresistant E. coli CGMCC 1.1595 after UV irradiation or chlorination when compared with previously published data for other E. coli strains. UV irradiation and chlorination led to a shift in the mortality frequency distributions of ampicillin-resistant E. coli when subse-quently exposed to ampicillin. The ampicillin hemiinhibitory concentration (IC5o) without disinfection was 3800mg·L^-1, and an increment was observed after UV irradiation or chlorination. The IC50 of ampicillin-resistant E. coli was 1.5-fold higher at a UV dose of 40 mJ·cm^-2, and was 1.4-fold higher when exposed to 2.0 mg·L^-1 chlorine. These results indicate that UV irradiation and chlorination can potentially increase the risk of selection for E. coli strains with high ampicillin resistance. There was no evident damage to blaTEM-1 after 1-10 mg Cl2· L^-1 chlorination, while a UV dose of 80 mJ·cm^-2 yielded a damage ratio for blaTEM-1 of approximately 1.2-log.Therefore, high UV doses are required for effective disruption of antibiotic resistance genes in bacteria.
基金the National Natural Science Foundation of China(No.51973080,92066104).
文摘Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have been extensively utilized to improved high-temperature capacitive performance of dielectric polymers,the presence of thermodynamically incompatible organic and inorganic components may lead to concern about the long-term stability and also complicate film processing.Herein,zero-dimensional polymer dots with high electron affinity are introduced into photoactive allyl-containing poly(aryl ether sulfone)to form the all-organic polymer composites for hightemperature capacitive energy storage.Upon ultraviolet irradiation,the crosslinked polymer composites with polymer dots are efficient in suppressing electrical conduction at high electric fields and elevated temperatures,which significantly reduces the high-field energy loss of the composites at 200℃.Accordingly,the ultraviolet-irradiated composite film exhibits a discharged energy density of 4.2 J cm^(−3)at 200℃.Along with outstanding cyclic stability of capacitive performance at 200℃,this work provides a promising class of dielectric materials for robust high-performance all-organic dielectric nanocomposites.
文摘Objective:To study the therapy effect of ultraviolet blood irradiation and oxygenation (UBIO) on blood AChe activity and lung injury due to acute soman intoxication in rabbits. Methods:Forty rabbits were randomly divided into 4 groups: normal control group, intoxication group, routine therapy group and UBIO therapy group. Blood AChe activity and artery blood gas were analyzed 2 h after intoxication. ACP and AKP activities in BALF were determined respectively. Results:Blood AChe activity in intoxication group was lower than that in normal control group (P<0.05). BALF ACP and AKP activities in intoxication group were higher than that in normal control group. Blood AChe activities in UBIO therapy group increased and were higher than that in intoxication and routine therapy groups. Compared with intoxication group, BALF ACP and AKP activities were decreased (P<0.05) in UBIO therapy group, while artery blood pH, PaO2 and SaO2 increased (P<0.05). Conclusion: UBIO therapy can elevate blood AChe activity and alleviate lung injury induced by soman intoxication. So it may be a new way to treat acute soman intoxication.
文摘BACKGROUND: Ultraviolet blood irradiation and oxygenation (UBIO) has obtained better clinical effect in treating acute cerebral infarction, but the mechanism underlying this effect remains unclear. OBJECTIVE: To observe the effect of UBIO on the nerve function and activities of K^+-Na^+-ATPase and Ca2^+-Mg2^+-ATPase activities on the red blood cell (RBC) membrane of patients with acute cerebral infarction. DESIGN: A randomized and controlled study.SETTING: Department of Neurology, Xiangfan Central Hospital.PARTICIPANTS: From January 2000 to December 2001, excluding those above 70 years old, 58 cases of 700 patients with acute cerebral infarction admitted in the Department of Neurology, Xiangfan Central Hospital, were recruited and divided into two groups according to the random number table: UBIO treated group (n=28), including 17 males and 11 females, aged 40-68 years; and control group (n=30), including 20 males and 10 females, aged 44-69 years. All the patients agreed to participate in the therapeutic program and detected items. The general informations were comparable without obvious differences between the two groups (P 〉 0.05).METHODS: ① The patients in both groups received routine treatments, besides, those in the UBIO treated group were given UBIO treatment by using the XL-200 type therapeutic apparatus produced in Shijiazhuang, whose ultraviolet wave was set at 253.7 nm with the energy density of 0.568 J/m^2 per second, UBIO treatment started from the second day after admission, once every other day, with a single course consisting of 5-7 treatments. ② In the UBIO treated group, the venous blood was sampled before and after the first, third and the completion of the treatment course respectively, the venous blood was taken at each corresponding time point in the control group. After centrifugation of the blood at 10 000 rounds per minute, the RBC membrane was separated and then the activities of K^+-Na^+-ATPase and Ca2^+-Mg2^+-ATPase were detected by means of phosphorus determination.③ The nerve function was scored before and after treatment in both groups with European stroke scale, which included 13 items, the total score was 0-100 points, the higher the score, the better the nerve function. MAIN OUTCOME MEASURES :①Score of European stroke scale before and after treatment in both groups.② Comparison of the activities of K^+-Na^+-ATPase and Ca2^+-Mg2^+-ATPase on RBC membrane between the two groups before treatment and after the first, third and the completion of the treatment. RESULTS: All the 58 patients with cerebral infarction were involved in the analysis of results.① The score of European stroke scale had no obvious difference between the two groups [(49.31±11.48), (50.58±12.63), P 〉 0.05], and it was obviously higher in the UBIO treated group than in the control group after treatment [84.66±13.75), (77.05±11.17), P 〈 0.05].②The activity of K^+-Na^+-ATPase on RBC membrane in the UBIO treated group was significantly increased after the first and third treatment as compared with before treatment [(31.56±19.25), (27.64±15.83), (17.67±13.83), P 〈 0.01], it was still higher after the completion of the treatment than before treatment without obvious difference [(20.86±14.53), P 〉 0.05]. After the first and third treatment, it was obviously higher in the UBIO treated group than in the control group [19.31±11.88), (17.44±10.42), P 〈 0.01]. ③ In the UBIO treated group, Ca2^+-Mg2^+-ATPase activity on RBC membrane significantly increased after the first treatment and remained higher than the pre-treatment level throughout the treatment [(27.49±14.72), (17.41±4.82), P 〈 0.01]. The activity of Ca2^+-Mg2^+-ATPase on RBC membrane was markedly higher in the UBIO treated group than in the control group after after the first, third and the completion of treatment respectively [(24.83±12.88), (17.70±5.69); (28.08±13.44), (16.32±5.29); (17.42±6.04), P〈 0.05-0.01]. CONCLUSION: The effect of UBIO treatment against acute cerebral infarction may be mediated by the increased K^+-Na^+ ATPase and Ca2^+-Mg2^+-ATPase activities on RBC membrane, which enhances the RBC transformation ability so as to lower RBC aggregation and correct high blood viscosity.
文摘Objective: To investigate the effect of ultraviolet blood irradiation and oxygenation (UBIO) on the metabolism of oxygen free radicals in rabbits with acute soman intoxication. Methods: One hundred rabbits were randomly divided into 5 groups: normal control group, intoxication group, routine therapy group. UBIO therapy group and combined therapy group. After 14 d, the concentration of malondiadehyde(MDA) and activity of superoxide dismutase(SOD), glutathionperoxidase(GSH-Px), catalase (CAT) and total antioxidative capacity (T-AOC) in serum were determined respectively. Results: Compared with the normal control group, the concentration of MDA and activity of CAT in the intoxication group were significantly higher (P < 0. 05). but SOD. GSH-Px activity and T-AOC were significantly lower (P<0. 05). After UBIO or combined therapy, serum MDA level was significantly lower in comparison with intoxication group (P<0. 05). but the activity of SOD. GSH-Px, CAT and T-AOC were higher than intoxication group(P<0. 05). Conclusion: There is an obvious oxygen free radical injury in rabbits with a-cute soman intoxication. UBIO can improve the antioxidation ability of rabbits and may be applied to treat acute soman intoxication as adjunctive therapy.
文摘AIM:To investigate the roles of the ribonucleotide reductase M2 (RRM2) subunit in colorectal cancer (CRC) and ultraviolet (UV)-induced DNA damage repair. METHODS:Immunohistochemical staining of tissue microarray was performed to detect the expression of RRM2. Seven CRC cell lines were cultured and three human colon cancer cell lines, i.e., HCT116, SW480 and SW620, were used. Reverse transcription polymerase chain reaction and Western blotting were performed to determine the mRNA and protein expression levels of RRM2, respectively. Cell proliferation assay, cell cycle analysis were performed. Cell apoptosis was evaluated by double staining with fluorescein isothiocyanate-conjugated Annexin Ⅴ and propidium iodide (PI) usingAnnexin Ⅴ/PI apoptosis kit. The motility and invasion of CRC cells were assessed by the Transwell chamber assay. Cells were irradiated with a 254 nm UV-C lamp to detect the UV sensitivity after RRM2 depletion. RESULTS:Immunohistochemical staining revealed elevated RRM2 levels in CRC tissues. RRM2 overexpression was positively correlated with invasion depth (P < 0.05), poorly differentiated type (P = 0.0051), and tumor node metastasis stage (P = 0.0015). The expression of RRM2 in HCT116 cells was downregulated after transfection, and HCT116 cell proliferation was obviously suppressed compared to control groups (P < 0.05). In the invasion test, the number of cells that passed through the chambers in the RRM2-siRNA group was 81 ± 3, which was lower than that in the negative control (289 ± 7) and blank control groups (301 ± 7.2). These differences were statistically significant (P < 0.01). Our data suggest that RRM2 overexpression may be associated with CRC progression. RRM2 silencing by siRNA may inhibit the hyperplasia and invasiveness of CRC cells, suggesting that RRM2 may play an important role in the infiltration and metastasis of CRC, which is a potential therapeutic strategy in CRC. In addition, RRM2 depletion increased UV sensitivity. CONCLUSION:These findings suggest that RRM2 may be a facilitating factor in colorectal tumorigenesis and UV-induced DNA damage repair.
文摘High photoactive TiO2 catalyst was prepared using the sol-gel method through UV irradiation during the formation stage of nuclei. The surface morphology and microstructure of the prepared catalyst were characterized using scanning electron microscopy (SEM), X-ray diffraction patterns (XRD), and Fourier transform infrared spectroscopy (FF-IR). The photoactivity was evaluated by the degradation of methylene blue. The results show that the photocatalysis of the prepared catalyst is higher than that of conventional heat-treated particles. The higher photoactivity is a combined result of favorable microstructure, appropriate hydroxyl groups, and active sites of Ti^3+ ions on the surface of TiO2. It is concluded that the ultraviolet irradiation-induced sol-gel method is an effective method to enhance the photocatalysis of TiO2.
文摘The purpose of the present study was to compare the effects of different doses of ultraviolet radiation A1 (UVA1) on human fibroblast proliferation and collagen level in a mouse model of scleroderma, so as to identify appropriate irradiation doses for clinical treatment of scleroderma. Monolayer from human fibroblasts was cultured in vitro, and a mouse model of scleroderma was established by subcutaneous injection of 100 μL of 400 μg/mL bleomycin into the back of BALB/c mice for 4 weeks. The mouse models and human fibroblasts were divided into UVA1- exposed (100, 60 and 20 J/cm2) and UVA-unexposed groups. At 0, 24 and 48 h after exposure, cell proliferation and levels of hydroxyproline and collagen were detected. UVA1 irradiation was performed 3 times weekly for 10 weeks, and the pathological changes of skin tissues, skin thickness and collagen level were observed after phototherapy. Cell proliferation and the levels of hydroxyproline and collagen were inhibited after phototherapy, and there was a significant difference between the UVAl-exposed cells and UVAl-unexposed cells (P 〈 0.001). In addition, UVA1 phototherapy improved dermal sclerosis and softened the skin, and there were significant differences between the high-dose UVA1 group and the model group, and the negative group (P 〈 0.05). It is concluded that UVA1 radiation can reduce cell proliferation, and decrease hydroxyproline and collagen levels in a dose-dependent manner in vitro. High-dose UVA1 phototherapy has marked therapeutic effect on scleroderma in the mouse model. Decreased collagen level may be related to the reduced number and activity of cells, as well as inhibition of collagen synthesis.
文摘Nano-silver/polyvinylpyrrolidone(PVP)composite materials were successfully synthesized bi-insitu from silver nitrate solution with N-vinyl pyrrolidone (NVP) monomer,containing neither initiator nor reductant, in ultraviolet irradiation conditions.The resultant Ag/PVP nanocomposites were characterized by infrared spectroscopy (FT-IR), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD).TEM show that nano silver particles are homogeneously dispersed in PVP polymer matrix, and the mean size of spherical silver particles is about 5 nm.The spectroscopy of XPS and FTIR showed that there is an interaction between nano silver not only with carbonyl oxygen but also with the nitrogen group within the NVP molecule through the p-π conjugation effect in the nano-silver/PVP composites system.
文摘UV irradiation hydrogen peroxide (H202) system is used as an effective, easy and low-cost combined depolymerization technique to produce oligosaccharides from chitosan. UV-Vis spectroscopic studies explained that with increasing treatment time, the absorption of the depolymerized chitosan solution has increased, indicating the increase in the carbonyl and amino groups in their structure. Fourier transform infrared spectroscopy and nuclear magnetic resonance (1H NMR) analysis showed that the 1,4-β-D-glucoside linkages of chitosan are degraded without important changes in chemical structure of decomposed samples. X-ray diffraction patterns verified the polymerization of chitosan to produce oligomers, changing in structure from crystalline to amorphous. Viscosity-average molecular weight measurements of fragmented chitosan samples and MarkHouwink equation are used to demonstrate the efficiency of this depolymerization method. Finally, the obtained results ascertained that this combined method could produce water soluble chitosan with significant efficiency and no essential change in its chemical structure.UV irradiation hydrogen peroxide (H202) system is used as an effective, easy and low-cost combined depolymerization technique to produce oligosaccharides from chitosan. UV-Vis spectroscopic studies explained that with increasing treatment time, the absorption of the depolymerized chitosan solution has increased, indicating the increase in the carbonyl and amino groups in their structure. Fourier transform infrared spectroscopy and nuclear magnetic resonance (1H NMR) analysis showed that the 1,4-β-D-glucoside linkages of chitosan are degraded without important changes in chemical structure of decomposed samples. X-ray diffraction patterns verified the polymerization of chitosan to produce oligomers, changing in structure from crystalline to amorphous. Viscosity-average molecular weight measurements of fragmented chitosan samples and MarkHouwink equation are used to demonstrate the efficiency of this depolymerization method. Finally, the obtained results ascertained that this combined method could produce water soluble chitosan with significant efficiency and no essential change in its chemical structure.
文摘Bormate (BrO3^-) is a carcinogenic chemical produced in ozonation or chlorination of bromide-containing water. Although its formation in seawater with or without sunlight has been previously investigated, the formation of bromate in dilute solutions, particularly raw water for water treatment plant, is unknown. In this article, the results of bench scale tests to measure the formation rates of bromate formation in dilute solutions, including de-ionized water and raw water from Yangtze River, were presented in dark chlorination and ultraviolet (UV)/chlorination processes. And the effects of initial pH, initial concentration of NaOCl, and UV light intensity on bromate formation in UV/chlorination of the diluted solutions were investigated. Detectable bromate was formed in dark chlorination of the two water samples with a relatively slow production rate. Under routine disinfecting conditions, the amount of formed bromate is not likely to exceed the national standards (10 μg/L). UV irradiation enhanced the decay of free chlorine, and, simultaneously, 6.6%-32% of Br^- was oxidized to BrO3^-. And the formation of bromate exhibited three stages: rapid stage, slow stage and plateau. Under the experimental conditions (pH = 4.41-11.07, CCl2= 1.23-4.50 mg/L), low pH and high chlorine concentration favored the generation of bromate. High light intensity promoted the production rate of bromate, but decreased its total generation amount due to acceleration of chlorine decomposition.
基金This work was supported by the Chinese Key Developing Program for Basic Sciences (Grant No. 2004CB418303) the National Natural Science Foundation of China (Grant Nos. 40375021 and 40575026).
文摘The new version (version 8) TOMS (Total Ozone Mapping Spectrometer) ozone and noontime erythemal ultraviolet (UV) irradiance products are used to analyze their long-term changes in this paper. It is shown that the summer UV irradiance has increased significantly from Central China to the northern and western parts of China, especially in Central China near Chongqing, Shaanxi, and Hubei provinces; whereas the UV irradiance has decreased significantly in the southern part of China, especially in South China. In July, when UV irradiance is at its maximum and hence when the most serious potential damage may happen, the results indicate an increase in the UV irradiance in Central China and the Yangtze River- Huaihe River valley and a decrease in South China and the eastern part of North China. At the same time, the total ozone amount is lower over China in summer with the most serious depletion occurring in Northeast China and Northwest China. It is found that the thinning of the ozone layer is not the main reason for the UV irradiance trend in the eastern and southern parts of China, but that the rainfall and the related cloud variations may dominate the long-term changes of the UV irradiance there. In addition, the future UV irradiance trend in China is also estimated.
基金supported by the National Natural Science Foundation of China(Nos.U20A20308,51977050)Heilongjiang Provincial Natural Science Foundation of China(No.ZD2020E009)+1 种基金China Postdoctoral Science Foundation(Nos.2021T140166,2018M640303)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang(Nos.UNPYSCT-2020178,UNPYSCT-2020180).
文摘Commercial biaxially oriented polypropylene(BOPP)film capacitors have been widely applied in the fields of electrical and electronic engineering.However,due to the sharp increase in electrical conduction loss as the temperature rises,the energy storage performance of BOPP films seriously degrades at elevated temperatures.In this study,the grafting modification method is facile and suitable for large-scale industrial manufacturing and has been proposed to increase the high-temperature energy storage performance of com-mercial BOPP films for the first time.Specifically,acrylic acid(AA)as a polar organic molecular is used to graft onto the surface of commercial BOPP films by using ultraviolet irradiation(abbreviated as BOPP-AA).The results demonstrate that the AA grafting modification not only slightly increases the dielectric constant,but also significantly reduces the leakage current density at high-temperature,greatly improving the high-temperature energy storage performance.The modified BOPP-AA films display a discharged energy density of 1.32 J/cm3 with an efficiency of>90%at 370 kV/mm and 125℃℃,which is 474%higher than that of the pristine BOPP films.This work manifests that utilizing ultraviolet grafting modification is a very efficient way to improve the high-temperature energy storage performance of commercial BOPP films as well as provides a hitherto unexplored opportunity for large-scalable production applications.
基金Supported by the National Natural Science Foundation of China(51473013)
文摘The hydrophobically modi fied ceramic membranes have great potential for energy-ef ficient membrane distillation.In this work,flat-sheet ceramic membranes with a superhydrophobic surface were fabricated by grafting 1H,1H,2H,2H-per fluorooctyltrichlorosilane or 1H,1H,2H,2H-per fluorodecyltriethoxysilane and followed by ultraviolet irradiation.The surface water contact angle was improved from 46° of original ceramic membrane to 159°,which exhibited a stable and excellent superhydrophobic effect.The modi fied membranes showed a high flux of 27.28 kg·m^(-2)·h^(-1) and simultaneously maintained an excellent retention rate of 99.99%,when used in vacuum membrane distillation process for treatment of a 1 wt% NaCl(75 °C) aqueous solution.These results suggested that superhydrophobic modi fication of ceramic surface is a facile and cost-effective way to achieve higher membrane distillation performance.The superhydrophobically-modi fied ceramic membrane with an excellent desalination capacity would show considerable potential in practical membrane distillation utilizations.