The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for u...The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for underactuated USV was obtained,which transformed the tracking and stabilization problem of underactuated USV into the stabilization problem of the trajectory tracking error equation.A nonlinear state feedback controller was proposed based on backstepping technique and Lyapunov's direct method.By means of Lyapunov analysis,it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property.Numerical simulation results are presented to validate the effectiveness and robustness of the proposed controller.展开更多
A robust adaptive control strategy was developed to force an underactuated surface vessel to follow a reference path,despite the presence of uncertain parameters and unstructured uncertainties including exogenous dist...A robust adaptive control strategy was developed to force an underactuated surface vessel to follow a reference path,despite the presence of uncertain parameters and unstructured uncertainties including exogenous disturbances and measurement noise.The reference path can be a curve or a straight line.The proposed controller was designed by using Lyapunov’s direct method and sliding mode control and backstepping techniques.Because the sway axis of the vessel was not directly actuated,two sliding surfaces were introduced,the first one in terms of the surge motion tracking errors and the second one for the yaw motion tracking errors.The adaptive control law guaranteed the uniform ultimate boundedness of the tracking errors.Numerical simulation results were provided to validate the effectiveness of the proposed controller for path following of underactuated surface vessels.展开更多
In this work, we investigate the tracking control problem of asymmetrical underactuated surface vessels with parameter uncertainties. The tracking error model is first derived via appropriate coordinate transformation...In this work, we investigate the tracking control problem of asymmetrical underactuated surface vessels with parameter uncertainties. The tracking error model is first derived via appropriate coordinate transformations, and is considered as a cascade structure composed of two subsystems. The Lyapunov redesign approach is employed to construct the control laws separately to stabilize the two subsystems with unknown model parameters. The cascade system theory is applied to prove the global uniform asymptotic convergence of the state trajectory to the reference one provided the desired yaw velocity is not vanishing. The effectiveness of the proposed control laws is verified by simulation examples.展开更多
In this paper,the formation control problem is investigated for a team of uncertain underactuated surface vessels(USVs)based on a directed graph.Considering the risk of collision and the limited communication range of...In this paper,the formation control problem is investigated for a team of uncertain underactuated surface vessels(USVs)based on a directed graph.Considering the risk of collision and the limited communication range of USVs,the prescribed performance control(PPC)methodology is employed to ensure collision avoidance and connectivity maintenance.An event-triggered mechanism is designed to reasonably use the limited communication resources.Moreover,neural networks(NNs)and an auxiliary variable are constructed to deal with the problems of uncertain nonlinearities and underactuation,respectively.Then,an event-triggered formation control scheme is proposed to ensure that all signals of the closed-loop system are uniformly ultimately bounded(UUB).Finally,simulation results are presented to demonstrate the effectiveness of the proposed control scheme.展开更多
基金Project(2013M540271)supported by the Postdoctoral Science Foundation of ChinaProject(HEUCF1321003)support by the Basic Research Foundation of Central University,ChinaProject(51209050)supported by the National Natural Science Foundation of China
文摘The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for underactuated USV was obtained,which transformed the tracking and stabilization problem of underactuated USV into the stabilization problem of the trajectory tracking error equation.A nonlinear state feedback controller was proposed based on backstepping technique and Lyapunov's direct method.By means of Lyapunov analysis,it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property.Numerical simulation results are presented to validate the effectiveness and robustness of the proposed controller.
基金Supported by the National Natural Science Foundation of China (Grant No. 61074053)the Applied Basic Research Program of Ministry of Transport of China (Grant No. 2011-329-225-390)
文摘A robust adaptive control strategy was developed to force an underactuated surface vessel to follow a reference path,despite the presence of uncertain parameters and unstructured uncertainties including exogenous disturbances and measurement noise.The reference path can be a curve or a straight line.The proposed controller was designed by using Lyapunov’s direct method and sliding mode control and backstepping techniques.Because the sway axis of the vessel was not directly actuated,two sliding surfaces were introduced,the first one in terms of the surge motion tracking errors and the second one for the yaw motion tracking errors.The adaptive control law guaranteed the uniform ultimate boundedness of the tracking errors.Numerical simulation results were provided to validate the effectiveness of the proposed controller for path following of underactuated surface vessels.
基金supported by National Science and Technology Major Project(No.2012CB821202)the Beijing Natural Science Foundation(Nos.4122043,4112034)the National Natural Science Foundation of China(Nos.60874012,61174057)
文摘In this work, we investigate the tracking control problem of asymmetrical underactuated surface vessels with parameter uncertainties. The tracking error model is first derived via appropriate coordinate transformations, and is considered as a cascade structure composed of two subsystems. The Lyapunov redesign approach is employed to construct the control laws separately to stabilize the two subsystems with unknown model parameters. The cascade system theory is applied to prove the global uniform asymptotic convergence of the state trajectory to the reference one provided the desired yaw velocity is not vanishing. The effectiveness of the proposed control laws is verified by simulation examples.
基金partially supported by the National Natural Science Foundation of China under Grant Nos.62033003,62003098,61973091the Local Innovative and Research Teams Project of Guangdong Special Support Program under Grant No.2019BT02X353the China Postdoctoral Science Foundation under Grant Nos.2019M662813 and 2020T130124。
文摘In this paper,the formation control problem is investigated for a team of uncertain underactuated surface vessels(USVs)based on a directed graph.Considering the risk of collision and the limited communication range of USVs,the prescribed performance control(PPC)methodology is employed to ensure collision avoidance and connectivity maintenance.An event-triggered mechanism is designed to reasonably use the limited communication resources.Moreover,neural networks(NNs)and an auxiliary variable are constructed to deal with the problems of uncertain nonlinearities and underactuation,respectively.Then,an event-triggered formation control scheme is proposed to ensure that all signals of the closed-loop system are uniformly ultimately bounded(UUB).Finally,simulation results are presented to demonstrate the effectiveness of the proposed control scheme.