期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Visual Enhancement of Underwater Images Using Transmission Estimation and Multi-Scale Fusion
1
作者 R.Vijay Anandh S.Rukmani Devi 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1897-1910,共14页
The demand for the exploration of ocean resources is increasing exponentially.Underwater image data plays a significant role in many research areas.Despite this,the visual quality of underwater images is degraded beca... The demand for the exploration of ocean resources is increasing exponentially.Underwater image data plays a significant role in many research areas.Despite this,the visual quality of underwater images is degraded because of two main factors namely,backscattering and attenuation.Therefore,visual enhancement has become an essential process to recover the required data from the images.Many algorithms had been proposed in a decade for improving the quality of images.This paper aims to propose a single image enhancement technique without the use of any external datasets.For that,the degraded images are subjected to two main processes namely,color correction and image fusion.Initially,veiling light and transmission light is estimated tofind the color required for correction.Veiling light refers to unwanted light,whereas transmission light refers to the required light for color correction.These estimated outputs are applied in the scene recovery equation.The image obtained from color correction is subjected to a fusion process where the image is categorized into two versions and applied to white balance and contrast enhancement techniques.The resultants are divided into three weight maps namely,luminance,saliency,chromaticity and fused using the Laplacian pyramid.The results obtained are graphically compared with their input data using RGB Histogram plot.Finally,image quality is measured and tabulated using underwater image quality measures. 展开更多
关键词 underwater image BACKSCATTERING ATTENUATION image fusion veiling light white balance laplacian pyramid
下载PDF
Underwater Image Classification Based on EfficientnetB0 and Two-Hidden-Layer Random Vector Functional Link
2
作者 ZHOU Zhiyu LIU Mingxuan +2 位作者 JI Haodong WANG Yaming ZHU Zefei 《Journal of Ocean University of China》 CAS CSCD 2024年第2期392-404,共13页
The ocean plays an important role in maintaining the equilibrium of Earth’s ecology and providing humans access to a wealth of resources.To obtain a high-precision underwater image classification model,we propose a c... The ocean plays an important role in maintaining the equilibrium of Earth’s ecology and providing humans access to a wealth of resources.To obtain a high-precision underwater image classification model,we propose a classification model that combines an EfficientnetB0 neural network and a two-hidden-layer random vector functional link network(EfficientnetB0-TRVFL).The features of underwater images were extracted using the EfficientnetB0 neural network pretrained via ImageNet,and a new fully connected layer was trained on the underwater image dataset using the transfer learning method.Transfer learning ensures the initial performance of the network and helps in the development of a high-precision classification model.Subsequently,a TRVFL was proposed to improve the classification property of the model.Net construction of the two hidden layers exhibited a high accuracy when the same hidden layer nodes were used.The parameters of the second hidden layer were obtained using a novel calculation method,which reduced the outcome error to improve the performance instability caused by the random generation of parameters of RVFL.Finally,the TRVFL classifier was used to classify features and obtain classification results.The proposed EfficientnetB0-TRVFL classification model achieved 87.28%,74.06%,and 99.59%accuracy on the MLC2008,MLC2009,and Fish-gres datasets,respectively.The best convolutional neural networks and existing methods were stacked up through box plots and Kolmogorov-Smirnov tests,respectively.The increases imply improved systematization properties in underwater image classification tasks.The image classification model offers important performance advantages and better stability compared with existing methods. 展开更多
关键词 underwater image classification EfficientnetB0 random vector functional link convolutional neural network
下载PDF
Unsupervised Multi-Expert Learning Model for Underwater Image Enhancement
3
作者 Hongmin Liu Qi Zhang +2 位作者 Yufan Hu Hui Zeng Bin Fan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期708-722,共15页
Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ign... Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ignored that the R,G and B channels of underwater degraded images present varied degrees of degradation,due to the selective absorption for the light.To address this issue,we propose an unsupervised multi-expert learning model by considering the enhancement of each color channel.Specifically,an unsupervised architecture based on generative adversarial network is employed to alleviate the need for paired underwater images.Based on this,we design a generator,including a multi-expert encoder,a feature fusion module and a feature fusion-guided decoder,to generate the clear underwater image.Accordingly,a multi-expert discriminator is proposed to verify the authenticity of the R,G and B channels,respectively.In addition,content perceptual loss and edge loss are introduced into the loss function to further improve the content and details of the enhanced images.Extensive experiments on public datasets demonstrate that our method achieves more pleasing results in vision quality.Various metrics(PSNR,SSIM,UIQM and UCIQE) evaluated on our enhanced images have been improved obviously. 展开更多
关键词 Multi-expert learning underwater image enhancement unsupervised learning
下载PDF
A Novel Multi-Stream Fusion Network for Underwater Image Enhancement
4
作者 Guijin Tang Lian Duan +1 位作者 Haitao Zhao Feng Liu 《China Communications》 SCIE CSCD 2024年第2期166-182,共17页
Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color... Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color correction and detail restoration. However,the existing enhancement algorithms cannot achieve the desired results. In order to solve the above problems, this paper proposes a multi-stream feature fusion network. First, an underwater image is preprocessed to obtain potential information from the illumination stream, color stream and structure stream by histogram equalization with contrast limitation, gamma correction and white balance, respectively. Next, these three streams and the original raw stream are sent to the residual blocks to extract the features. The features will be subsequently fused. It can enhance feature representation in underwater images. In the meantime, a composite loss function including three terms is used to ensure the quality of the enhanced image from the three aspects of color balance, structure preservation and image smoothness. Therefore, the enhanced image is more in line with human visual perception.Finally, the effectiveness of the proposed method is verified by comparison experiments with many stateof-the-art underwater image enhancement algorithms. Experimental results show that the proposed method provides superior results over them in terms of MSE,PSNR, SSIM, UIQM and UCIQE, and the enhanced images are more similar to their ground truth images. 展开更多
关键词 image enhancement multi-stream fusion underwater image
下载PDF
Underwater Image Enhancement Based on Multi-scale Adversarial Network
5
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 underwater image enhancement Generative adversarial network Multi-scale feature extraction Residual dense block
下载PDF
Deep Neural Network Driven Automated Underwater Object Detection 被引量:2
6
作者 Ajisha Mathias Samiappan Dhanalakshmi +1 位作者 R.Kumar R.Narayanamoorthi 《Computers, Materials & Continua》 SCIE EI 2022年第3期5251-5267,共17页
Object recognition and computer vision techniques for automated object identification are attracting marine biologist’s interest as a quicker and easier tool for estimating the fish abundance in marine environments.H... Object recognition and computer vision techniques for automated object identification are attracting marine biologist’s interest as a quicker and easier tool for estimating the fish abundance in marine environments.However,the biggest problem posed by unrestricted aquatic imaging is low luminance,turbidity,background ambiguity,and context camouflage,which make traditional approaches rely on their efficiency due to inaccurate detection or elevated false-positive rates.To address these challenges,we suggest a systemic approach to merge visual features and Gaussian mixture models with You Only Look Once(YOLOv3)deep network,a coherent strategy for recognizing fish in challenging underwater images.As an image restoration phase,pre-processing based on diffraction correction is primarily applied to frames.The YOLOv3 based object recognition system is used to identify fish occurrences.The objects in the background that are camouflaged are often overlooked by the YOLOv3 model.A proposed Bi-dimensional Empirical Mode Decomposition(BEMD)algorithm,adapted by Gaussian mixture models,and integrating the results of YOLOv3 improves detection efficiency of the proposed automated underwater object detection method.The proposed approach was tested on four challenging video datasets,the Life Cross Language Evaluation Forum(CLEF)benchmark from the F4K data repository,the University of Western Australia(UWA)dataset,the bubble vision dataset and theDeepFish dataset.The accuracy for fish identification is 98.5 percent,96.77 percent,97.99 percent and 95.3 percent respectively for the various datasets which demonstrate the feasibility of our proposed automated underwater object detection method. 展开更多
关键词 underwater images diffraction correction marine object recognition gaussian mixture model image restoration YOLO
下载PDF
An Approach to Underwater Image Enhancement Based on Image Structural Decomposition 被引量:11
7
作者 JI Tingting WANG Guoyu 《Journal of Ocean University of China》 SCIE CAS 2015年第2期255-260,共6页
Underwater imaging posts a challenge due to the degradation by the absorption and scattering occurred during light propagation as well as poor lighting conditions in water medium Although image filtering techniques ar... Underwater imaging posts a challenge due to the degradation by the absorption and scattering occurred during light propagation as well as poor lighting conditions in water medium Although image filtering techniques are utilized to improve image quality effectively, problems of the distortion of image details and the bias of color correction still exist in output images due to the complexity of image texture distribution. This paper proposes a new underwater image enhancement method based on image struc- tural decomposition. By introducing a curvature factor into the Mumford_Shah_G decomposition algorithm, image details and struc- ture components are better preserved without the gradient effect. Thus, histogram equalization and Retinex algorithms are applied in the decomposed structure component for global image enhancement and non-uniform brightness correction for gray level and the color images, then the optical absorption spectrum in water medium is incorporate to improve the color correction. Finally, the en- hauced structure and preserved detail component are re.composed to generate the output. Experiments with real underwater images verify the image improvement by the proposed method in image contrast, brightness and color fidelity. 展开更多
关键词 underwater image image structural decomposition image enhancement RETINEX
下载PDF
A Fast Underwater Optical Image Segmentation Algorithm Based on a Histogram Weighted Fuzzy C-means Improved by PSO 被引量:4
8
作者 王士龙 徐玉如 庞永杰 《Journal of Marine Science and Application》 2011年第1期70-75,共6页
The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image... The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image into object and background,its time-consuming computation is often an obstacle.The mission of the vision system of an autonomous underwater vehicle (AUV) is to rapidly and exactly deal with the information about the object in a complex environment for the AUV to use the obtained result to execute the next task.So,by using the statistical characteristics of the gray image histogram,a fast and effective fuzzy C-means underwater image segmentation algorithm was presented.With the weighted histogram modifying the fuzzy membership,the above algorithm can not only cut down on a large amount of data processing and storage during the computation process compared with the traditional algorithm,so as to speed up the efficiency of the segmentation,but also improve the quality of underwater image segmentation.Finally,particle swarm optimization (PSO) described by the sine function was introduced to the algorithm mentioned above.It made up for the shortcomings that the FCM algorithm can not get the global optimal solution.Thus,on the one hand,it considers the global impact and achieves the local optimal solution,and on the other hand,further greatly increases the computing speed.Experimental results indicate that the novel algorithm can reach a better segmentation quality and the processing time of each image is reduced.They enhance efficiency and satisfy the requirements of a highly effective,real-time AUV. 展开更多
关键词 underwater image image segmentation autonomous underwater vehicle (AUV) gray-scale histogram fuzzy C-means real-time effectiveness sine function particle swarm optimization (PSO)
下载PDF
Underwater Image Bidirectional Matching for Localization Based on SIFT 被引量:4
9
作者 Yan Lin Bo Liu 《Journal of Marine Science and Application》 2014年第2期225-229,共5页
For the purpose of identifying the stern of the SWATH (Small Waterplane Area Twin Hull) availably and perfecting the detection technique of the SWATH ship's performance, this paper presents a novel bidirectional im... For the purpose of identifying the stern of the SWATH (Small Waterplane Area Twin Hull) availably and perfecting the detection technique of the SWATH ship's performance, this paper presents a novel bidirectional image registration strategy and mosaicing technique based on the scale invariant feature transform (SIFT) algorithm. The proposed method can help us observe the stern with a great visual angle for analyzing the performance of the control fins of the SWATH. SIFT is one of the most effective local features of the scale, rotation and illumination invariant. However, there are a few false match rates in this algorithm. In terms of underwater machine vision, only by acquiring an accurate match rate can we find an underwater robot rapidly and identify the location of the object. Therefore, firstly, the selection of the match ratio principle is put forward in this paper; secondly, some advantages of the bidirectional registration algorithm are concluded by analyzing the characteristics of the unidirectional matching method. Finally, an automatic underwater image splicing method is proposed on the basis of fixed dimension, and then the edge of the image's overlapping section is merged by the principal components analysis algorithm. The experimental results achieve a better registration and smooth mosaicing effect, demonstrating that the proposed method is effective. 展开更多
关键词 SWATH underwater image registration SIFT bidirectional matching strategy automatic stitching
下载PDF
Research on the Application of Super Resolution Reconstruction Algorithm for Underwater Image 被引量:3
10
作者 Tingting Yang Shuwen Jia Hao Ma 《Computers, Materials & Continua》 SCIE EI 2020年第3期1249-1258,共10页
Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water a... Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water and light,the image super-resolution reconstruction technique is applied to the underwater image processing.This paper addresses the problem of generating super-resolution underwater images by convolutional neural network framework technology.We research the degradation model of underwater images,and analyze the lower-resolution factors of underwater images in different situations,and compare different traditional super-resolution image reconstruction algorithms.We further show that the algorithm of super-resolution using deep convolution networks(SRCNN)which applied to super-resolution underwater images achieves good results. 展开更多
关键词 underwater image image super-resolution algorithm algorithm reconstruction degradation model
下载PDF
UnderwaterWaste Recognition and Localization Based on Improved YOLOv5 被引量:3
11
作者 Jinxing Niu Shaokui Gu +1 位作者 Junmin Du Yongxing Hao 《Computers, Materials & Continua》 SCIE EI 2023年第8期2015-2031,共17页
With the continuous development of the economy and society,plastic pollution in rivers,lakes,oceans,and other bodies of water is increasingly severe,posing a serious challenge to underwater ecosystems.Effective cleani... With the continuous development of the economy and society,plastic pollution in rivers,lakes,oceans,and other bodies of water is increasingly severe,posing a serious challenge to underwater ecosystems.Effective cleaning up of underwater litter by robots relies on accurately identifying and locating the plastic waste.However,it often causes significant challenges such as noise interference,low contrast,and blurred textures in underwater optical images.A weighted fusion-based algorithm for enhancing the quality of underwater images is proposed,which combines weighted logarithmic transformations,adaptive gamma correction,improved multi-scale Retinex(MSR)algorithm,and the contrast limited adaptive histogram equalization(CLAHE)algorithm.The proposed algorithm improves brightness,contrast,and color recovery and enhances detail features resulting in better overall image quality.A network framework is proposed in this article based on the YOLOv5 model.MobileViT is used as the backbone of the network framework,detection layer is added to improve the detection capability for small targets,self-attention and mixed-attention modules are introduced to enhance the recognition capability of important features.The cross stage partial(CSP)structure is employed in the spatial pyramid pooling(SPP)section to enrich feature information,and the complete intersection over union(CIOU)loss is replaced with the focal efficient intersection over union(EIOU)loss to accelerate convergence while improving regression accuracy.Experimental results proved that the target recognition algorithm achieved a recognition accuracy of 0.913 and ensured a recognition speed of 45.56 fps/s.Subsequently,Using red,green,blue and depth(RGB-D)camera to construct a system for identifying and locating underwater plastic waste.Experiments were conducted underwater for recognition,localization,and error analysis.The experimental results demonstrate the effectiveness of the proposed method for identifying and locating underwater plastic waste,and it has good localization accuracy. 展开更多
关键词 underwater image enhancement detection of waste underwater target localization RGB-D camera
下载PDF
Underwater Terrain Image Stitching Based on Spatial Gradient Feature Block 被引量:1
12
作者 Zhenzhou Wang Jiashuo Li +1 位作者 Xiang Wang Xuanhao Niu 《Computers, Materials & Continua》 SCIE EI 2022年第8期4157-4171,共15页
At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature poi... At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature points.In order to better realize the stitching of underwater terrain images and solve the problems of slow traditional image stitching speed,we proposed an improved algorithm for underwater terrain image stitching based on spatial gradient feature block.First,the spatial gradient fuzzy C-Means algorithm is used to divide the underwater terrain image into feature blocks with the fusion of spatial gradient information.The accelerated-KAZE(AKAZE)algorithm is used to combine the feature block information to match the reference image and the target image.Then,the random sample consensus(RANSAC)is applied to optimize the matching results.Finally,image fusion is performed with the global homography and the optimal seam-line method to improve the accuracy of image overlay fusion.The experimental results show that the proposed method in this paper effectively divides images into feature blocks by combining spatial information and gradient information,which not only solves the problem of stitching failure of underwater terrain images due to unobvious features,and further reduces the sensitivity to noise,but also effectively reduces the iterative calculation in the feature point matching process of the traditional method,and improves the stitching speed.Ghosting and shape warping are significantly eliminated by re-optimizing the overlap of the image. 展开更多
关键词 underwater terrain images image stitching feature block fuzzy C-means spatial gradient information A-KAZE
下载PDF
Polarimetric Laser Range-Gated Underwater Imaging 被引量:1
13
作者 管今哥 朱京平 田恒 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第7期54-58,共5页
For conventional laser range-gated underwater imaging (RG[) systems, the target image is obtained based oil the reflective character of the target. One of the main performance limiting factors of conventional RGI is... For conventional laser range-gated underwater imaging (RG[) systems, the target image is obtained based oil the reflective character of the target. One of the main performance limiting factors of conventional RGI is that, when the underwater target has the same reflectivity as the background, it is difficult to distinguish the target from the background. An improvement is to use the polarization components of the reflected light. On the basis of conventional RGI, we propose a polarimetric RGI system that employs a polarization generator and a polarization analyzer to detect and recognize underwater objects. Experimental results demonstrate that, by combining polarization with intensity information, we are better able to enhance identification of the underwater target from other objects of the same reflectivity. 展开更多
关键词 Polarimetric Laser Range-Gated underwater Imaging
下载PDF
An Approach to Synthesize Diverse Underwater Image Dataset 被引量:4
14
作者 Xiaodong LIU Ben M.CHEN 《Instrumentation》 2019年第3期67-75,共9页
Images that are taken underwater mostly present color shift with hazy effects due to the special property of water.Underwater image enhancement methods are proposed to handle this issue.However,their enhancement resul... Images that are taken underwater mostly present color shift with hazy effects due to the special property of water.Underwater image enhancement methods are proposed to handle this issue.However,their enhancement results are only evaluated on a small number of underwater images.The lack of a sufficiently large and diverse dataset for efficient evaluation of underwater image enhancement methods provokes the present paper.The present paper proposes an organized method to synthesize diverse underwater images,which can function as a benchmark dataset.The present synthesis is based on the underwater image formation model,which describes the physical degradation process.The indoor RGB-D image dataset is used as the seed for underwater style image generation.The ambient light is simulated based on the statistical mean value of real-world underwater images.Attenuation coefficients for diverse water types are carefully selected.Finally,in total 14490 underwater images of 10 water types are synthesized.Based on the synthesized database,state-of-the-art image enhancement methods are appropriately evaluated.Besides,the large diverse underwater image database is beneficial in the development of learning-based methods. 展开更多
关键词 Image Processing underwater Image Enhancement underwater Image Synthesis
下载PDF
Underwater Image Enhancement Based on IMSRCR and CLAHE-WGIF 被引量:2
15
作者 LI Ting ZHOU Xianchun +1 位作者 ZHANG Ying SHI Zhengting 《Instrumentation》 2023年第2期19-29,共11页
Aiming at the scattering and absorption of light in the water body,which causes the problems of color shift,uneven brightness,poor sharpness and missing details in the acquired underwater images,an underwater image en... Aiming at the scattering and absorption of light in the water body,which causes the problems of color shift,uneven brightness,poor sharpness and missing details in the acquired underwater images,an underwater image enhancement algorithm based on IMSRCR and CLAHE-WGIF is proposed.Firstly,the IMSRCR algorithm proposed in this paper is used to process the original underwater image with adaptive color shift correction;secondly,the image is converted to HSV color space,and the segmentation exponential algorithm is used to process the S component to enhance the image saturation;finally,multi-scale Retinex is used to decompose the V component image into detail layer and base layer,and adaptive two-dimensional gamma correction is made to the base layer to adjust the brightness unevenness,while the detail layer is processed by CLAHE-WGIF algorithm to enhance the image contrast and detail information.The experimental results show that our algorithm has some advantages over existing algorithms in both subjective and objective evaluations,and the information entropy of the image is improved by 6.3%on average,and the UIQM and UCIQE indexes are improved by 12.9%and 20.3%on average. 展开更多
关键词 underwater Image Enhancement HSV Color Space MSRCR CLAHE WGIF
下载PDF
DESIGN OF MODULATION AND COMPRESSION CODING IN UNDERWATER ACOUSTIC IMAGE TRANSMISSION
16
作者 程恩 余丽敏 林耿超 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2002年第3期202-207,共6页
This paper describes the design of modulation, compression coding and transmission control in underwater acoustic color image transmission system. This design adapts a special system of modulation and transmission con... This paper describes the design of modulation, compression coding and transmission control in underwater acoustic color image transmission system. This design adapts a special system of modulation and transmission control based on a DSP(Digital Signal Processing) chip, to cope with the complex underwater acoustic channel. The hardware block diagram and software flow chart are presented. 展开更多
关键词 underwater image transmission MFSK (Multiple Frequency Shifting Keying) RLE (Route Length Encode) DSP
下载PDF
Image Quality Improvement for Underwater Visual Inspections of Nuclear Power Plants
17
作者 HUANG San’ao WANG Xudong +1 位作者 LIANG Ying XU Ke 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第6期1037-1047,共11页
Visual inspection of the key components of nuclear power plants(NPPs)is important for NPP operation and maintenance. However,the underwater environment and existing radiation will lead to image degradation,thus making... Visual inspection of the key components of nuclear power plants(NPPs)is important for NPP operation and maintenance. However,the underwater environment and existing radiation will lead to image degradation,thus making it difficult to identify surface defects. In this study,a method for improving the quality of underwater images is proposed.By analyzing the degradation characteristics of underwater detection image,the image enhancement technology is used to improve the color richness of the image,and then the improved dark channel prior(DCP)algorithm is used to restore it. By modifying the estimation formula of transmittance and background light,the correction of insufficient brightness in DCP restored image is realized. The proposed method is compared with other state-of-the-art methods. The results show that the proposed method can achieve higher scores and improve the image quality by correcting the color and restoring local details,thus effectively enhancing the reliability of visual inspection of NPPs. 展开更多
关键词 image quality improvement visual inspection nuclear power plant underwater image
下载PDF
Underwater Diver Image Enhancement via Dual-Guided Filtering
18
作者 Jingchun Zhou Taian Shi +1 位作者 Weishi Zhang Weishen Chu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期1063-1081,共19页
The scattering and absorption of light propagating underwater cause the underwater images to present lowcontrast,color deviation,and loss of details,which in turn make human posture recognition challenging.To address ... The scattering and absorption of light propagating underwater cause the underwater images to present lowcontrast,color deviation,and loss of details,which in turn make human posture recognition challenging.To address these issues,this study introduced the dual-guided filtering technique and developed an underwater diver image improvement method.First,the color distortion of the underwater diver image was solved using white balance technology to obtain a color-corrected image.Second,dual-guided filtering was applied to the white balanced image to correct the distorted color and enhance its details.Four feature weight maps of the two images were then calculated,and two normalizedweightmapswere constructed formulti-scale fusion using normalization.To better preserve the obtained image details,the fusion image was histogram-stretched to obtain the final enhanced result.The experimental results validated that this method has improved the accuracy of underwater human posture recognition. 展开更多
关键词 Multi-scale fusion image enhancement guided filter underwater diver images
下载PDF
Restoring Polarization Angle Map for High- Fidelity Underwater Imaging
19
作者 Yiming Li Liheng Bian 《Journal of Beijing Institute of Technology》 EI CAS 2022年第2期178-184,共7页
Obtaining polarization information enables researchers to enhance underwater imaging quality by removing backscattering effect and to distinguish targets of different materials.However,due to the simplified assumption... Obtaining polarization information enables researchers to enhance underwater imaging quality by removing backscattering effect and to distinguish targets of different materials.However,due to the simplified assumption of unpolarized target light,most of the existing underwater polari-metric methods lose part of the polarization information,resulting in degraded imaging quality.In this work,a novel underwater polarimetric method is reported,which obtains the angle of polariza-tion(AOP)map to improve imaging quality.Specifically,the Stokes vectors were exploited to re-move the backscattering effect by obtaining two pairs of orthogonal polarization sub-images of the underwater scene.The target reflected light and the angle between the polarization directions of the target reflected light and the backscattered light were computed through the two groups of the or-thogonal polarized sub-images.The AOP map of the target light could be derived from the Stokes vectors.Then,the transmission map of the target light was estimated by using the non-local color priorly combined with the properties of light propagating underwater.Experiments show that the reported technique enables distinguishing different targets when the colors are similar.The quantit-ative metrics validate that the reported technique produces state-of-the-art performance for under-water imaging. 展开更多
关键词 underwater imaging POLARIZATION angle of polarization(AOP) Stokes vector
下载PDF
Underwater Acoustic Image Transmission System Based on DSF
20
作者 程恩 许茹 《Marine Science Bulletin》 2002年第1期27-33,共7页
The underwater acoustic image transmission system based on the high-speed DSP device TMS320C549 has been studied.We use Goertzel algorithm for source decoding and MFSK for modulation.Turbo code is used for channel cod... The underwater acoustic image transmission system based on the high-speed DSP device TMS320C549 has been studied.We use Goertzel algorithm for source decoding and MFSK for modulation.Turbo code is used for channel coding and decoding.The purpose is to implement underwater video image data transmission. 展开更多
关键词 underwater image transmission MFSK Goertzel algorithm Turbo code
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部