This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Syste...This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Systems(CCSDS)standard.However,the information frame lengths of the CCSDS turbo codes are not suitable for flexible sub-frame parallelism design.To mitigate this issue,we propose a padding method that inserts several bits before the information frame header.To obtain low-latency performance and high resource utilization,two-level intra-frame parallelisms and an efficient data structure are considered.The presented Max-Log-Map decoder can be adopted to decode the Long Term Evolution(LTE)turbo codes with only small modifications.The proposed CCSDS turbo decoder at 10 iterations on NVIDIA RTX3070 achieves about 150 Mbps and 50Mbps throughputs for the code rates 1/6 and 1/2,respectively.展开更多
This paper aims to solve large-scale and complex isogeometric topology optimization problems that consumesignificant computational resources. A novel isogeometric topology optimization method with a hybrid parallelstr...This paper aims to solve large-scale and complex isogeometric topology optimization problems that consumesignificant computational resources. A novel isogeometric topology optimization method with a hybrid parallelstrategy of CPU/GPU is proposed, while the hybrid parallel strategies for stiffness matrix assembly, equationsolving, sensitivity analysis, and design variable update are discussed in detail. To ensure the high efficiency ofCPU/GPU computing, a workload balancing strategy is presented for optimally distributing the workload betweenCPU and GPU. To illustrate the advantages of the proposedmethod, three benchmark examples are tested to verifythe hybrid parallel strategy in this paper. The results show that the efficiency of the hybrid method is faster thanserial CPU and parallel GPU, while the speedups can be up to two orders of magnitude.展开更多
针对具有物理机制的分布式水文模型对大流域、长序列模拟计算时间长、模拟速度慢的问题,引入基于GPU的并行计算技术,实现分布式水文模型WEP-L(water and energy transfer processes in large river basins)产流过程的并行化。选择鄱阳...针对具有物理机制的分布式水文模型对大流域、长序列模拟计算时间长、模拟速度慢的问题,引入基于GPU的并行计算技术,实现分布式水文模型WEP-L(water and energy transfer processes in large river basins)产流过程的并行化。选择鄱阳湖流域为实验区,采用计算能力为8.6的NVIDIA RTX A4000对算法性能进行测试。研究表明:提出的基于GPU的分布式水文模型并行算法具有良好的加速效果,当线程总数越接近划分的子流域个数(计算任务量)时,并行性能越好,在实验流域WEP-L模型子流域单元为8712个时,加速比最大达到2.5左右;随着计算任务量的增加,加速比逐渐增大,当实验流域WEP-L模型子流域单元增加到24897个时,加速比能达到3.5,表明GPU并行算法在大尺度流域分布式水文模型计算中具有良好的发展潜力。展开更多
A computational fluid dynamics(CFD)solver for a GPU/CPU heterogeneous architecture parallel computing platform is developed to simulate incompressible flows on billion-level grid points.To solve the Poisson equation,t...A computational fluid dynamics(CFD)solver for a GPU/CPU heterogeneous architecture parallel computing platform is developed to simulate incompressible flows on billion-level grid points.To solve the Poisson equation,the conjugate gradient method is used as a basic solver,and a Chebyshev method in combination with a Jacobi sub-preconditioner is used as a preconditioner.The developed CFD solver shows good performance on parallel efficiency,which exceeds 90%in the weak-scalability test when the number of grid points allocated to each GPU card is greater than 2083.In the acceleration test,it is found that running a simulation with 10403 grid points on 125 GPU cards accelerates by 203.6x over the same number of CPU cores.The developed solver is then tested in the context of a two-dimensional lid-driven cavity flow and three-dimensional Taylor-Green vortex flow.The results are consistent with previous results in the literature.展开更多
In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units an...In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units and high stifness is proposed based on screw theory. Firstly, a new criterion for the full decoupled of PMs is presented that the reciprocal product of the transmission wrench screw matrix and the output twist screw matrix of PMs is a diagonal matrix, and all elements on the main diagonal are nonzero constants. The forms of the transmission wrench screws are determined by the criterion. Secondly, the forms of the actuated and unactuated screws can be obtained according to their relationships with the transmission wrench screws. The basic decoupled limbs are generated by combination of the above actuated and unactuated screws. Finally, a closed-loop units construction method is investigated to apply the decoupled mechanisms in a better way on the high stifness occasion. The closed-loop units are constructed in the basic decoupled limbs to generate a high-stifness fully decoupled 3T PM. Kinematic and stifness analyses show that the Jacobian matrix is a diagonal matrix, and the stifness is obviously higher than that of the coupling mechanisms, which verifes the correctness of the proposed synthesis method. The mechanism synthesized by this method has a good application prospect in vehicle durability test platform.展开更多
Conventional gradient-based full waveform inversion (FWI) is a local optimization, which is highly dependent on the initial model and prone to trapping in local minima. Globally optimal FWI that can overcome this limi...Conventional gradient-based full waveform inversion (FWI) is a local optimization, which is highly dependent on the initial model and prone to trapping in local minima. Globally optimal FWI that can overcome this limitation is particularly attractive, but is currently limited by the huge amount of calculation. In this paper, we propose a globally optimal FWI framework based on GPU parallel computing, which greatly improves the efficiency, and is expected to make globally optimal FWI more widely used. In this framework, we simplify and recombine the model parameters, and optimize the model iteratively. Each iteration contains hundreds of individuals, each individual is independent of the other, and each individual contains forward modeling and cost function calculation. The framework is suitable for a variety of globally optimal algorithms, and we test the framework with particle swarm optimization algorithm for example. Both the synthetic and field examples achieve good results, indicating the effectiveness of the framework. .展开更多
Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining perform...Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach.展开更多
【应用背景】快速射电暴(Fast Radio Burst,FRB)搜寻是500米口径球面射电望远镜(FAST)的重要科学目标之一,其计算复杂度高,数据量大,当前算法GPU利用率偏低,数据处理需较多的人工介入操作。【目的】在不修改算法实现的前提下,实现进程级...【应用背景】快速射电暴(Fast Radio Burst,FRB)搜寻是500米口径球面射电望远镜(FAST)的重要科学目标之一,其计算复杂度高,数据量大,当前算法GPU利用率偏低,数据处理需较多的人工介入操作。【目的】在不修改算法实现的前提下,实现进程级GPU并行优化,提高GPU整体资源利用率,简化算法运行调度,支持利用自动化脚本驱动计算过程。【方法】利用容器化封装FRB搜寻算法,结合GPU聚合技术实现多个FRB搜寻计算容器的多进程并行,支持GPU闲时复用。通过容器化封装屏蔽了GPU调用、依赖库管理等技术细节,减少人工介入操作。【结果】算法实验结果表明,在不修改原始算法、不增加GPU资源的前提下,将单GPU绑定6个计算进程,并行优化可实现FRB搜寻算法的加速比达到5.3,并行效率达到0.88,取得良好的并行效果。【结论】基于容器化封装及进程级GPU聚合的并行优化,可实现GPU利用率及计算效率的提升,有效支持自动化处理。该方法还具有良好的通用性,可适用于类似应用的并行优化。展开更多
基金supported by the Fundamental Research Funds for the Central Universities(FRF-TP20-062A1)Guangdong Basic and Applied Basic Research Foundation(2021A1515110070)。
文摘This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Systems(CCSDS)standard.However,the information frame lengths of the CCSDS turbo codes are not suitable for flexible sub-frame parallelism design.To mitigate this issue,we propose a padding method that inserts several bits before the information frame header.To obtain low-latency performance and high resource utilization,two-level intra-frame parallelisms and an efficient data structure are considered.The presented Max-Log-Map decoder can be adopted to decode the Long Term Evolution(LTE)turbo codes with only small modifications.The proposed CCSDS turbo decoder at 10 iterations on NVIDIA RTX3070 achieves about 150 Mbps and 50Mbps throughputs for the code rates 1/6 and 1/2,respectively.
基金the National Key R&D Program of China(2020YFB1708300)the National Natural Science Foundation of China(52005192)the Project of Ministry of Industry and Information Technology(TC210804R-3).
文摘This paper aims to solve large-scale and complex isogeometric topology optimization problems that consumesignificant computational resources. A novel isogeometric topology optimization method with a hybrid parallelstrategy of CPU/GPU is proposed, while the hybrid parallel strategies for stiffness matrix assembly, equationsolving, sensitivity analysis, and design variable update are discussed in detail. To ensure the high efficiency ofCPU/GPU computing, a workload balancing strategy is presented for optimally distributing the workload betweenCPU and GPU. To illustrate the advantages of the proposedmethod, three benchmark examples are tested to verifythe hybrid parallel strategy in this paper. The results show that the efficiency of the hybrid method is faster thanserial CPU and parallel GPU, while the speedups can be up to two orders of magnitude.
文摘针对具有物理机制的分布式水文模型对大流域、长序列模拟计算时间长、模拟速度慢的问题,引入基于GPU的并行计算技术,实现分布式水文模型WEP-L(water and energy transfer processes in large river basins)产流过程的并行化。选择鄱阳湖流域为实验区,采用计算能力为8.6的NVIDIA RTX A4000对算法性能进行测试。研究表明:提出的基于GPU的分布式水文模型并行算法具有良好的加速效果,当线程总数越接近划分的子流域个数(计算任务量)时,并行性能越好,在实验流域WEP-L模型子流域单元为8712个时,加速比最大达到2.5左右;随着计算任务量的增加,加速比逐渐增大,当实验流域WEP-L模型子流域单元增加到24897个时,加速比能达到3.5,表明GPU并行算法在大尺度流域分布式水文模型计算中具有良好的发展潜力。
基金supported by the National Natural Science Foundation of China (NSFC)Basic Science Center Program for Multiscale Problems in Nonlinear Mechanics’(Grant No. 11988102)NSFC project (Grant No. 11972038)
文摘A computational fluid dynamics(CFD)solver for a GPU/CPU heterogeneous architecture parallel computing platform is developed to simulate incompressible flows on billion-level grid points.To solve the Poisson equation,the conjugate gradient method is used as a basic solver,and a Chebyshev method in combination with a Jacobi sub-preconditioner is used as a preconditioner.The developed CFD solver shows good performance on parallel efficiency,which exceeds 90%in the weak-scalability test when the number of grid points allocated to each GPU card is greater than 2083.In the acceleration test,it is found that running a simulation with 10403 grid points on 125 GPU cards accelerates by 203.6x over the same number of CPU cores.The developed solver is then tested in the context of a two-dimensional lid-driven cavity flow and three-dimensional Taylor-Green vortex flow.The results are consistent with previous results in the literature.
基金Supported by National Natural Science Foundation of China(Grant No.52275032)Key Project of Hebei Provincial Natural Science Foundation of China(Grant No.E2022203077)Hebei Provincial Key Research and Development Plan of China(Grant No.202230808010057).
文摘In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units and high stifness is proposed based on screw theory. Firstly, a new criterion for the full decoupled of PMs is presented that the reciprocal product of the transmission wrench screw matrix and the output twist screw matrix of PMs is a diagonal matrix, and all elements on the main diagonal are nonzero constants. The forms of the transmission wrench screws are determined by the criterion. Secondly, the forms of the actuated and unactuated screws can be obtained according to their relationships with the transmission wrench screws. The basic decoupled limbs are generated by combination of the above actuated and unactuated screws. Finally, a closed-loop units construction method is investigated to apply the decoupled mechanisms in a better way on the high stifness occasion. The closed-loop units are constructed in the basic decoupled limbs to generate a high-stifness fully decoupled 3T PM. Kinematic and stifness analyses show that the Jacobian matrix is a diagonal matrix, and the stifness is obviously higher than that of the coupling mechanisms, which verifes the correctness of the proposed synthesis method. The mechanism synthesized by this method has a good application prospect in vehicle durability test platform.
文摘Conventional gradient-based full waveform inversion (FWI) is a local optimization, which is highly dependent on the initial model and prone to trapping in local minima. Globally optimal FWI that can overcome this limitation is particularly attractive, but is currently limited by the huge amount of calculation. In this paper, we propose a globally optimal FWI framework based on GPU parallel computing, which greatly improves the efficiency, and is expected to make globally optimal FWI more widely used. In this framework, we simplify and recombine the model parameters, and optimize the model iteratively. Each iteration contains hundreds of individuals, each individual is independent of the other, and each individual contains forward modeling and cost function calculation. The framework is suitable for a variety of globally optimal algorithms, and we test the framework with particle swarm optimization algorithm for example. Both the synthetic and field examples achieve good results, indicating the effectiveness of the framework. .
基金This work was supported by the National Natural Science Foundation of China(62073155,62002137,62106088,62206113)the High-End Foreign Expert Recruitment Plan(G2023144007L)the Fundamental Research Funds for the Central Universities(JUSRP221028).
文摘Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach.
文摘【应用背景】快速射电暴(Fast Radio Burst,FRB)搜寻是500米口径球面射电望远镜(FAST)的重要科学目标之一,其计算复杂度高,数据量大,当前算法GPU利用率偏低,数据处理需较多的人工介入操作。【目的】在不修改算法实现的前提下,实现进程级GPU并行优化,提高GPU整体资源利用率,简化算法运行调度,支持利用自动化脚本驱动计算过程。【方法】利用容器化封装FRB搜寻算法,结合GPU聚合技术实现多个FRB搜寻计算容器的多进程并行,支持GPU闲时复用。通过容器化封装屏蔽了GPU调用、依赖库管理等技术细节,减少人工介入操作。【结果】算法实验结果表明,在不修改原始算法、不增加GPU资源的前提下,将单GPU绑定6个计算进程,并行优化可实现FRB搜寻算法的加速比达到5.3,并行效率达到0.88,取得良好的并行效果。【结论】基于容器化封装及进程级GPU聚合的并行优化,可实现GPU利用率及计算效率的提升,有效支持自动化处理。该方法还具有良好的通用性,可适用于类似应用的并行优化。