Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,...Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,such as mixed pixels,atmospheric interference,and difficult field validation.The biomass of green tide has been lacking a high-precision estimation method.In this study,high-resolution unmanned aerial vehicle(UAV)RS was used to quantitatively map the biomass of green tides.By utilizing experimental data from previous studies,a robust relationship was established to link biomass to the red-green-blue floating algae index(RGB-FAI).Then,the lab-based model for green tide biomass from visible images taken by the UAV camera was developed and validated by field measurements.Re sults show that the accurate and cost-effective method is able to estimate the green tide biomass and its changes in given local waters of the near and far seas.The study provided an effective complement to the traditional satellite RS,as well as high-precision quantitative techniques for decision-making in disaster management.展开更多
Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential....Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.展开更多
Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in th...Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point.展开更多
At 5:39 am on June 24, 2017, a landslide occurred in the village of Xinmo in Maoxian County, Aba Tibet and Qiang Autonomous Prefecture(Sichuan Province, Southwest China). On June 25, aerial images were acquired from a...At 5:39 am on June 24, 2017, a landslide occurred in the village of Xinmo in Maoxian County, Aba Tibet and Qiang Autonomous Prefecture(Sichuan Province, Southwest China). On June 25, aerial images were acquired from an unmanned aerial vehicle(UAV), and a digital elevation model(DEM) was processed. Landslide geometrical features were then analyzed. These are the front and rear edge elevation, accumulation area and horizontal sliding distance. Then, the volume and the spatial distribution of the thickness of the deposit were calculated from the difference between the DEM available before the landslide, and the UAV-derived DEM collected after the landslide. Also, the disaster was assessed using high-resolution satellite images acquired before the landslide. These include Quick Bird, Pleiades-1 and GF-2 images with spatial resolutions of 0.65 m, 0.70 m, and 0.80 m, respectively, and the aerial images acquired from the UAV after the landslide with a spatial resolution of 0.1 m. According to the analysis, the area of the landslide was 1.62 km2, and the volume of the landslide was 7.70 ± 1.46 million m3. The average thickness of the landslide accumulation was approximately 8 m. The landslide destroyed a total of 103 buildings. The area of destroyed farmlands was 2.53 ha, and the orchard area was reduced by 28.67 ha. A 2-km section of Songpinggou River was blocked and a 2.1-km section of township road No. 104 was buried. Constrained by the terrain conditions, densely populated and more economically developed areas in the upper reaches of the Minjiang River basin are mainly located in the bottom of the valleys. This is a dangerous area regarding landslide, debris flow and flash flood events Therefore, in mountainous, high-risk disaster areas, it is important to carefully select residential sites to avoid a large number of casualties.展开更多
Background:Current automated forest investigation is facing a dilemma over how to achieve high tree-and plotlevel completeness while maintaining a high cost and labor efficiency.This study tackles the challenge by exp...Background:Current automated forest investigation is facing a dilemma over how to achieve high tree-and plotlevel completeness while maintaining a high cost and labor efficiency.This study tackles the challenge by exploring a new concept that enables an efficient fusion of aerial and terrestrial perspectives for digitizing and characterizing individual trees in forests through an Unmanned Aerial Vehicle(UAV)that flies above and under canopies in a single operation.The advantage of such concept is that the aerial perspective from the above-canopy UAV and the terrestrial perspective from the under-canopy UAV can be seamlessly integrated in one flight,thus grants the access to simultaneous high completeness,high efficiency,and low cost.Results:In the experiment,an approximately 0.5 ha forest was covered in ca.10 min from takeoff to landing.The GNSS-IMU based positioning supports a geometric accuracy of the produced point cloud that is equivalent to that of the mobile mapping systems,which leads to a 2–4 cm RMSE of the diameter at the breast height estimates,and a 4–7 cm RMSE of the stem curve estimates.Conclusions:Results of the experiment suggested that the integrated flight is capable of combining the high completeness of upper canopies from the above-canopy perspective and the high completeness of stems from the terrestrial perspective.Thus,it is a solution to combine the advantages of the terrestrial static,the mobile,and the above-canopy UAV observations,which is a promising step forward to achieve a fully autonomous in situ forest inventory.Future studies should be aimed to further improve the platform positioning,and to automatize the UAV operation.展开更多
Latest advancements in the integration of camera sensors paves a way for newUnmannedAerialVehicles(UAVs)applications such as analyzing geographical(spatial)variations of earth science in mitigating harmful environment...Latest advancements in the integration of camera sensors paves a way for newUnmannedAerialVehicles(UAVs)applications such as analyzing geographical(spatial)variations of earth science in mitigating harmful environmental impacts and climate change.UAVs have achieved significant attention as a remote sensing environment,which captures high-resolution images from different scenes such as land,forest fire,flooding threats,road collision,landslides,and so on to enhance data analysis and decision making.Dynamic scene classification has attracted much attention in the examination of earth data captured by UAVs.This paper proposes a new multi-modal fusion based earth data classification(MMF-EDC)model.The MMF-EDC technique aims to identify the patterns that exist in the earth data and classifies them into appropriate class labels.The MMF-EDC technique involves a fusion of histogram of gradients(HOG),local binary patterns(LBP),and residual network(ResNet)models.This fusion process integrates many feature vectors and an entropy based fusion process is carried out to enhance the classification performance.In addition,the quantum artificial flora optimization(QAFO)algorithm is applied as a hyperparameter optimization technique.The AFO algorithm is inspired by the reproduction and the migration of flora helps to decide the optimal parameters of the ResNet model namely learning rate,number of hidden layers,and their number of neurons.Besides,Variational Autoencoder(VAE)based classification model is applied to assign appropriate class labels for a useful set of feature vectors.The proposedMMF-EDCmodel has been tested using UCM and WHU-RS datasets.The proposed MMFEDC model attains exhibits promising classification results on the applied remote sensing images with the accuracy of 0.989 and 0.994 on the test UCM and WHU-RS dataset respectively.展开更多
[Objectives]To explore the relationship between vegetation index and forest surface fuel load.[Methods]UAV multispectral remote sensing was used to obtain large-scale forest images and obtain structural data of forest...[Objectives]To explore the relationship between vegetation index and forest surface fuel load.[Methods]UAV multispectral remote sensing was used to obtain large-scale forest images and obtain structural data of forest surface fuel load.This experimental area was located in Gaoming District,Foshan City,Guangdong Province.The average surface fuel load of the experimental area was as high as 39.33 t/ha,and the forest surface fuel load of Pinus elliottii was the highest.[Results]The normalized difference vegetation index(NDVI)and enhanced vegetation index(EVI)had a moderately strong correlation with the forest surface fuel load.The regression model of NDVI(X)and forest surface fuel load(Y)was established:Y=-5.9354X+8.4663,and the regression model of EVI(X)and forest surface fuel load(Y)was established:Y=-5.8485X+6.7271.The study also found that the linear relationship between NDVI and surface fuel load was more significant.[Conclusions]Both NDVI and EVI have moderately strong correlations with forest surface fuel load.NDVI is moderately or strongly correlated with the surface fuel load of Pinus massoniana forest,shrub grassland,broad-leaf forest and bamboo forest,while EVI is only strongly correlated with surface fuel load of broad-leaf forest and bamboo forest.It is expected that the relationship between other vegetation indices and forest surface fuel load can be obtained by the method in this study,so as to find a more universal vegetation index for calculating surface fuel load.展开更多
The sense of telepresence is known to be essential in teleoperation environments, where the operator is physically separated from the vehicle. Usually only a visual feedback is provided, but it has been shown that by ...The sense of telepresence is known to be essential in teleoperation environments, where the operator is physically separated from the vehicle. Usually only a visual feedback is provided, but it has been shown that by extending the visual interface with haptic feedback, that is complementing the visual information through the sense of touch, the teleoperator has a better perception of information from the remote environment and its constraints. This paper focuses on a novel concept of haptic cueing for an airborne obstacle avoidance task; the novel cueing algorithm was designed to appear "natural" to the operator, and to improve the human-machine interface without directly acting on the actual aircraft commands. Two different haptic aiding concepts for obstacle avoidance support are presented: an existing and widely used system, belonging to what we called the Direct Haptic Aid (DItA) approach class, and a novel one based on the Indirect Haptic Aid (IHA) approach class. Tests with human operators show that a net improvement in terms of performance (i.e., the number of collisions) is provided by employing the 1HA haptic cue as compared to both the DHA haptic cue and/or the visual cues only. The results clearly show that the IHA philosophy is a valid alternative to the other commonly used approaches, which fall in the DHA category.展开更多
In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communicati...In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communication(ISAC),as an emerging technology in 6G mobile networks,has shown great potential in improving communication performance with the assistance of sensing information.ISAC obtains the prior information about node distribution,reducing the ND time.However,the prior information obtained through ISAC may be imperfect.Hence,an ND algorithm based on reinforcement learning is proposed.The learning automaton(LA)is applied to interact with the environment and continuously adjust the probability of selecting beams to accelerate the convergence speed of ND algorithms.Besides,an efficient ND algorithm in the neighbor maintenance phase is designed,which applies the Kalman filter to predict node movement.Simulation results show that the LA-based ND algorithm reduces the ND time by up to 32%compared with the Scan-Based Algorithm(SBA),which proves the efficiency of the proposed ND algorithms.展开更多
Unmanned aerial vehicles(UAV)based remote sensing is an emerging and important data source.Recently,the use of UAVs for remote sensing applications has been rapidly growing owing to their greater availability and the ...Unmanned aerial vehicles(UAV)based remote sensing is an emerging and important data source.Recently,the use of UAVs for remote sensing applications has been rapidly growing owing to their greater availability and the miniaturization of sensors.UAVs are surpassing satellites and aircraft in remote sensing data supply for many local requirements.In comparison with satellite remote sensing data,most UAV remote sensing data is characterized by high resolution,small coverage area,and heterogeneous multi-sources.However,UAVs lack a unified space–time framework and standardized data process.This paper describes a UAV remote sensing data carrier that can be used as an e-commerce platform for data sharing among registered members and a mission planner for new data acquisition.To the best of our knowledge,the data carriers described herein,are the first of their kind.Through seamless docking with UAVs,the data carrier will form a national UAV network,capable of dynamically obtaining very-high-resolution UAV remote sensing images.In practice,a pilot retrieval system of UAV meta data has been developed to provide a catalogue of data product services.展开更多
In order to achieve dependable and efficient data acquisition and transmission in the Internet of Remote Things(IoRT),we investigate the optimization scheme of IoRT data acquisition under the unmanned aerial vehicle(U...In order to achieve dependable and efficient data acquisition and transmission in the Internet of Remote Things(IoRT),we investigate the optimization scheme of IoRT data acquisition under the unmanned aerial vehicle(UAV)-low earth orbit(LEO)satellite integrated space-air-ground network,in which the UAV acquires data from massive Internet of Things(IoT)devices in special scenarios.To combine with the actual scenario,we consider two different data types,that is,delay-sensitive data and delay-tolerant data,the transmission mode is accordingly divided into two types.For delay-sensitive data,the data will be transmitted via the LEO satellite relay to the data center(DC)in real-time.For delay-tolerant data,the UAV will store and carry the data until the acquisition is completed,and then return to DC.Due to nonconvexity and complexity of the formulated problem,a multi-dimensional optimization Rate Demand based Joint Optimization(RDJO)algorithm is proposed.The algorithm first uses successive convex approximation(SCA)technology to solve the non-convexity,and then based on the block coordinate descent(BCD)method,the data acquisition efficiency is maximized by jointly optimizing UAV deployment,the bandwidth allocation of IoRT devices,and the transmission power of the UAV.Finally,the proposed RDJO algorithm is compared with the conventional algorithms.Simulation consequences demonstrate that the efficiency of IoRT data acquisition can be greatly improved by multi-parameter optimization of the bandwidth allocation,UAV deployment and the transmission power.展开更多
Unmanned Aerial Vehicle(UAV)communication is a promising technology that provides swift and flexible ondemand wireless connectivity for devices without infrastructure support.With recent developments in UAVs,spectrum ...Unmanned Aerial Vehicle(UAV)communication is a promising technology that provides swift and flexible ondemand wireless connectivity for devices without infrastructure support.With recent developments in UAVs,spectrum and energy efficient green UAV communication has become crucial.To deal with this issue,Spectrum Sharing Policy(SSP)is introduced to support green UAV communication.Spectrum sensing in SSP must be carefully formulated to control interference to the primary users and ground communications.In this paper,we propose spectrum sensing for opportunistic spectrum access in green UAV communication to improve the spectrum utilization efficiency.Different from most existing works,we focus on the problem of spectrum sensing of randomly arriving primary signals in the presence of non-Gaussian noise/interference.We propose a novel and improved p-norm-based spectrum sensing scheme to improve the spectrum utilization efficiency in green UAV communication.Firstly,we construct the p-norm decision statistic based on the assumption that the random arrivals of signals follow a Poisson process.Then,we analyze and derive the approximate analytical expressions of the false-alarm and detection probabilities by utilizing the central limit theorem.Simulation results illustrate the validity and superiority of the proposed scheme when the primary signals are corrupted by additive non-Gaussian noise and arrive randomly during spectrum sensing in the green UAV communication.展开更多
基金Supported by the Fundamental Research Projects of Science&Technology Innovation and Development Plan in Yantai City(No.2022JCYJ041)the Natural Science Foundation of Shandong Province(Nos.ZR2022MD042,ZR2022MD028)+1 种基金the Seed Project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences(No.YICE351030601)the NSFC Fund Project(No.42206240)。
文摘Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,such as mixed pixels,atmospheric interference,and difficult field validation.The biomass of green tide has been lacking a high-precision estimation method.In this study,high-resolution unmanned aerial vehicle(UAV)RS was used to quantitatively map the biomass of green tides.By utilizing experimental data from previous studies,a robust relationship was established to link biomass to the red-green-blue floating algae index(RGB-FAI).Then,the lab-based model for green tide biomass from visible images taken by the UAV camera was developed and validated by field measurements.Re sults show that the accurate and cost-effective method is able to estimate the green tide biomass and its changes in given local waters of the near and far seas.The study provided an effective complement to the traditional satellite RS,as well as high-precision quantitative techniques for decision-making in disaster management.
基金supported by the National Natural Science Foundation of China(Grant No.91948303)。
文摘Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.
基金Project(201412016)supported by the Special Fund for Public Projects of National Administration of Surveying,Mapping and Geoinformation of ChinaProject(51174287)supported by the National Natural Science Foundation of China
文摘Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point.
基金funded by the National Key Technologies R&D Program of China (Grants No. 2017YFC0505104)the Key Laboratory of Digital Mapping and Land Information Application of National Administration of Surveying, Mapping and Geoinformation of China (Grants No. DM2016SC09)
文摘At 5:39 am on June 24, 2017, a landslide occurred in the village of Xinmo in Maoxian County, Aba Tibet and Qiang Autonomous Prefecture(Sichuan Province, Southwest China). On June 25, aerial images were acquired from an unmanned aerial vehicle(UAV), and a digital elevation model(DEM) was processed. Landslide geometrical features were then analyzed. These are the front and rear edge elevation, accumulation area and horizontal sliding distance. Then, the volume and the spatial distribution of the thickness of the deposit were calculated from the difference between the DEM available before the landslide, and the UAV-derived DEM collected after the landslide. Also, the disaster was assessed using high-resolution satellite images acquired before the landslide. These include Quick Bird, Pleiades-1 and GF-2 images with spatial resolutions of 0.65 m, 0.70 m, and 0.80 m, respectively, and the aerial images acquired from the UAV after the landslide with a spatial resolution of 0.1 m. According to the analysis, the area of the landslide was 1.62 km2, and the volume of the landslide was 7.70 ± 1.46 million m3. The average thickness of the landslide accumulation was approximately 8 m. The landslide destroyed a total of 103 buildings. The area of destroyed farmlands was 2.53 ha, and the orchard area was reduced by 28.67 ha. A 2-km section of Songpinggou River was blocked and a 2.1-km section of township road No. 104 was buried. Constrained by the terrain conditions, densely populated and more economically developed areas in the upper reaches of the Minjiang River basin are mainly located in the bottom of the valleys. This is a dangerous area regarding landslide, debris flow and flash flood events Therefore, in mountainous, high-risk disaster areas, it is important to carefully select residential sites to avoid a large number of casualties.
基金supported in part by the Strategic Research Council at the Academy of Finland project“Competence Based Growth Through Integrated Disruptive Technologies of 3D Digitalization,Robotics,Geospatial Information and Image Processing/Computing-Point Cloud Ecosystem(293389,314312),Academy of Finland projects“Estimating Forest Resources and Quality-related Attributes Using Automated Methods and Technologies”(334830,334829)”,“Monitoring and understanding forest ecosystem cycles”(334060)。
文摘Background:Current automated forest investigation is facing a dilemma over how to achieve high tree-and plotlevel completeness while maintaining a high cost and labor efficiency.This study tackles the challenge by exploring a new concept that enables an efficient fusion of aerial and terrestrial perspectives for digitizing and characterizing individual trees in forests through an Unmanned Aerial Vehicle(UAV)that flies above and under canopies in a single operation.The advantage of such concept is that the aerial perspective from the above-canopy UAV and the terrestrial perspective from the under-canopy UAV can be seamlessly integrated in one flight,thus grants the access to simultaneous high completeness,high efficiency,and low cost.Results:In the experiment,an approximately 0.5 ha forest was covered in ca.10 min from takeoff to landing.The GNSS-IMU based positioning supports a geometric accuracy of the produced point cloud that is equivalent to that of the mobile mapping systems,which leads to a 2–4 cm RMSE of the diameter at the breast height estimates,and a 4–7 cm RMSE of the stem curve estimates.Conclusions:Results of the experiment suggested that the integrated flight is capable of combining the high completeness of upper canopies from the above-canopy perspective and the high completeness of stems from the terrestrial perspective.Thus,it is a solution to combine the advantages of the terrestrial static,the mobile,and the above-canopy UAV observations,which is a promising step forward to achieve a fully autonomous in situ forest inventory.Future studies should be aimed to further improve the platform positioning,and to automatize the UAV operation.
基金The authors would like to thank the Taif University for funding this work through Taif University Research Supporting,Project Number.(TURSP-2020/277),Taif University,Taif,Saudi Arabia.
文摘Latest advancements in the integration of camera sensors paves a way for newUnmannedAerialVehicles(UAVs)applications such as analyzing geographical(spatial)variations of earth science in mitigating harmful environmental impacts and climate change.UAVs have achieved significant attention as a remote sensing environment,which captures high-resolution images from different scenes such as land,forest fire,flooding threats,road collision,landslides,and so on to enhance data analysis and decision making.Dynamic scene classification has attracted much attention in the examination of earth data captured by UAVs.This paper proposes a new multi-modal fusion based earth data classification(MMF-EDC)model.The MMF-EDC technique aims to identify the patterns that exist in the earth data and classifies them into appropriate class labels.The MMF-EDC technique involves a fusion of histogram of gradients(HOG),local binary patterns(LBP),and residual network(ResNet)models.This fusion process integrates many feature vectors and an entropy based fusion process is carried out to enhance the classification performance.In addition,the quantum artificial flora optimization(QAFO)algorithm is applied as a hyperparameter optimization technique.The AFO algorithm is inspired by the reproduction and the migration of flora helps to decide the optimal parameters of the ResNet model namely learning rate,number of hidden layers,and their number of neurons.Besides,Variational Autoencoder(VAE)based classification model is applied to assign appropriate class labels for a useful set of feature vectors.The proposedMMF-EDCmodel has been tested using UCM and WHU-RS datasets.The proposed MMFEDC model attains exhibits promising classification results on the applied remote sensing images with the accuracy of 0.989 and 0.994 on the test UCM and WHU-RS dataset respectively.
基金Forestry Science and Technology Innovation Project of Guangdong Province(2018KJCX003).
文摘[Objectives]To explore the relationship between vegetation index and forest surface fuel load.[Methods]UAV multispectral remote sensing was used to obtain large-scale forest images and obtain structural data of forest surface fuel load.This experimental area was located in Gaoming District,Foshan City,Guangdong Province.The average surface fuel load of the experimental area was as high as 39.33 t/ha,and the forest surface fuel load of Pinus elliottii was the highest.[Results]The normalized difference vegetation index(NDVI)and enhanced vegetation index(EVI)had a moderately strong correlation with the forest surface fuel load.The regression model of NDVI(X)and forest surface fuel load(Y)was established:Y=-5.9354X+8.4663,and the regression model of EVI(X)and forest surface fuel load(Y)was established:Y=-5.8485X+6.7271.The study also found that the linear relationship between NDVI and surface fuel load was more significant.[Conclusions]Both NDVI and EVI have moderately strong correlations with forest surface fuel load.NDVI is moderately or strongly correlated with the surface fuel load of Pinus massoniana forest,shrub grassland,broad-leaf forest and bamboo forest,while EVI is only strongly correlated with surface fuel load of broad-leaf forest and bamboo forest.It is expected that the relationship between other vegetation indices and forest surface fuel load can be obtained by the method in this study,so as to find a more universal vegetation index for calculating surface fuel load.
文摘The sense of telepresence is known to be essential in teleoperation environments, where the operator is physically separated from the vehicle. Usually only a visual feedback is provided, but it has been shown that by extending the visual interface with haptic feedback, that is complementing the visual information through the sense of touch, the teleoperator has a better perception of information from the remote environment and its constraints. This paper focuses on a novel concept of haptic cueing for an airborne obstacle avoidance task; the novel cueing algorithm was designed to appear "natural" to the operator, and to improve the human-machine interface without directly acting on the actual aircraft commands. Two different haptic aiding concepts for obstacle avoidance support are presented: an existing and widely used system, belonging to what we called the Direct Haptic Aid (DItA) approach class, and a novel one based on the Indirect Haptic Aid (IHA) approach class. Tests with human operators show that a net improvement in terms of performance (i.e., the number of collisions) is provided by employing the 1HA haptic cue as compared to both the DHA haptic cue and/or the visual cues only. The results clearly show that the IHA philosophy is a valid alternative to the other commonly used approaches, which fall in the DHA category.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant No.2024ZCJH01in part by the National Natural Science Foundation of China(NSFC)under Grant No.62271081in part by the National Key Research and Development Program of China under Grant No.2020YFA0711302.
文摘In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communication(ISAC),as an emerging technology in 6G mobile networks,has shown great potential in improving communication performance with the assistance of sensing information.ISAC obtains the prior information about node distribution,reducing the ND time.However,the prior information obtained through ISAC may be imperfect.Hence,an ND algorithm based on reinforcement learning is proposed.The learning automaton(LA)is applied to interact with the environment and continuously adjust the probability of selecting beams to accelerate the convergence speed of ND algorithms.Besides,an efficient ND algorithm in the neighbor maintenance phase is designed,which applies the Kalman filter to predict node movement.Simulation results show that the LA-based ND algorithm reduces the ND time by up to 32%compared with the Scan-Based Algorithm(SBA),which proves the efficiency of the proposed ND algorithms.
基金Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA19050501)the National Natural Science Foundation of China(grant number 41771388,41971359)。
文摘Unmanned aerial vehicles(UAV)based remote sensing is an emerging and important data source.Recently,the use of UAVs for remote sensing applications has been rapidly growing owing to their greater availability and the miniaturization of sensors.UAVs are surpassing satellites and aircraft in remote sensing data supply for many local requirements.In comparison with satellite remote sensing data,most UAV remote sensing data is characterized by high resolution,small coverage area,and heterogeneous multi-sources.However,UAVs lack a unified space–time framework and standardized data process.This paper describes a UAV remote sensing data carrier that can be used as an e-commerce platform for data sharing among registered members and a mission planner for new data acquisition.To the best of our knowledge,the data carriers described herein,are the first of their kind.Through seamless docking with UAVs,the data carrier will form a national UAV network,capable of dynamically obtaining very-high-resolution UAV remote sensing images.In practice,a pilot retrieval system of UAV meta data has been developed to provide a catalogue of data product services.
基金partially supported by the Project of Cultivation for young top-motch Talents of Beijing Municipal Institutions(BPHR202203228)Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund(No.L192022)+3 种基金Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund(No.L212026,L222004)R&D Program of Beijing Municipal Education Commission(No.KM202011232002)National Natural Science Foundation of China under Grant(No.61901043)。
文摘In order to achieve dependable and efficient data acquisition and transmission in the Internet of Remote Things(IoRT),we investigate the optimization scheme of IoRT data acquisition under the unmanned aerial vehicle(UAV)-low earth orbit(LEO)satellite integrated space-air-ground network,in which the UAV acquires data from massive Internet of Things(IoT)devices in special scenarios.To combine with the actual scenario,we consider two different data types,that is,delay-sensitive data and delay-tolerant data,the transmission mode is accordingly divided into two types.For delay-sensitive data,the data will be transmitted via the LEO satellite relay to the data center(DC)in real-time.For delay-tolerant data,the UAV will store and carry the data until the acquisition is completed,and then return to DC.Due to nonconvexity and complexity of the formulated problem,a multi-dimensional optimization Rate Demand based Joint Optimization(RDJO)algorithm is proposed.The algorithm first uses successive convex approximation(SCA)technology to solve the non-convexity,and then based on the block coordinate descent(BCD)method,the data acquisition efficiency is maximized by jointly optimizing UAV deployment,the bandwidth allocation of IoRT devices,and the transmission power of the UAV.Finally,the proposed RDJO algorithm is compared with the conventional algorithms.Simulation consequences demonstrate that the efficiency of IoRT data acquisition can be greatly improved by multi-parameter optimization of the bandwidth allocation,UAV deployment and the transmission power.
基金supported by the National Natural Science Foundation of China under Grant 62071364 and 62231027China Postdoctoral Science Foundation under Grant 2022M722504+1 种基金in part by the Key Research and Development Program of Shaanxi under Grant 2023-YBGY-249in part by the Fundamental Research Funds for the Central Universities under Grant XJSJ23090 and KYFZ23001.
文摘Unmanned Aerial Vehicle(UAV)communication is a promising technology that provides swift and flexible ondemand wireless connectivity for devices without infrastructure support.With recent developments in UAVs,spectrum and energy efficient green UAV communication has become crucial.To deal with this issue,Spectrum Sharing Policy(SSP)is introduced to support green UAV communication.Spectrum sensing in SSP must be carefully formulated to control interference to the primary users and ground communications.In this paper,we propose spectrum sensing for opportunistic spectrum access in green UAV communication to improve the spectrum utilization efficiency.Different from most existing works,we focus on the problem of spectrum sensing of randomly arriving primary signals in the presence of non-Gaussian noise/interference.We propose a novel and improved p-norm-based spectrum sensing scheme to improve the spectrum utilization efficiency in green UAV communication.Firstly,we construct the p-norm decision statistic based on the assumption that the random arrivals of signals follow a Poisson process.Then,we analyze and derive the approximate analytical expressions of the false-alarm and detection probabilities by utilizing the central limit theorem.Simulation results illustrate the validity and superiority of the proposed scheme when the primary signals are corrupted by additive non-Gaussian noise and arrive randomly during spectrum sensing in the green UAV communication.