期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
A novel hybrid estimation of distribution algorithm for solving hybrid flowshop scheduling problem with unrelated parallel machine 被引量:9
1
作者 孙泽文 顾幸生 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1779-1788,共10页
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor... The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms. 展开更多
关键词 hybrid estimation of distribution algorithm teaching learning based optimization strategy hybrid flow shop unrelated parallel machine scheduling
下载PDF
A Multi-Criteria Decision Making for the Unrelated Parallel Machines Scheduling Problem
2
作者 Wei-Shung CHANG Chiuh-Cheng CHYU 《Journal of Software Engineering and Applications》 2009年第5期323-329,共7页
In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-tion environment involving several unrelated parallel machines and we will focus on three objectives:... In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-tion environment involving several unrelated parallel machines and we will focus on three objectives: minimizing makespan, total flow time, and total number of tardy jobs. The decision making method consists of three phases. In the first phase, a mathematical model of a single machine scheduling problem, of which the objective is a weighted sum of the three objectives, is constructed. Such a model will be repeatedly solved by the CPLEX in the proposed Multi-Objective Simulated Annealing (MOSA) algorithm. In the second phase, the MOSA that integrates job clustering method, job group scheduling method, and job group – machine assignment method, is employed to obtain a set of non-dominated group schedules. During this phase, CPLEX software and the bipartite weighted matching algorithm are used repeatedly as parts of the MOSA algorithm. In the last phase, the technique of data envelopment analysis is applied to determine the most preferable schedule. A practical example is then presented in order to demonstrate the applicability of the proposed decision making method. 展开更多
关键词 MULTI-OBJECTIVE Optimization unrelated parallel machines scheduling Simulated ANNEALING Algorithm INTEGER Programming Models MULTI-CRITERIA DECISION Making
下载PDF
Unrelated Parallel-Machine Scheduling Problems with General Truncated Job-Dependent Learning Effect
3
作者 Jibo Wang Chou-Jung Hsu 《Journal of Applied Mathematics and Physics》 2016年第1期21-27,共7页
In this paper, we consider scheduling problems with general truncated job-dependent learning effect on unrelated parallel-machine. The objective functions are to minimize total machine load, total completion (waiting)... In this paper, we consider scheduling problems with general truncated job-dependent learning effect on unrelated parallel-machine. The objective functions are to minimize total machine load, total completion (waiting) time, total absolute differences in completion (waiting) times respectively. If the number of machines is fixed, these problems can be solved in  time respectively, where m is the number of machines and n is the number of jobs. 展开更多
关键词 scheduling unrelated parallel machines Truncated Job-Dependent Learning
下载PDF
Improved Estimation of Distribution Algorithm for Solving Unrelated Parallel Machine Scheduling Problem
4
作者 孙泽文 顾幸生 《Journal of Donghua University(English Edition)》 EI CAS 2016年第5期797-802,共6页
Scheduling problem is a well-known combinatorial optimization problem.An effective improved estimation of distribution algorithm(IEDA) was proposed for minimizing the makespan of the unrelated parallel machine schedul... Scheduling problem is a well-known combinatorial optimization problem.An effective improved estimation of distribution algorithm(IEDA) was proposed for minimizing the makespan of the unrelated parallel machine scheduling problem(UPMSP).Mathematical description was given for the UPMSP.The IEDA which was combined with variable neighborhood search(IEDA_VNS) was proposed to solve the UPMSP in order to improve local search ability.A new encoding method was designed for representing the feasible solutions of the UPMSP.More knowledge of the UPMSP were taken consideration in IEDA_ VNS for probability matrix which was based the processing time matrix.The simulation results show that the proposed IEDA_VNS can solve the problem effectively. 展开更多
关键词 scheduling neighborhood scheduling minimizing processed unrelated probabilistic intelligent heuristic representing
下载PDF
Self-adaptive large neighborhood search algorithm for parallel machine scheduling problems 被引量:7
5
作者 Pei Wang Gerhard Reinelt Yuejin Tan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期208-215,共8页
A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely no... A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis. 展开更多
关键词 non-identical parallel machine scheduling problem with multiple time windows (NPMSPMTW) oversubscribed self- adaptive large neighborhood search (SALNS) machine learning.
下载PDF
A Hybrid Estimation of Distribution Algorithm for Unrelated Parallel Machine Scheduling with Sequence-Dependent Setup Times 被引量:7
6
作者 Ling Wang Shengyao Wang Xiaolong Zheng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第3期235-246,246+236-245,共12页
A hybrid estimation of distribution algorithm (EDA) with iterated greedy (IG) search (EDA-IG) is proposed for solving the unrelated parallel machine scheduling problem with sequence-dependent setup times (UPMSP-SDST).... A hybrid estimation of distribution algorithm (EDA) with iterated greedy (IG) search (EDA-IG) is proposed for solving the unrelated parallel machine scheduling problem with sequence-dependent setup times (UPMSP-SDST). For makespan criterion, some properties about neighborhood search operators to avoid invalid search are derived. A probability model based on neighbor relations of jobs is built in the EDA-based exploration phase to generate new solutions by sampling the promising search region. Two types of deconstruction and reconstruction as well as an IG search are designed in the IG-based exploitation phase. Computational complexity of the algorithm is analyzed, and the effect of parameters is investigated by using the Taguchi method of design-of-experiment. Numerical tests on 1640 benchmark instances are carried out. The results and comparisons demonstrate the effectiveness of the EDA-IG. Especially, the bestknown solutions of 531 instances are updated. In addition, the effectiveness of the properties is also demonstrated by numerical comparisons. © 2014 Chinese Association of Automation. 展开更多
关键词 BENCHMARKING Computational complexity Design of experiments machineRY OPTIMIZATION scheduling Taguchi methods
下载PDF
Generalized multiple time windows model based parallel machine scheduling for TDRSS 被引量:1
7
作者 LIN Peng KUANG Lin-ling +3 位作者 CHEN Xiang YAN Jian LU Jian-hua WANG Xiao-juan 《Journal of Beijing Institute of Technology》 EI CAS 2016年第3期382-391,共10页
The scheduling efficiency of the tracking and data relay satellite system(TDRSS)is strictly limited by the scheduling degrees of freedom(DoF),including time DoF defined by jobs' flexible time windows and spatial ... The scheduling efficiency of the tracking and data relay satellite system(TDRSS)is strictly limited by the scheduling degrees of freedom(DoF),including time DoF defined by jobs' flexible time windows and spatial DoF brought by multiple servable tracking and data relay satellites(TDRSs).In this paper,ageneralized multiple time windows(GMTW)model is proposed to fully exploit the time and spatial DoF.Then,the improvements of service capability and job-completion probability based on the GMTW are theoretically proved.Further,an asymmetric path-relinking(APR)based heuristic job scheduling framework is presented to maximize the usage of DoF provided by the GMTW.Simulation results show that by using our proposal 11%improvement of average jobcompletion probability can be obtained.Meanwhile,the computing time of the time-to-target can be shorten to 1/9 of the GRASP. 展开更多
关键词 parallel machine scheduling problem with generalized multiple time windows (PMGMTW) positive/negative adaptive subsequence adjustment (p/n-ASA) evolutionary asymmetric key-path-relinking (EvAKPR)
下载PDF
考虑运输时间的混合流水车间绿色生产调度
8
作者 唐艺军 杜纪浩 李雪 《现代制造工程》 CSCD 北大核心 2024年第5期23-30,共8页
针对运输时间对混合流水车间绿色生产调度的影响这一问题,以最大完工时间、生产能耗及生产成本为优化目标,提出一种改进的多目标麻雀搜索算法(Improved Multi-Objective Sparrow Search Algorithm,IMOSSA)进行求解,参考非支配排序将种... 针对运输时间对混合流水车间绿色生产调度的影响这一问题,以最大完工时间、生产能耗及生产成本为优化目标,提出一种改进的多目标麻雀搜索算法(Improved Multi-Objective Sparrow Search Algorithm,IMOSSA)进行求解,参考非支配排序将种群适应度值进行划分、引入正余弦策略提高解集质量、加入多项式变异算子和Levy飞行,提高解集的收敛速度和全局搜索能力,避免陷入局部最优。而后设计16种测试算例,将IMOSSA与其他多目标优化算法进行对比,验证了IMOSSA求解的优越性。最后,以某实际生产车间为例,将其生产调度划分为4种模式,证明算法求解的实用性。 展开更多
关键词 混合流水车间 绿色生产调度 不相关并行机 运输时间 多目标麻雀搜索算法
下载PDF
含不相关机的多目标混合流水车间调度
9
作者 轩华 关潇风 王薛苑 《计算机工程与设计》 北大核心 2024年第1期315-320,F0003,共7页
考虑不相关机和传送等因素的多阶段混合流水车间问题,以最小化最大完工时间和总能耗为优化目标建立整数规划模型。针对该问题,提出一种多目标离散灰狼优化算法来求解。设计基于机器分配码和速度选择码的编码方式和基于最短处理时间原则... 考虑不相关机和传送等因素的多阶段混合流水车间问题,以最小化最大完工时间和总能耗为优化目标建立整数规划模型。针对该问题,提出一种多目标离散灰狼优化算法来求解。设计基于机器分配码和速度选择码的编码方式和基于最短处理时间原则的解码方案;采用反向学习策略改进初始灰狼种群质量;将基于多点变异的自走模式和基于均匀两点交叉与多点交叉的跟随模式结合构成搜索模式以协调开发和搜索能力;引入精英保留策略确保优良个体不丢失。通过一系列的仿真实验验证了该算法的有效性。 展开更多
关键词 多阶段混合流水车间 离散灰狼优化算法 不相关机 多目标优化 绿色调度 最小化最大完工时间 传送时间
下载PDF
一类加工需要额外资源的平行机调度问题的算法设计
10
作者 江明月 简苏平 +2 位作者 崔晓龙 万龙 董建明 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第3期321-327,335,共8页
给出了一类加工需要额外资源的平行机调度问题的精确算法。针对在平行机上加工的工件,除需要机器资源外,还需要一个单位额外资源的问题,考虑额外资源的种类和数量有限,以给出问题的最优调度使工件的完工时间最小为目标。该问题源于地球... 给出了一类加工需要额外资源的平行机调度问题的精确算法。针对在平行机上加工的工件,除需要机器资源外,还需要一个单位额外资源的问题,考虑额外资源的种类和数量有限,以给出问题的最优调度使工件的完工时间最小为目标。该问题源于地球观测卫星的数据下载,在智能制造和信息处理等领域亦有广泛应用。给出了该问题的整数规划模型、最优解下界和分支定界算法;给出了一种有效的分支策略以避免重复分支,设计了相应的定界方法以提高算法的收敛速度。通过小规模实例和大量的数值仿真实验,验证了算法的正确性和在不同参数配置下的有效性。 展开更多
关键词 平行机调度问题 额外资源 整数规划模型 分支定界算法
下载PDF
扩展帝国竞争算法求解分布式不相关并行机车间调度问题
11
作者 李立山 陶翼飞 +2 位作者 何毅 周国诚 王镜捷 《计算机应用研究》 CSCD 北大核心 2024年第9期2758-2765,共8页
针对考虑加工约束的分布式不相关并行机车间调度问题,以总运输成本、工厂间并行机齐停评价函数和工件种类平均切换次数均衡评价函数为优化目标,提出一种扩展帝国竞争算法进行求解。该算法在原始帝国竞争算法的基础上,增加了适于工厂分... 针对考虑加工约束的分布式不相关并行机车间调度问题,以总运输成本、工厂间并行机齐停评价函数和工件种类平均切换次数均衡评价函数为优化目标,提出一种扩展帝国竞争算法进行求解。该算法在原始帝国竞争算法的基础上,增加了适于工厂分配的初始化工厂-工件序列群;根据传统帝国竞争算法容易陷入局部最优的缺点,将较劣序列同化分为了外部同化机制和内部同化机制,采用局部和全局相结合的搜索方式实现扩展帝国竞争算法的智能搜索行为;采用部分匹配交叉和单点变异更新工厂-工件序列群,保证工厂-工件序列的多样性。最后设计3个不同规模12个算例,通过仿真实验验证所提算法的有效性,同时对比相关领域研究成果验证了该算法在求解分布式多目标不相关并行机调度问题方面的优越性。 展开更多
关键词 扩展帝国竞争算法 分布式不相关并行机车间调度问题 总运输成本 工厂间并行机齐停评价函数 工厂间工件种类平均切换次数均衡评价函数
下载PDF
Adaptive subsequence adjustment with evolutionary asymmetric path-relinking for TDRSS scheduling 被引量:12
12
作者 Peng Lin Linling Kuang +3 位作者 Xiang Chen Jian Yan Jianhua Lu Xiaojuan Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期800-810,共11页
Due to the limited transmission resources for data relay in the tracking and data relay satellite system (TDRSS), there are many job requirements in busy days which will be discarded in the conventional job scheduli... Due to the limited transmission resources for data relay in the tracking and data relay satellite system (TDRSS), there are many job requirements in busy days which will be discarded in the conventional job scheduling model. Therefore, the improvement of scheduling efficiency in the TDRSS can not only help to increase the resource utilities, but also to reduce the scheduling failure ratio. A model of nonhomogeneous parallel machines scheduling problems with time window (NPM-TW) is firstly built up for the TDRSS, considering the distinct features of the variable preparation time and the nonhomogeneous transmission rates for different types of antennas on each tracking and data relay satellite (TDRS). Then, an adaptive subsequence adjustment (ASA) framework with evolutionary asymmetric path-relinking (EvAPR) is proposed to solve this problem, in which an asymmetric progressive crossover operation is involved to overcome the local optima by the conventional job inserting methods. The numerical results show that, compared with the classical greedy randomized adaptive search procedure (GRASP) algorithm, the scheduling failure ratio of jobs can be reduced over 11% on average by the proposed ASA with EvAPR. 展开更多
关键词 nonhomogeneous parallel machines scheduling problem with time window (NPM-TW) adaptive subsequence adjustment (ASA) asymmetric path-relinking (APR) evolutionary asymmetric path-relinking (EvAPR).
下载PDF
交换突变策略改进萤火虫算法的异构并行机调度
13
作者 罗冬梅 陈玲清 +1 位作者 张瑀鑫 黄兴旺 《集美大学学报(自然科学版)》 CAS 2023年第2期177-184,共8页
序列相关设置时间的异构并行机调度问题是个NP(non-deterministic polynomial)问题,在高纬度情况下难以求解。选取任务完工时间为优化目标建立数学模型,提出一种基于交换突变策略改进的萤火虫算法,并应用该算法进行求解,以期在可接受的... 序列相关设置时间的异构并行机调度问题是个NP(non-deterministic polynomial)问题,在高纬度情况下难以求解。选取任务完工时间为优化目标建立数学模型,提出一种基于交换突变策略改进的萤火虫算法,并应用该算法进行求解,以期在可接受的时间内提供近似最优解的可行方案。实验结果表明,所提出的算法在处理异构并行机调度问题时具有较突出的全局搜索优势,收敛速度较快,搜索精度高,测算了36个算例,其中的28个取得最优平均解,并且较萤火虫算法、模拟退火算法和遗传算法分别减少了11.12%、7.36%和1.43%的平均任务完工时间。 展开更多
关键词 异构并行机调度 萤火虫算法 交换突变 任务完工时间 序相关设置时间
下载PDF
基于并行协同的多车间协同调度问题研究 被引量:2
14
作者 冯润晖 董绍华 《机电工程》 CAS 北大核心 2023年第1期122-128,共7页
传统企业在实际生产中,其多个关联车间之间的生产计划与调度存在难以协作的问题。为此,针对多车间协同调度问题建立了调度模型,提出了一种多车间协同调度的并行协同进化遗传算法(PCE-GA),并且采用该算法对上述模型进行了求解。首先,以... 传统企业在实际生产中,其多个关联车间之间的生产计划与调度存在难以协作的问题。为此,针对多车间协同调度问题建立了调度模型,提出了一种多车间协同调度的并行协同进化遗传算法(PCE-GA),并且采用该算法对上述模型进行了求解。首先,以最小化订单完工时间为目标,建立了单目标调度模型;然后,采用了并行协同进化遗传算法,对上述单目标调度模型进行了求解,基于工件、机器、装配关系的三层整数编码的染色体编码方案,提出了一种协同适应度值计算的方法;最后,以某液压缸生产企业为例,针对单目标调度问题,采用该算法与单车间遗传算法(JSP-GA)、并行协同模拟退火算法(PCE-SA)分别进行了求解,并对其结果进行了比较,以验证PCE-GA算法的优越性。研究结果表明:采用PCE-GA算法得到的优化率为13.3%,比单车间作业调度遗传算法求解的数据优化11.5%,该结果证明了PCE-GA算法在解决多车间协同优化问题时的优越性。 展开更多
关键词 柔性制造系统及柔性制造单元 机械工厂(车间) 生产调度模型 多车间协同调度的并行协同进化遗传算法 单车间遗传算法 并行协同模拟退火算法
下载PDF
采用改进两点交叉算子的改进自适应遗传算法求解不相关并行机混合流水车间调度问题 被引量:3
15
作者 郑堃 练志伟 +3 位作者 顾新艳 朱长建 徐慧 冯雪晴 《中国机械工程》 EI CAS CSCD 北大核心 2023年第14期1647-1658,1671,共13页
针对不相关并行机的混合流水车间调度问题,提出了改进两点交叉算子(ITPX)的自适应遗传算法。首先,利用精确取点方式提高两点交叉算子的求解性能;其次,论证了基于激素调节的自适应选择概率引导种群的收敛趋势;然后,建立优质染色体池和记... 针对不相关并行机的混合流水车间调度问题,提出了改进两点交叉算子(ITPX)的自适应遗传算法。首先,利用精确取点方式提高两点交叉算子的求解性能;其次,论证了基于激素调节的自适应选择概率引导种群的收敛趋势;然后,建立优质染色体池和记忆因子来记录种群迭代的优质解,并实现两种不同区域的交叉。实验结果表明,ITPX可节省优化时间,提高求解性能;自适应概率可增强收敛性;改进两点交叉算子的改进自适应遗传算法(ITPX-IAGA)可缩短40%以上的求解时间,并提高求解性能。 展开更多
关键词 混合流水车间调度问题 不相关并行机 自适应遗传算法 改进两点交叉算子 激素调节机制
下载PDF
考虑附加资源和学习效应的不相关并行机调度
16
作者 郑友莲 雷德明 《系统仿真学报》 CAS CSCD 北大核心 2023年第12期2560-2569,共10页
针对考虑附加资源和学习效应的不相关并行机调度问题(unrelated parallel machine scheduling problem,UPMSP),提出一种动态人工蜂群算法(dynamical artificial bee colony,DABC),实现最小化最大完成时间。给出一种新的编码方法和解码过... 针对考虑附加资源和学习效应的不相关并行机调度问题(unrelated parallel machine scheduling problem,UPMSP),提出一种动态人工蜂群算法(dynamical artificial bee colony,DABC),实现最小化最大完成时间。给出一种新的编码方法和解码过程,并构建2个初始蜂群;提出一种蜂群评估策略,以动态确定雇佣蜂群和跟随蜂群;在雇佣蜂阶段和跟随蜂阶段采用不同搜索策略,以增强算法的探索能力。实验结果表明:DABC的新策略合理有效,且该算法在求解UPMSP时收敛性、平均值和稳定性更强,显示出较强的搜索性能。 展开更多
关键词 不相关并行机调度 附加资源 学习效应 人工蜂群算法
下载PDF
带恶化和学习效应的不相关并行机调度优化 被引量:1
17
作者 轩华 张寒 王薛苑 《控制工程》 CSCD 北大核心 2023年第5期769-778,共10页
研究了以同时最小化makespan和总加权拖期为目标的具有恶化和学习效应的不相关并行机调度问题。针对此类NP-hard问题,设计了基于两段式编码的改进模拟退火算法,结合随机程序和均匀分配策略分别产生第一段的工件加工序列编码和第二段的... 研究了以同时最小化makespan和总加权拖期为目标的具有恶化和学习效应的不相关并行机调度问题。针对此类NP-hard问题,设计了基于两段式编码的改进模拟退火算法,结合随机程序和均匀分配策略分别产生第一段的工件加工序列编码和第二段的机器加工信息编码,以获取问题初始调度解,进而提出了分段式交换和变异扰动操作以得到更新后的新解。通过仿真实验测试改进模拟退火算法,将其与一些启发式算法对比,结果表明,所提算法可获得更好的近优解。 展开更多
关键词 学习效应 恶化效应 不相关并行机调度 改进模拟退火算法 两段式编码
下载PDF
求解不相关并行机混合流水线调度问题的人工蜂群算法 被引量:29
18
作者 王凌 周刚 +1 位作者 许烨 王圣尧 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第12期1551-1557,共7页
针对不相关并行机混合流水线调度问题的特点,设计了一种基于排列的编码和解码方法,提出了一种有效的人工蜂群算法.在引领蜂和跟随蜂搜索阶段采用3种有效的邻域搜索方法,以丰富搜索行为;在侦察蜂搜索阶段通过随机搜索对种群进行更新,以... 针对不相关并行机混合流水线调度问题的特点,设计了一种基于排列的编码和解码方法,提出了一种有效的人工蜂群算法.在引领蜂和跟随蜂搜索阶段采用3种有效的邻域搜索方法,以丰富搜索行为;在侦察蜂搜索阶段通过随机搜索对种群进行更新,以增强种群多样性.同时,通过试验设计方法对算法的参数设置进行了分析,给出指导性参数组合.通过基于典型实例的数值仿真以及与已有代表性算法的比较,验证了所提算法的有效性和鲁棒性. 展开更多
关键词 混合流水线调度 不相关并行机 人工蜂群算法 实验设计
下载PDF
基于两阶段蚁群算法的带非等效并行机的作业车间调度 被引量:36
19
作者 张洁 张朋 刘国宝 《机械工程学报》 EI CAS CSCD 北大核心 2013年第6期136-144,共9页
针对带非等效并行机的作业车间生产调度问题,以制造系统的生产成本、准时交货率等为目标,构建生产调度多目标模型。利用蚁群算法在求解复杂优化问题方面的优越性,建立调度问题与蚁群并行搜索的映射关系,将调度过程分成任务分派和任务排... 针对带非等效并行机的作业车间生产调度问题,以制造系统的生产成本、准时交货率等为目标,构建生产调度多目标模型。利用蚁群算法在求解复杂优化问题方面的优越性,建立调度问题与蚁群并行搜索的映射关系,将调度过程分成任务分派和任务排序两个阶段,每个阶段分别设计蚁群优化算法,并将两阶段寻优蚂蚁有机结合,构建一种具有继承关系的两阶段蚁群并行搜索算法,可以大大提高获得较优解的概率,并且压缩求解空间,快速获得较优解。通过均匀试验和统计分析确定算法的关键参数组合,将两阶段蚁群算法应用不同规模的8组算例。结果表明,无论是优化结果还是计算效率,两阶蚁群算法均优于改进的遗传算法。将所提出两阶段蚁群算法应用于实际车间的生产调度,减少了生产过程中工序间等待时间和缩短了产品交付周期。 展开更多
关键词 作业车间调度问题 非等效并行机 蚁群算法 多目标优化
下载PDF
混合并行机调度问题的多目标优化模型及算法 被引量:11
20
作者 付亚平 黄敏 +1 位作者 王洪峰 王兴伟 《控制理论与应用》 EI CAS CSCD 北大核心 2014年第11期1510-1516,共7页
针对生产工序的合并造成一种串并联共存的生产布局,研究了一种特殊的混合并行机调度问题,并考虑以最小化总流水时间和最小化总延迟工件数量为目标的多目标调度问题,建立了混合整数规划模型.针对模型特点,设计了一种改进的非支配排序遗... 针对生产工序的合并造成一种串并联共存的生产布局,研究了一种特殊的混合并行机调度问题,并考虑以最小化总流水时间和最小化总延迟工件数量为目标的多目标调度问题,建立了混合整数规划模型.针对模型特点,设计了一种改进的非支配排序遗传算法进行求解,采用基于启发式方法的初始种群生成方式以提高种群的质量和多样性,并引入一种局域搜索策略以改善求解算法所获得的非支配解的质量及分布性.通过对大量数值算例进行仿真实验,并与典型的多目标优化算法进行比较,结果表明所提出的模型和算法在收敛性、分布性及极端点质量方面均具有优势,能够较好的解决多目标混合并行机调度问题. 展开更多
关键词 混合并行机调度问题 多目标优化 非支配排序遗传算法 局部搜索
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部