期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
Creep model for unsaturated soils in sliding zone of Qianjiangping landslide 被引量:10
1
作者 Liangchao Zou Shimei Wang Xiaoling Lai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第2期162-167,共6页
The mechanical behavior of sliding zone soils plays a significant role in landslide. In general, the sliding zone soils are basically in unsaturated state due to rainfall infiltration and reservoir water level fluctua... The mechanical behavior of sliding zone soils plays a significant role in landslide. In general, the sliding zone soils are basically in unsaturated state due to rainfall infiltration and reservoir water level fluctuation. Meanwhile, a large number of examples show that the deformation processes of landslides always take a long period of time, indicating that landslides exhibit a time-dependent property. Therefore, the deforma- tion of unsaturated soils of landslide involves creep behaviors. In this paper, the Burgers creep model for unsaturated soils under triaxial stress state is considered based on the unsaturated soil mechanics. Then, by curve fitting using the least squares method, creep parameters in different matric suction states are obtained based on the creep test data of unsaturated soils in the sliding zones of Qianjiangping landslide. Results show that the predicted results are in good agreement with the experimental data, Finally, to fur- ther explore the creep characteristics of the unsaturated soils in sliding zones, the relationships between parameters of the model and matric suction are analyzed and a revised Burgers creep model is developed correspondingly. Simulations on another group of test data are performed by using the modified Burgers creep model and reasonable results are observed, 展开更多
关键词 Sliding zone unsaturated soils Matric suction Creep behavior Burgers model
下载PDF
Critical embedment depth of a rigid retaining wall against overturning in unsaturated soils considering intermediate principal stress and strength nonlinearity 被引量:4
2
作者 张常光 陈新栋 范文 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期944-954,共11页
The overturning stability is vital for the retaining wall design of foundation pits, where the surrounding soils are usually unsaturated due to water draining. Moreover, the intermediate principal stress does affect t... The overturning stability is vital for the retaining wall design of foundation pits, where the surrounding soils are usually unsaturated due to water draining. Moreover, the intermediate principal stress does affect the unsaturated soil strength; meanwhile, the relationship between the unsaturated soil strength and matric suction is nonlinear. This work is to present closed-form equations of critical embedment depth for a rigid retaining wall against overturning by means of moment equilibrium. Matric suction is considered to be distributed uniformly and linearly with depth. The unified shear strength formulation for unsaturated soils under the plane strain condition is adopted to characterize the intermediate principal stress effect, and strength nonlinearity is described by a hyperbolic model of suction angle. The result obtained is orderly series solutions rather than one specific answer; thus, it has wide theoretical significance and good applicability. The validity of this present work is demonstrated by comparing it with a lower bound solution. The traditional overturning designs for rigid retaining walls, in which the saturated soil mechanics neglecting matric suction or the unsaturated soil mechanics based on the Mohr-Coulomb criterion are employed, are special cases of the proposed result. Parametric studies about the intermediate principal stress, matric suction and its distributions along with two strength nonlinearity methods on a new defined critical buried coefficient are discussed. 展开更多
关键词 unsaturated soils retaining walls overturning stability critical embedment depth intermediate principal stress strength nonlinearity
下载PDF
Coupled hydro-mechanical analysis of slope under rainfall using modified elasto-plastic model for unsaturated soils 被引量:3
3
作者 王柳江 刘斯宏 +1 位作者 傅中志 李卓 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1892-1900,共9页
Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression fo... Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression for the load-collapse(LC) yield surface that can match flexibly the normal compression lines at different suctions. The predictions of the modified BBM for the controlled-suction triaxial test on the unsaturated compacted clay are presented and compared with the experimental results. A good agreement between the predicted and experimental results demonstrates the reasonability of the modified BBM. On this basis, the coupled processes of groundwater flow and soil deformation in a homogeneous soil slope under a long heavy rainfall are simulated with the proposed elasto-plastic model. The numerical results reveal that the failure of a slope under rainfall infiltration is due to both the reduction of soil suction and the significant rise in groundwater table. The evolution of the displacements is greatly related to the change of suction. The maximum collapse deformation happens near the surface of slope where infiltrated rainwater can quickly reach. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides. 展开更多
关键词 unsaturated soils modified basic Barcelona model(BBM) numerical analysis rainfall infiltration model slope
下载PDF
Energy analysis of geosynthetic-reinforced slope in unsaturated soils subjected to steady flow 被引量:2
4
作者 XU Jing-shu DU Xiu-li 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1769-1779,共11页
Soils are actually unsaturated in nature. In the present study, a stability analysis of a geosynthetic-reinforced slope in unsaturated soils subjected to various steady flow conditions is conducted based on limit anal... Soils are actually unsaturated in nature. In the present study, a stability analysis of a geosynthetic-reinforced slope in unsaturated soils subjected to various steady flow conditions is conducted based on limit analysis. Work rate by apparent cohesion due to matric suction is calculated based on the effective stress-based equation. Analytical expression of the required cohesion/stability number of slope is derived from the energy balance equation. An optimization code is programmed to capture the optimized solution of the stability number. Comparison is made to verify the present work and a parametric analysis is conducted to investigate the effects of soil type, infilitration rate, reinforcement strength and soil suction on slope stability afterwards. A set of numerical solutions is presented at the end of the paper for preliminary design purposes. 展开更多
关键词 unsaturated soils geosynthetic-reinforced slope stability analysis steady flow
下载PDF
Recent developments of generalized plasticity models for saturated and unsaturated soils 被引量:2
5
作者 Hong-en LI Yong-jun HE +2 位作者 Guang-ya FAN Tong-chun LI Manuel PASTOR 《Water Science and Engineering》 EI CAS 2011年第3期329-344,共16页
Soil undergoes both elastic and plastic deformations under different loading conditions. A relatively accurate constitutive model of soil behaviors should be capable of predicting the elastic and plastic deformations ... Soil undergoes both elastic and plastic deformations under different loading conditions. A relatively accurate constitutive model of soil behaviors should be capable of predicting the elastic and plastic deformations properly. Among a large number of elastoplastic constitutive models developed over the last several decades, constitutive models based on generalized plasticity have been successfully utilized in modeling the mechanical behavior of various soils. This paper attempts to present a review of the most recent developments of generalized plasticity models for geotechnical problems. After a brief review of generalized plasticity theories and constitutive models, limitations of the original Pastor-Zienkiewicz model in practical application are summarized. Afterwards, recent achievements in the generalized plasticity models for both saturated and unsaturated soils and their applicability are analyzed, and a general approach for modification of generalized plasticity models is highlighted. 展开更多
关键词 generalized plasticity constitutive model Pastor-Zienkiewicz model saturated and unsaturated soils
下载PDF
3D Dynamic Response of Layered Unsaturated Soils to Harmonic Loads 被引量:2
6
作者 徐明江 魏德敏 《Journal of Donghua University(English Edition)》 EI CAS 2010年第3期407-411,共5页
Considering compression of solid grain and pore fluids,viscous-coupling interactions and inertial force of fluids,dynamic governing equations for unsaturated soils are established by adopting an exact constitutive for... Considering compression of solid grain and pore fluids,viscous-coupling interactions and inertial force of fluids,dynamic governing equations for unsaturated soils are established by adopting an exact constitutive formula of saturation.These equations are highly versatile and completely compatible with Biot's wave equations for the special case of fully saturated soils.The governing equations in Cartesian coordinates are firstly transformed into a group of state differential equations by introducing the state vector.Then the transfer matrix for layered media are derived by means of a double Fourier transform.Using the transfer matrix followed by boundary and continuity conditions between strata,solutions of steady-state dynamic response for multi-layered unsaturated soils are obtained.Numerical examples show that the echoes generated by boundary and stratum interfaces make the displacement amplitude of the ground surface fluctuate with distance;the relative position of soft and hard strata has a significant influence on displacement. 展开更多
关键词 unsaturated soils dynamic response wave equations double Fourier transform transfer matrix
下载PDF
Two-dimensional plane strain consolidation of unsaturated soils considering the depth-dependent stress 被引量:1
7
作者 Lei Wang Sidong Shen +2 位作者 Tianyi Li Minjie Wen Annan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1603-1614,共12页
In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress di... In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress diffusion on the two-dimensional(2D)plane strain consolidation properties of unsaturated soils when the stress varies with time and depth.A series of semi-analytical solutions in terms of excess pore air and water pressures and settlement for 2D plane strain consolidation of unsaturated soils can be derived with the joint use of Laplace transform and Fourier sine series expansion.Then,the inverse Laplace transform of the semi-analytical solution is given in the time domain using a self-programmed code based on Crump’s method.The reliability of the obtained solutions is proved by the degeneration.Finally,the 2D plots of excess pore pressures and the curves of settlement varying with time,considering different physical parameters of unsaturated soil stratum and depth-dependent stress,are depicted and analyzed to study the 2D plane strain consolidation properties of unsaturated soils subjected to the depthdependent stress. 展开更多
关键词 Semi-analytical solutions Two-dimensional(2D)plane strain CONSOLIDATION unsaturated soils Depth-dependent stress Laplace transform
下载PDF
Semi-analytical solution to one-dimensional consolidation in unsaturated soils 被引量:1
8
作者 秦爱芳 孙德安 谈永卫 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第2期215-226,共12页
In this paper, a series of semi-analytical solutions to one-dimensional consolidation in unsaturated soils are obtained. The air governing equation by Fredlund for unsaturated soils consolidation is simplified. By app... In this paper, a series of semi-analytical solutions to one-dimensional consolidation in unsaturated soils are obtained. The air governing equation by Fredlund for unsaturated soils consolidation is simplified. By applying the Laplace transform and the Cayley-Hamilton theorem to the simplified governing equations of water and air, Darcy's law, and Fick's law, the transfer function between the state vectors at top and at any depth is then constructed. Finally, by the boundary conditions, the excess pore-water pressure, the excess pore-air pressure, and the soil settlement are obtained under several kinds of boundary conditions with the large-area uniform instantaneous loading. By the Crump method, the inverse Laplace transform is performed, and the semi-analytical solutions to the excess pore-water pressure, the excess pore-air pressure, and the soils settlement are obtained in the time domain. In the case of one surface which is permeable to air and water, comparisons between the semi-analytical solutions and the analytical solutions indicate that the semi-analytical solutions are correct. In the case of one surface which is permeable to air but impermeable to water, comparisons between the semi-analytical solutions and the results of the finite difference method are made, indicating that the semi-analytical solution is also correct. 展开更多
关键词 one-dimensional consolidation unsaturated soils excess pore-water pres-sure excess pore-air pressure semi-analytical solution
下载PDF
Mathematical Model of Coupled Heat and Mass Transfer in Unsaturated Soils *1
9
作者 CHENYONGPING JINFENG 《Pedosphere》 SCIE CAS CSCD 1998年第2期105-112,共8页
A systematic study of coupled heat and mass transfer in unsaturated soils under complex boundary conditions was carried out and a mathematical model of heat and mass transfer in unsaturated soils was established by no... A systematic study of coupled heat and mass transfer in unsaturated soils under complex boundary conditions was carried out and a mathematical model of heat and mass transfer in unsaturated soils was established by non equilibrium thermodynamic theory. The gradient of volumetric moisture content, the gradient of temperature, the salt mass concentration and vapor pressure were the primary driving forces influencing the process of heat and mass transfer in unsaturated soils. Based on the thermodynamic analysis and the mass and energy conservation principles, a set of mass and energy equations were developed. The initial and boundary conditions of soil column for one dimension were also given out. 展开更多
关键词 heat transfer mass transfer mathematical model unsaturated soils
下载PDF
Isothermal diffusion of water vapor in unsaturated soils based on Fick’s second law 被引量:7
10
作者 LIU Fei-fei MAO Xue-song +3 位作者 ZHANG Jian-xun WU Qian LI Ying-ying XU Cheng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2017-2031,共15页
In arid regions, water vapor diffusion predominates the total water migration in unsaturated soil, which significantly influences agriculture and engineering applications. With the aim of revealing the diffusion mecha... In arid regions, water vapor diffusion predominates the total water migration in unsaturated soil, which significantly influences agriculture and engineering applications. With the aim of revealing the diffusion mechanism of water vapor in unsaturated soil, a water vapor migration test device was developed to conduct the water vapor migration indoor test. The test results demonstrate that the characteristics of water vapor diffusion in unsaturated soil conformed to Fick’s second law. A mathematical model for water vapor diffusion under isothermal conditions in unsaturated soil was established based on Fick’s law. Factors including the initial moisture content gradient, initial moisture content distribution, soil type and temperature that affect the water vapor diffusion coefficient were analyzed. The results show that there was good agreement between the moisture content calculated by the mathematical model and obtained by the indoor experiment. The vapor diffusion coefficient increased with increasing initial moisture content gradient and temperature. When the initial moisture content gradient is constant, the vapor diffusion coefficient increases with the increase of matrix suction ratio in dry and wet soil section. The effect of soil type on the water vapor diffusion coefficient was complex, as both the moisture content and soil particle sizes affected the water vapor diffusion. 展开更多
关键词 water vapor diffusion coefficient unsaturated soil mathematical model initial moisture content gradient initial moisture content distribution soil type TEMPERATURE
下载PDF
Semi-analytical solutions to one-dimensional consolidation for unsaturated soils with semi-permeable drainage boundary 被引量:7
11
作者 Lei WANG De'an SUN Yongfu XU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第10期1439-1458,共20页
The semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are pre- seated. Two variables are introduced to transform the ... The semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are pre- seated. Two variables are introduced to transform the two coupled governing equations of pore-water and pore-air pressures into an equivalent set of partial differential equations (PDFs), which are easily solved by the Laplace transform method. Then, the pore-water pressure, pore-air pressure, and soil settlement are obtained in the Laplace domain. The Crump method is adopted to perform the inverse Laplace transform in order to obtain the semi-analytical solutions in the time domain. It is shown that the proposed solutions are more applicable to various types of boundary conditions and agree well with the existing solutions from the literature. Several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with single, double, mixed, and semi-permeable drainage boundaries. The changes in the pore-air and pore-water pres- sures and the soil settlement with the time factor at different values of the semi-permeable drainage boundary parameters are illustrated. In addition, parametric studies are con- ducted on the pore-air and pore-water pressures at different ratios (the air permeability coefficient to the water permeability coefficient) and depths. 展开更多
关键词 semi-analytical solution unsaturated soil one-dimensional (1D) consoli-dation semi-permeable drainage boundary Laplace transform
下载PDF
Analytical solution to one-dimensional consolidation in unsaturated soils 被引量:5
12
作者 秦爱芳 陈光敬 +1 位作者 谈永卫 孙德安 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第10期1329-1340,共12页
This paper presents an analytical solution of the one-dimensional consolidation in unsaturated soil with a finite thickness under vertical loading and confinements in the lateral directions. The boundary contains the ... This paper presents an analytical solution of the one-dimensional consolidation in unsaturated soil with a finite thickness under vertical loading and confinements in the lateral directions. The boundary contains the top surface permeable to water and air and the bottom impermeable to water and air. The analytical solution is for Fredlund's one-dimensional consolidation equation in unsaturated soils. The transfer relationship between the state vectors at top surface and any depth is obtained by using the Laplace transform and Cayley-Hamilton mathematical methods to the governing equations of water and air, Darcy's law and Fick's law. Excess pore-air pressure, excess pore-water pressure and settlement in the Laplace-transformed domain are obtained by using the Laplace transform with the initial conditions and boundary conditions. By performing inverse Laplace transforms, the analytical solutions are obtained in the time domain. A typical example illustrates the consolidation characteristics of unsaturated soil from an- alytical results. Finally, comparisons between the analytical solutions and results of the finite difference method indicate that the analytical solution is correct. 展开更多
关键词 unsaturated soil one-dimensional consolidation SETTLEMENT analytical solution excess pore-air pressure excess pore-water pressure
下载PDF
Implicit scheme for integrating constitutive model of unsaturated soils with coupling hydraulic and mechanical behavior 被引量:4
13
作者 马田田 韦昌富 +1 位作者 陈盼 魏厚振 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第9期1129-1154,共26页
A constitutive model of unsaturated soils with coupling capillary hystere- sis and skeleton deformation is developed and implemented in a fully coupled transient hydro-mechanical finite-element model (computer code U... A constitutive model of unsaturated soils with coupling capillary hystere- sis and skeleton deformation is developed and implemented in a fully coupled transient hydro-mechanical finite-element model (computer code U-DYSAC2). The obtained re- sults are compared with experimental results, showing that the proposed constitutive model can simulate the main mechanical and hydraulic behavior of unsaturated soils in a unified framework. The non-lineaxity of the soil-water characteristic relation is treated in a similar way of elastoplasticity. Two constitutive relations axe integrated by an implicit return-mapping scheme similar to that developed for saturated soils. A consistent tan- gential modulus is derived to preserve the asymptotic rate of the quadratic convergence of Newton's iteration. Combined with the integration of the constitutive model, a complete finite-element formulation of coupling hydro-mechanical problems for unsaturated soils is presented. A number of practical problems with different given initial and boundary conditions are analyzed to illustrate the performance and capabilities of the finite-element model. 展开更多
关键词 unsaturated soil capillary hysteresis elastoplastic coupling constitutivemodel stress integration finite-element method
下载PDF
General semi-analytical solutions to one-dimensional consolidation for unsaturated soils 被引量:3
14
作者 Lei WANG De'an SUN Aifang QIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第6期831-850,共20页
This paper presents general semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation equations for unsaturated soils subject to different initial conditions, homogeneous boundaries and t... This paper presents general semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation equations for unsaturated soils subject to different initial conditions, homogeneous boundaries and time-dependent loadings. Two variables are introduced to transform the two-coupled governing equations of pore-water and poreair pressures into an equivalent set of partial differential equations (PDEs), which are solved with the Laplace transform method. The pore-water and pore-air pressures and settlement are obtained in the Laplace transform domMn. The Crump's method is used to perform inverse Laplace transform to obtain the solutions in the time domain. The present solutions are more general in practical applications and show good agreement with the previous solutions in the literature. 展开更多
关键词 semi-analytical solution unsaturated soil one-dimensional consolidation homogeneous boundary condition time-dependent loading
下载PDF
Analysis of coupled thermo-hydro-mechanical behavior of unsaturated soils based on theory of mixtures I 被引量:1
15
作者 秦冰 陈正汉 +3 位作者 方振东 孙树国 方祥位 王驹 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第12期1561-1576,共16页
This paper analyzes a coupled thermo-hydro-mechanical behavior of unsaturated soils based on the theory of mixtures. Unsaturated soil is considered as a mixture composed of soil skeleton, liquid water, vapor, dry air,... This paper analyzes a coupled thermo-hydro-mechanical behavior of unsaturated soils based on the theory of mixtures. Unsaturated soil is considered as a mixture composed of soil skeleton, liquid water, vapor, dry air, and dissolved air. In addition to the mass and momentum conservation equations of each component and the energy conservation equation of the mixture, the system is closed using other 37 constitutive (or restriction) equations. As the change in water chemical potential is identical to the change in vapor chemical potential, a thermodynamic restriction relationship for the phase transition between pore water and pore vapor is formulated, in which the impact of the change in gas pressure on the phase transition is taken into account. Six final govern- ing equations are given in incremental form in terms of six primary variables, i.e., three displacement components of soil skeleton, water pressure, gas pressure, and temperature. The processes involved in the coupled model include thermal expansions of soil skeleton and soil particle, Soret effect, phase transition between water and vapor, air dissolution in pore water, and deformation of soil skeleton. 展开更多
关键词 unsaturated soil thermo-hydro-mechanical TEMPERATURE theory of mixtures
下载PDF
Analytical solution to one-dimensional consolidation in unsaturated soils under sinusoidal cyclic loading
16
作者 冯君 巫锡勇 +1 位作者 朱宝龙 杨期祥 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期646-653,共8页
An analytical solution was presented to the unsaturated soil with a finite thickness under confinement in the lateral direction and sinusoidal cyclic loading in the vertical direction based on Fredlund's one-dimen... An analytical solution was presented to the unsaturated soil with a finite thickness under confinement in the lateral direction and sinusoidal cyclic loading in the vertical direction based on Fredlund's one-dimensional consolidation equation for unsaturated soil. The transfer relationship between the state vectors at the top surface and any depth was gained by applying the Laplace transform and Cayley-Hamilton mathematical methods to the governing equations of water and air, Darcy's law and Fick's law. The excess pore-air and pore-water pressures and settlement in the Laplace-transformed domain were obtained by using the Laplace transform with the initial and boundary conditions. The analytical solutions of the excess pore-air and pore-water pressures at any depth and settlement were obtained in the time domain by performing the inverse Laplace transforms. A typical example illustrates the consolidation characteristics of unsaturated soil under sinusoidal loading from analytical results. Finally, comparisons between the analytical solutions and results of the numerical method indicate that the analytical solution is correct. 展开更多
关键词 unsaturated soil analytical solution one-dimensional consolidation excess pore-water pressure excess pore-air pressure SETTLEMENT sinusoidal cyclic loading
下载PDF
Cylindrical cavity expansion responses in anisotropic unsaturated soils under plane stress condition
17
作者 Haohua Chen Xiaolin Weng +1 位作者 Lele Hou Dean Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1989-2002,共14页
In this paper,an anisotropic critical state model for saturated soils was extended to unsaturated conditions by introducing suction into its yield function.Combining this model with soil-water characteristic curves re... In this paper,an anisotropic critical state model for saturated soils was extended to unsaturated conditions by introducing suction into its yield function.Combining this model with soil-water characteristic curves related to porosity ratio was employed to characterize the coupled hydromechanical behavior of unsaturated anisotropic soil.Based on the plane stress condition,the problem of the cylindrical cavity expansion in unsaturated anisotropic soils was transformed into first-order differential equations using the Lagrangian description.The equations were solved as an initial value problem using the Runge-Kutta algorithm,which can reflect the soil-water retention behavior during cavity expansion.Parametric analyses were conducted to investigate the influences of overconsolidation ratio(OCR),suction,and degree of saturation on the expansion responses of a cylindrical cavity in unsaturated anisotropic soil under plane stress condition.The results show that the above factors have obvious influences on the cavity responses,and the plane strain solution tends to overestimate expansion pressure and degree of saturation but underestimates suction around the cavity compared to the proposed plane stress solution.The theoretical model proposed in this paper provides a reasonable and effective method for simulating pile installation and soil pressure gauge tests near the ground surface of the unsaturated soils. 展开更多
关键词 Cylindrical cavity Anisotropic unsaturated soil Plane stress Hydromechanical behavior
下载PDF
On the thermo-mechanical properties of unsaturated soils
18
作者 Yingfa Lu Xinxing Wu Yujun Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第2期143-148,共6页
The establishment of energy balance equation is necessary to study the thermo-mechanical properties of unsaturated soils.To solve this equation,the determination of two fundamental parameters as volumetric specific pa... The establishment of energy balance equation is necessary to study the thermo-mechanical properties of unsaturated soils.To solve this equation,the determination of two fundamental parameters as volumetric specific parameter and thermal conductivity coefficient is essential.In this paper,the effective thermal conductivity coefficient of dry soil grain is analyzed for soils with different compositions,and the thermo-mechanical properties of porous media with water and gas are studied by considering the soil water retention curve(SWRC).Different methods,i.e.volumetric average method,self-consistent method,Hashin-Strikman method,are employed to calculate thermal conductivity coefficients,and a new method is proposed to determine the thermo-mechanical parameters.Comparison of the results obtained by different methods shows that the proposed method is in a good agreement with the experimental results and is suitable for describing the main properties of the thermo-mechanical behaviors of soils.The relationship between the SWRC and the seepage curve is further studied by the natural proportional rule.The characteristics of the SWRC,its differential coefficient and the seepage curve,are investigated by considering the physico-mechanical mechanism;the limit scopes of the indices of the SWRC and the seepage curve are also given. 展开更多
关键词 unsaturated soil soil water retention curve(SWRC) seepage curve thermal conductivity coefficient comparative analysis
下载PDF
Influence of Dry Density on Soil-Water Retention Curve of Unsaturated Soils and Its Mechanism Based on Mercury Intrusion Porosimetry
19
作者 李博 陈宇龙 《Transactions of Tianjin University》 EI CAS 2016年第3期268-272,共5页
The soil-water retention curve(SWRC)can be used to evaluate the ability of unsaturated soils to attract water at various water contents and suctions. In this study, drying SWRCs for a kind of sandy soil were obtained ... The soil-water retention curve(SWRC)can be used to evaluate the ability of unsaturated soils to attract water at various water contents and suctions. In this study, drying SWRCs for a kind of sandy soil were obtained in the laboratory by using self-modified SWRC apparatus. In addition, the porosity and the pore size distribution of the samples were investigated by a mercury porosimetry test in order to analyze the effect of dry density. Results showed that the soil-water retention of the soil specimens was strongly dependent on the dry density. Under zero suction, soil specimens with a higher dry density exhibited lower initial volumetric water content. The higher the dry density of soil, the more slowly the volumetric water content decreased with the increase of suction. There was a general and consistent trend for a soil specimen to possess a larger air-entry value and residual suction, while smaller slope of SWRC when it had a higher density. This was probably attributed to the presence of smaller interconnected pores in the soil specimen with a higher dry density. The proportion of large diameter pores decreased in comparison to pores with small diameters in the soil tested. The measured total pore volume of the soil specimen, which had a larger dry density, was lower than that of the relatively loose specimens. 展开更多
关键词 soil-water retention curve dry density mercury intrusion porosimetry unsaturated soil
下载PDF
Analysis of Failure of Unsaturated Soils
20
作者 Ricardo Schiava Guillermo Etse 《Journal of Geological Resource and Engineering》 2014年第2期99-106,共8页
In this work, an analysis of failure condition in partially saturated soils using the extended Macari Runesson Sture Lade model is presented. The elastoplastic constitutive model is based on an extension of the well-k... In this work, an analysis of failure condition in partially saturated soils using the extended Macari Runesson Sture Lade model is presented. The elastoplastic constitutive model is based on an extension of the well-know MRS Lade model by Sture et al., whereby the suction and effective stress tensor are introduced as an additional independent and dependent stress components, respectively. The condition for discontinuous bifurcation in partially saturated porous media and the localized failure predictions of the proposed material formulation for different suctions are also analyzed and discussed. The localization analysis with this model demonstrates that an increment of the suction is related to a destabilizing effect of the discontinuous bifurcation so the localized failure can be diffuse or continuous. 展开更多
关键词 unsaturated soil ELASTO-PLASTICITY failure behavior.
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部