As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure...As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure the information transmission capability for a given semantic communication method and subsequently compare it with the classical communication method.In this paper,we first present a review of the semantic communication system,including its system model and the two typical coding and transmission methods for its implementations.To address the unsolved issue of the information transmission capability measure for semantic communication methods,we propose a new universal performance measure called Information Conductivity.We provide the definition and the physical significance to state its effectiveness in representing the information transmission capabilities of the semantic communication systems and present elaborations including its measure methods,degrees of freedom,and progressive analysis.Experimental results in image transmission scenarios validate its practical applicability.展开更多
Increasing research has focused on semantic communication,the goal of which is to convey accurately the meaning instead of transmitting symbols from the sender to the receiver.In this paper,we design a novel encoding ...Increasing research has focused on semantic communication,the goal of which is to convey accurately the meaning instead of transmitting symbols from the sender to the receiver.In this paper,we design a novel encoding and decoding semantic communication framework,which adopts the semantic information and the contextual correlations between items to optimize the performance of a communication system over various channels.On the sender side,the average semantic loss caused by the wrong detection is defined,and a semantic source encoding strategy is developed to minimize the average semantic loss.To further improve communication reliability,a decoding strategy that utilizes the semantic and the context information to recover messages is proposed in the receiver.Extensive simulation results validate the superior performance of our strategies over state-of-the-art semantic coding and decoding policies on different communication channels.展开更多
In order to solve the problem of semantic heterogeneity in information integration, an ontology based semantic information integration (OSII) model and its logical framework are proposed. The OSII adopts the hybrid ...In order to solve the problem of semantic heterogeneity in information integration, an ontology based semantic information integration (OSII) model and its logical framework are proposed. The OSII adopts the hybrid ontology approach and uses OWL (web ontology language) as the ontology language. It obtains unified views from multiple sources by building mappings between local ontologies and the global ontology. A tree- based multi-strategy ontology mapping algorithm is proposed. The algorithm is achieved by the following four steps: pre-processing, name mapping, subtree mapping and remedy mapping. The advantages of this algorithm are: mapping in the compatible datatype categories and using heuristic rules can improve mapping efficiency; both linguistic and structural similarity are used to improve the accuracy of the similarity calculation; an iterative remedy is adopted to obtain correct and complete mappings. A challenging example is used to illustrate the validity of the algorithm. The OSII is realized to effectively solve the problem of semantic heterogeneity in information integration and to implement interoperability of multiple information sources.展开更多
In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ...In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.展开更多
In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete mem...In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete memoryless channels(BDMCs),the proposed decoders quantize the virtual subchannels of polar codes to maximize mutual information(MMI)between source bits and quantized symbols.The nested structure of polar codes ensures that the MMI quantization can be implemented stage by stage.Simulation results show that the proposed MMI decoders with 4 quantization bits outperform the existing nonuniform quantized decoders that minimize mean-squared error(MMSE)with 4 quantization bits,and yield even better performance than uniform MMI quantized decoders with 5 quantization bits.Furthermore,the proposed 5-bit quantized MMI decoders approach the floating-point decoders with negligible performance loss.展开更多
Recently,there have been significant advancements in the study of semantic communication in single-modal scenarios.However,the ability to process information in multi-modal environments remains limited.Inspired by the...Recently,there have been significant advancements in the study of semantic communication in single-modal scenarios.However,the ability to process information in multi-modal environments remains limited.Inspired by the research and applications of natural language processing across different modalities,our goal is to accurately extract frame-level semantic information from videos and ultimately transmit high-quality videos.Specifically,we propose a deep learning-basedMulti-ModalMutual Enhancement Video Semantic Communication system,called M3E-VSC.Built upon a VectorQuantized Generative AdversarialNetwork(VQGAN),our systemaims to leverage mutual enhancement among different modalities by using text as the main carrier of transmission.With it,the semantic information can be extracted fromkey-frame images and audio of the video and performdifferential value to ensure that the extracted text conveys accurate semantic information with fewer bits,thus improving the capacity of the system.Furthermore,a multi-frame semantic detection module is designed to facilitate semantic transitions during video generation.Simulation results demonstrate that our proposed model maintains high robustness in complex noise environments,particularly in low signal-to-noise ratio conditions,significantly improving the accuracy and speed of semantic transmission in video communication by approximately 50 percent.展开更多
Object detection in unmanned aerial vehicle(UAV)aerial images has become increasingly important in military and civil applications.General object detection models are not robust enough against interclass similarity an...Object detection in unmanned aerial vehicle(UAV)aerial images has become increasingly important in military and civil applications.General object detection models are not robust enough against interclass similarity and intraclass variability of small objects,and UAV-specific nuisances such as uncontrolledweather conditions.Unlike previous approaches focusing on high-level semantic information,we report the importance of underlying features to improve detection accuracy and robustness fromthe information-theoretic perspective.Specifically,we propose a robust and discriminative feature learning approach through mutual information maximization(RD-MIM),which can be integrated into numerous object detection methods for aerial images.Firstly,we present the rank sample mining method to reduce underlying feature differences between the natural image domain and the aerial image domain.Then,we design a momentum contrast learning strategy to make object features similar to the same category and dissimilar to different categories.Finally,we construct a transformer-based global attention mechanism to boost object location semantics by leveraging the high interrelation of different receptive fields.We conduct extensive experiments on the VisDrone and Unmanned Aerial Vehicle Benchmark Object Detection and Tracking(UAVDT)datasets to prove the effectiveness of the proposed method.The experimental results show that our approach brings considerable robustness gains to basic detectors and advanced detection methods,achieving relative growth rates of 51.0%and 39.4%in corruption robustness,respectively.Our code is available at https://github.com/cq100/RD-MIM(accessed on 2 August 2024).展开更多
The information really useful to humans must be the trinity of its three components: the form termed syntactic information, the meaning termed semantic information, and the utility termed pragmatic information. But th...The information really useful to humans must be the trinity of its three components: the form termed syntactic information, the meaning termed semantic information, and the utility termed pragmatic information. But the theory of information set up by Shannon in 1948 is a statistical theory of syntactic information. Thus, the trinity of information theories needs to be established as urgently as possible. Such a theory of semantic information will be presented in the paper and it will also be proved that it is the semantic information that is the unique representative of the trinity. This is why the title of the paper is set to "a theory of semantic information" without mentioning the pragmatic information.展开更多
The drastic growth of coastal observation sensors results in copious data that provide weather information.The intricacies in sensor-generated big data are heterogeneity and interpretation,driving high-end Information...The drastic growth of coastal observation sensors results in copious data that provide weather information.The intricacies in sensor-generated big data are heterogeneity and interpretation,driving high-end Information Retrieval(IR)systems.The Semantic Web(SW)can solve this issue by integrating data into a single platform for information exchange and knowledge retrieval.This paper focuses on exploiting the SWbase systemto provide interoperability through ontologies by combining the data concepts with ontology classes.This paper presents a 4-phase weather data model:data processing,ontology creation,SW processing,and query engine.The developed Oceanographic Weather Ontology helps to enhance data analysis,discovery,IR,and decision making.In addition to that,it also evaluates the developed ontology with other state-of-the-art ontologies.The proposed ontology’s quality has improved by 39.28%in terms of completeness,and structural complexity has decreased by 45.29%,11%and 37.7%in Precision and Accuracy.Indian Meteorological Satellite INSAT-3D’s ocean data is a typical example of testing the proposed model.The experimental result shows the effectiveness of the proposed data model and its advantages in machine understanding and IR.展开更多
Because of the importance of graphics and information within the domain of architecture, engineering and construction (AEC), an appropriate combination of visualization technology and information management technolo...Because of the importance of graphics and information within the domain of architecture, engineering and construction (AEC), an appropriate combination of visualization technology and information management technology is of utter importance in the development of appropriately supporting design and construction applications. Virtual environments, however, tend not to make this information available. The sparse number of applications that present additional information furthermore tend to limit their scope to pure construction information and do not incorporate information from loosely related knowledge domains, such as cultural heritage or architectural history information. We therefore started an investigation of two of the newest developments in these domains, namely game engine technology and semantic web technology. This paper documents part of this research, containing a review and comparison of the most prominent game engines and documenting our architectural semantic web. A short test-case illustrates how both can be combined to enhance information visualization for architectural design and construction.展开更多
Ontology-based semantic information integration resolve the schema-level heterogeneity and part of data level heterogeneity between distributed data sources. But it is ubiquitous that schema semantics of information i...Ontology-based semantic information integration resolve the schema-level heterogeneity and part of data level heterogeneity between distributed data sources. But it is ubiquitous that schema semantics of information is identical while the interpretation of it varies with different context, and ontology-based semantic information integration can not resolve this context heterogeneity. By introducing context representation and context mediation to ontology based information integration, the attribute-level context heterogeneity can be detected and reconciled automatically, and hence a complete solution for semantic heterogeneity is formed. Through a concrete example, the context representation and the process in which the attribute-level context heterogeneity is reconciled during query processing are presented. This resolution can make up the deficiency of schema mapping based semantic information integration. With the architecture proposed in this paper the semantic heterogeneity solution is adaptive and extensive.展开更多
Information technology have changed information media by networking and internet using technology in health as same as another part improve efficiency and effectiveness. Currently, the medical document is reality-base...Information technology have changed information media by networking and internet using technology in health as same as another part improve efficiency and effectiveness. Currently, the medical document is reality-based medicine, so that is the most important, richest and the most realistic source of medical and health information. Health information management systems that require systems to the storage, retrieval, storage and elimination of health records (by law), and adjust to the rules of professional. These processes are difficult and time consuming for human. In the meantime semantic HIM seem best solution.展开更多
The massive data on the Intemet needs to be exchanged and managed in a way that can understand the semantics of the data. The development and maturity of the semantic web make the highly efficient and high-quality sem...The massive data on the Intemet needs to be exchanged and managed in a way that can understand the semantics of the data. The development and maturity of the semantic web make the highly efficient and high-quality semantic information retrieval possible. The semantic web technology has been applied in the intelligent information retrieval, the inter-enterprise data exchange and knowledge management, and the Interact services and so on. Through the semantic web technology, we can explore the intelligent convergence of the overseas Chinese information data, design the intelligent aggregation model of the overseas Chinese information data, and design the relationship and functions between various modules.展开更多
Mutual information is widely used in medical image registration, because it does not require preprocessing the image. However, the local maximum problem in the registration is insurmountable. We combine mutual informa...Mutual information is widely used in medical image registration, because it does not require preprocessing the image. However, the local maximum problem in the registration is insurmountable. We combine mutual information and gradient information to solve this problem and apply it to the non-rigid deformation image registration. To improve the accuracy, we provide some implemental issues, for example, the Powell searching algorithm, gray interpolation and consideration of outlier points. The experimental results show the accuracy of the method and the feasibility in non-rigid medical image registration.展开更多
A large amount of information is frequently encountered when characterizing the sample model in chemical process.A fault diagnosis method based on dynamic modeling of feature engineering is proposed to effectively rem...A large amount of information is frequently encountered when characterizing the sample model in chemical process.A fault diagnosis method based on dynamic modeling of feature engineering is proposed to effectively remove the nonlinear correlation redundancy of chemical process in this paper.From the whole process point of view,the method makes use of the characteristic of mutual information to select the optimal variable subset.It extracts the correlation among variables in the whitening process without limiting to only linear correlations.Further,PCA(Principal Component Analysis)dimension reduction is used to extract feature subset before fault diagnosis.The application results of the TE(Tennessee Eastman)simulation process show that the dynamic modeling process of MIFE(Mutual Information Feature Engineering)can accurately extract the nonlinear correlation relationship among process variables and can effectively reduce the dimension of feature detection in process monitoring.展开更多
Structural redundancy elimination in case resource pools (CRP) is critical for avoiding performance bottlenecks and maintaining robust decision capabilities in cloud computing services. For these purposes, this pape...Structural redundancy elimination in case resource pools (CRP) is critical for avoiding performance bottlenecks and maintaining robust decision capabilities in cloud computing services. For these purposes, this paper proposes a novel approach to ensure redundancy elimination of a reasoning system in CRP. By using α entropy and mutual information, functional measures to eliminate redundancy of a system are developed with respect to a set of outputs. These measures help to distinguish both the optimal feature and the relations among the nodes in reasoning networks from the redundant ones with the elimination criterion. Based on the optimal feature and its harmonic weight, a model for knowledge reasoning in CRP (CRPKR) is built to complete the task of query matching, and the missing values are estimated with Bayesian networks. Moreover, the robustness of decisions is verified through parameter analyses. This approach is validated by the simulation with benchmark data sets using cloud SQL. Compared with several state-of-the-art techniques, the results show that the proposed approach has a good performance and boosts the robustness of decisions.展开更多
Mutual information is an important information measure for feature subset. In this paper, a hashing mechanism is proposed to calculate the mutual information on the feature subset. Redundancy-synergy coefficient, a no...Mutual information is an important information measure for feature subset. In this paper, a hashing mechanism is proposed to calculate the mutual information on the feature subset. Redundancy-synergy coefficient, a novel redundancy and synergy measure of features to express the class feature, is defined by mutual information. The information maximization rule was applied to derive the heuristic feature subset selection method based on mutual information and redundancy-synergy coefficient. Our experiment results showed the good performance of the new feature selection method.展开更多
In this paper, the mutual information between clock-controlled input and output sequences is discussed. It is proved that the mutual information is a strictly monotone increasing function of the length of output seque...In this paper, the mutual information between clock-controlled input and output sequences is discussed. It is proved that the mutual information is a strictly monotone increasing function of the length of output sequence, and its divergent rate is gaven.展开更多
基金supported by the National Natural Science Foundation of China(No.62293481,No.62071058)。
文摘As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure the information transmission capability for a given semantic communication method and subsequently compare it with the classical communication method.In this paper,we first present a review of the semantic communication system,including its system model and the two typical coding and transmission methods for its implementations.To address the unsolved issue of the information transmission capability measure for semantic communication methods,we propose a new universal performance measure called Information Conductivity.We provide the definition and the physical significance to state its effectiveness in representing the information transmission capabilities of the semantic communication systems and present elaborations including its measure methods,degrees of freedom,and progressive analysis.Experimental results in image transmission scenarios validate its practical applicability.
基金supported in part by the National Natural Science Foundation of China under Grant No.61931020,U19B2024,62171449,62001483in part by the science and technology innovation Program of Hunan Province under Grant No.2021JJ40690。
文摘Increasing research has focused on semantic communication,the goal of which is to convey accurately the meaning instead of transmitting symbols from the sender to the receiver.In this paper,we design a novel encoding and decoding semantic communication framework,which adopts the semantic information and the contextual correlations between items to optimize the performance of a communication system over various channels.On the sender side,the average semantic loss caused by the wrong detection is defined,and a semantic source encoding strategy is developed to minimize the average semantic loss.To further improve communication reliability,a decoding strategy that utilizes the semantic and the context information to recover messages is proposed in the receiver.Extensive simulation results validate the superior performance of our strategies over state-of-the-art semantic coding and decoding policies on different communication channels.
文摘In order to solve the problem of semantic heterogeneity in information integration, an ontology based semantic information integration (OSII) model and its logical framework are proposed. The OSII adopts the hybrid ontology approach and uses OWL (web ontology language) as the ontology language. It obtains unified views from multiple sources by building mappings between local ontologies and the global ontology. A tree- based multi-strategy ontology mapping algorithm is proposed. The algorithm is achieved by the following four steps: pre-processing, name mapping, subtree mapping and remedy mapping. The advantages of this algorithm are: mapping in the compatible datatype categories and using heuristic rules can improve mapping efficiency; both linguistic and structural similarity are used to improve the accuracy of the similarity calculation; an iterative remedy is adopted to obtain correct and complete mappings. A challenging example is used to illustrate the validity of the algorithm. The OSII is realized to effectively solve the problem of semantic heterogeneity in information integration and to implement interoperability of multiple information sources.
文摘In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.
基金financially supported in part by National Key R&D Program of China(No.2018YFB1801402)in part by Huawei Technologies Co.,Ltd.
文摘In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete memoryless channels(BDMCs),the proposed decoders quantize the virtual subchannels of polar codes to maximize mutual information(MMI)between source bits and quantized symbols.The nested structure of polar codes ensures that the MMI quantization can be implemented stage by stage.Simulation results show that the proposed MMI decoders with 4 quantization bits outperform the existing nonuniform quantized decoders that minimize mean-squared error(MMSE)with 4 quantization bits,and yield even better performance than uniform MMI quantized decoders with 5 quantization bits.Furthermore,the proposed 5-bit quantized MMI decoders approach the floating-point decoders with negligible performance loss.
基金supported by the National Key Research and Development Project under Grant 2020YFB1807602Key Program of Marine Economy Development Special Foundation of Department of Natural Resources of Guangdong Province(GDNRC[2023]24)the National Natural Science Foundation of China under Grant 62271267.
文摘Recently,there have been significant advancements in the study of semantic communication in single-modal scenarios.However,the ability to process information in multi-modal environments remains limited.Inspired by the research and applications of natural language processing across different modalities,our goal is to accurately extract frame-level semantic information from videos and ultimately transmit high-quality videos.Specifically,we propose a deep learning-basedMulti-ModalMutual Enhancement Video Semantic Communication system,called M3E-VSC.Built upon a VectorQuantized Generative AdversarialNetwork(VQGAN),our systemaims to leverage mutual enhancement among different modalities by using text as the main carrier of transmission.With it,the semantic information can be extracted fromkey-frame images and audio of the video and performdifferential value to ensure that the extracted text conveys accurate semantic information with fewer bits,thus improving the capacity of the system.Furthermore,a multi-frame semantic detection module is designed to facilitate semantic transitions during video generation.Simulation results demonstrate that our proposed model maintains high robustness in complex noise environments,particularly in low signal-to-noise ratio conditions,significantly improving the accuracy and speed of semantic transmission in video communication by approximately 50 percent.
基金supported by the National Natural Science Foundation of China under Grant 61671219.
文摘Object detection in unmanned aerial vehicle(UAV)aerial images has become increasingly important in military and civil applications.General object detection models are not robust enough against interclass similarity and intraclass variability of small objects,and UAV-specific nuisances such as uncontrolledweather conditions.Unlike previous approaches focusing on high-level semantic information,we report the importance of underlying features to improve detection accuracy and robustness fromthe information-theoretic perspective.Specifically,we propose a robust and discriminative feature learning approach through mutual information maximization(RD-MIM),which can be integrated into numerous object detection methods for aerial images.Firstly,we present the rank sample mining method to reduce underlying feature differences between the natural image domain and the aerial image domain.Then,we design a momentum contrast learning strategy to make object features similar to the same category and dissimilar to different categories.Finally,we construct a transformer-based global attention mechanism to boost object location semantics by leveraging the high interrelation of different receptive fields.We conduct extensive experiments on the VisDrone and Unmanned Aerial Vehicle Benchmark Object Detection and Tracking(UAVDT)datasets to prove the effectiveness of the proposed method.The experimental results show that our approach brings considerable robustness gains to basic detectors and advanced detection methods,achieving relative growth rates of 51.0%and 39.4%in corruption robustness,respectively.Our code is available at https://github.com/cq100/RD-MIM(accessed on 2 August 2024).
文摘The information really useful to humans must be the trinity of its three components: the form termed syntactic information, the meaning termed semantic information, and the utility termed pragmatic information. But the theory of information set up by Shannon in 1948 is a statistical theory of syntactic information. Thus, the trinity of information theories needs to be established as urgently as possible. Such a theory of semantic information will be presented in the paper and it will also be proved that it is the semantic information that is the unique representative of the trinity. This is why the title of the paper is set to "a theory of semantic information" without mentioning the pragmatic information.
基金This work is financially supported by the Ministry of Earth Science(MoES),Government of India,(Grant.No.MoES/36/OOIS/Extra/45/2015),URL:https://www.moes.gov.in。
文摘The drastic growth of coastal observation sensors results in copious data that provide weather information.The intricacies in sensor-generated big data are heterogeneity and interpretation,driving high-end Information Retrieval(IR)systems.The Semantic Web(SW)can solve this issue by integrating data into a single platform for information exchange and knowledge retrieval.This paper focuses on exploiting the SWbase systemto provide interoperability through ontologies by combining the data concepts with ontology classes.This paper presents a 4-phase weather data model:data processing,ontology creation,SW processing,and query engine.The developed Oceanographic Weather Ontology helps to enhance data analysis,discovery,IR,and decision making.In addition to that,it also evaluates the developed ontology with other state-of-the-art ontologies.The proposed ontology’s quality has improved by 39.28%in terms of completeness,and structural complexity has decreased by 45.29%,11%and 37.7%in Precision and Accuracy.Indian Meteorological Satellite INSAT-3D’s ocean data is a typical example of testing the proposed model.The experimental result shows the effectiveness of the proposed data model and its advantages in machine understanding and IR.
文摘Because of the importance of graphics and information within the domain of architecture, engineering and construction (AEC), an appropriate combination of visualization technology and information management technology is of utter importance in the development of appropriately supporting design and construction applications. Virtual environments, however, tend not to make this information available. The sparse number of applications that present additional information furthermore tend to limit their scope to pure construction information and do not incorporate information from loosely related knowledge domains, such as cultural heritage or architectural history information. We therefore started an investigation of two of the newest developments in these domains, namely game engine technology and semantic web technology. This paper documents part of this research, containing a review and comparison of the most prominent game engines and documenting our architectural semantic web. A short test-case illustrates how both can be combined to enhance information visualization for architectural design and construction.
基金The National Natural Science Foundation of China (No.50305007)the Scientific Research Project of Hubei Provincial Department of Education (No.D200618003)
文摘Ontology-based semantic information integration resolve the schema-level heterogeneity and part of data level heterogeneity between distributed data sources. But it is ubiquitous that schema semantics of information is identical while the interpretation of it varies with different context, and ontology-based semantic information integration can not resolve this context heterogeneity. By introducing context representation and context mediation to ontology based information integration, the attribute-level context heterogeneity can be detected and reconciled automatically, and hence a complete solution for semantic heterogeneity is formed. Through a concrete example, the context representation and the process in which the attribute-level context heterogeneity is reconciled during query processing are presented. This resolution can make up the deficiency of schema mapping based semantic information integration. With the architecture proposed in this paper the semantic heterogeneity solution is adaptive and extensive.
文摘Information technology have changed information media by networking and internet using technology in health as same as another part improve efficiency and effectiveness. Currently, the medical document is reality-based medicine, so that is the most important, richest and the most realistic source of medical and health information. Health information management systems that require systems to the storage, retrieval, storage and elimination of health records (by law), and adjust to the rules of professional. These processes are difficult and time consuming for human. In the meantime semantic HIM seem best solution.
文摘The massive data on the Intemet needs to be exchanged and managed in a way that can understand the semantics of the data. The development and maturity of the semantic web make the highly efficient and high-quality semantic information retrieval possible. The semantic web technology has been applied in the intelligent information retrieval, the inter-enterprise data exchange and knowledge management, and the Interact services and so on. Through the semantic web technology, we can explore the intelligent convergence of the overseas Chinese information data, design the intelligent aggregation model of the overseas Chinese information data, and design the relationship and functions between various modules.
文摘Mutual information is widely used in medical image registration, because it does not require preprocessing the image. However, the local maximum problem in the registration is insurmountable. We combine mutual information and gradient information to solve this problem and apply it to the non-rigid deformation image registration. To improve the accuracy, we provide some implemental issues, for example, the Powell searching algorithm, gray interpolation and consideration of outlier points. The experimental results show the accuracy of the method and the feasibility in non-rigid medical image registration.
基金Supported by the National Natural Science Foundation of China(21576143).
文摘A large amount of information is frequently encountered when characterizing the sample model in chemical process.A fault diagnosis method based on dynamic modeling of feature engineering is proposed to effectively remove the nonlinear correlation redundancy of chemical process in this paper.From the whole process point of view,the method makes use of the characteristic of mutual information to select the optimal variable subset.It extracts the correlation among variables in the whitening process without limiting to only linear correlations.Further,PCA(Principal Component Analysis)dimension reduction is used to extract feature subset before fault diagnosis.The application results of the TE(Tennessee Eastman)simulation process show that the dynamic modeling process of MIFE(Mutual Information Feature Engineering)can accurately extract the nonlinear correlation relationship among process variables and can effectively reduce the dimension of feature detection in process monitoring.
基金supported by the National Natural Science Foundation of China (7117114371201087)+1 种基金the Tianjin Municipal Research Program of Application Foundation and Advanced Technology of China (10JCY-BJC07300)the Science and Technology Program of FOXCONN Group (120024001156)
文摘Structural redundancy elimination in case resource pools (CRP) is critical for avoiding performance bottlenecks and maintaining robust decision capabilities in cloud computing services. For these purposes, this paper proposes a novel approach to ensure redundancy elimination of a reasoning system in CRP. By using α entropy and mutual information, functional measures to eliminate redundancy of a system are developed with respect to a set of outputs. These measures help to distinguish both the optimal feature and the relations among the nodes in reasoning networks from the redundant ones with the elimination criterion. Based on the optimal feature and its harmonic weight, a model for knowledge reasoning in CRP (CRPKR) is built to complete the task of query matching, and the missing values are estimated with Bayesian networks. Moreover, the robustness of decisions is verified through parameter analyses. This approach is validated by the simulation with benchmark data sets using cloud SQL. Compared with several state-of-the-art techniques, the results show that the proposed approach has a good performance and boosts the robustness of decisions.
基金Project supported by the National Natural Science Foundation ofChina (No. 60075007) and the National Basic Research Program(973) of China (No. G1998030401)
文摘Mutual information is an important information measure for feature subset. In this paper, a hashing mechanism is proposed to calculate the mutual information on the feature subset. Redundancy-synergy coefficient, a novel redundancy and synergy measure of features to express the class feature, is defined by mutual information. The information maximization rule was applied to derive the heuristic feature subset selection method based on mutual information and redundancy-synergy coefficient. Our experiment results showed the good performance of the new feature selection method.
文摘In this paper, the mutual information between clock-controlled input and output sequences is discussed. It is proved that the mutual information is a strictly monotone increasing function of the length of output sequence, and its divergent rate is gaven.