The low-melting glass of Bi2O_(3)-B2O_(3)-SiO_(2)(BiBSi)system was used for the first time for laser sealing of vacuum glazing.Under the condition of constant boron content,how the structure and properties vary with B...The low-melting glass of Bi2O_(3)-B2O_(3)-SiO_(2)(BiBSi)system was used for the first time for laser sealing of vacuum glazing.Under the condition of constant boron content,how the structure and properties vary with Bi/Si ratio in low-melting glass was investigated.In addition,the relationships between laser power,low-melting glass solder with different Bi/Si ratios and laser sealing shear strength were revealed.The results show that a decrease in the Bi/Si ratio can cause a contraction of the glass network of the low-melting glass,leading to an increase of its characteristic temperature and a decrease of its coefficient of thermal expansion.During laser sealing,the copper ions in the low-melting glass play an endothermic role.A change in the Bi/Si ratio will affect the valence state transition of the copper ions in the low-melting glass.The absorbance of the low-melting glass does not follow the expected correlation with the Bi/Si ratio,but shows a linear correlation with the content of divalent copper ions.The greater the concentration of divalent copper ions,the greater the absorbance of the low-melting glass,and the lower the laser power required for laser sealing.The shear strength of the low melting glass solder after laser sealing was tested,and it was found that the maximum shear strength of Z1 glass sample was the highest up to 2.67 MPa.展开更多
As energy codes become more stringent, maximising the energy efficiency of the glazing used in buildings becomes of greater importance. Many new solutions have been proposed to reduce heat transfer through windows. On...As energy codes become more stringent, maximising the energy efficiency of the glazing used in buildings becomes of greater importance. Many new solutions have been proposed to reduce heat transfer through windows. One such technology that is currently growing in prominence is vacuum insulated glazing (VIG). VIG has been manufactured successfully in Japan for over 16 years, and although used primarily in Asian markets, its use has been growing in both Europe and North America over the last five years. VIG is different from other insulated glass technologies, providing excellent energy efficiency whilst maintaining an ultra-thin form factor-6.2 mm being the thinnest. A large range of product options are available and will be described in detail in this article, as well as a number of examples of their use. The advantages of using VIG in both retrofit of older buildings and the glazing of new construction will be detailed and new developments in the technology discussed. It will be demonstrated that VIG will be a key technology in the future, giving new options to building designers.展开更多
基金Funded by the National Natural Science Foundation of China(No.52472012)Opening Project of State Silica-Based Materials Laboratory of Anhui Province(No.2022KF11)the Research and Development of Glass Powder for Laser Sealing and Its Sealing Technology(No.K24556)。
文摘The low-melting glass of Bi2O_(3)-B2O_(3)-SiO_(2)(BiBSi)system was used for the first time for laser sealing of vacuum glazing.Under the condition of constant boron content,how the structure and properties vary with Bi/Si ratio in low-melting glass was investigated.In addition,the relationships between laser power,low-melting glass solder with different Bi/Si ratios and laser sealing shear strength were revealed.The results show that a decrease in the Bi/Si ratio can cause a contraction of the glass network of the low-melting glass,leading to an increase of its characteristic temperature and a decrease of its coefficient of thermal expansion.During laser sealing,the copper ions in the low-melting glass play an endothermic role.A change in the Bi/Si ratio will affect the valence state transition of the copper ions in the low-melting glass.The absorbance of the low-melting glass does not follow the expected correlation with the Bi/Si ratio,but shows a linear correlation with the content of divalent copper ions.The greater the concentration of divalent copper ions,the greater the absorbance of the low-melting glass,and the lower the laser power required for laser sealing.The shear strength of the low melting glass solder after laser sealing was tested,and it was found that the maximum shear strength of Z1 glass sample was the highest up to 2.67 MPa.
文摘As energy codes become more stringent, maximising the energy efficiency of the glazing used in buildings becomes of greater importance. Many new solutions have been proposed to reduce heat transfer through windows. One such technology that is currently growing in prominence is vacuum insulated glazing (VIG). VIG has been manufactured successfully in Japan for over 16 years, and although used primarily in Asian markets, its use has been growing in both Europe and North America over the last five years. VIG is different from other insulated glass technologies, providing excellent energy efficiency whilst maintaining an ultra-thin form factor-6.2 mm being the thinnest. A large range of product options are available and will be described in detail in this article, as well as a number of examples of their use. The advantages of using VIG in both retrofit of older buildings and the glazing of new construction will be detailed and new developments in the technology discussed. It will be demonstrated that VIG will be a key technology in the future, giving new options to building designers.