期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Valley-dependent transport in a mescoscopic twisted bilayer graphene device
1
作者 史文萱 刘翰林 汪军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期61-65,共5页
We study the valley-dependent electron transport in a four-terminal mesoscopic device of the two monolayer graphene nanoribbons vertically stacked together, where the intersection forms a bilayer graphene lattice with... We study the valley-dependent electron transport in a four-terminal mesoscopic device of the two monolayer graphene nanoribbons vertically stacked together, where the intersection forms a bilayer graphene lattice with a controllable twist angle. Using a tight-binding lattice model, we show that the longitudinal and transverse conductances exhibit significant valley polarization in the low energy regime for small twist angles. As the twist angle increases, the valley polarization shifts to the high energy regime. This arises from the regrouping effect of the electron band in the twisted bilayer graphene region. But for relatively large twist angles, no significant valley polarization is observed. These results are consistent with the spectral densities of the twisted bilayer graphene. 展开更多
关键词 twisted bilayer graphene valley-dependent transport graphene nanoribbon CONDUCTANCE
下载PDF
Valley-dependent transport in strain engineering graphene heterojunctions
2
作者 Fei Wan X R Wang +6 位作者 L H Liao J Y Zhang M N Chen G H Zhou Z B Siu Mansoor B.A.Jalil Yuan Li 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期509-515,共7页
We study the effect of strain on band structure and valley-dependent transport properties of graphene heterojunctions.It is found that valley-dependent separation of electrons can be achieved by utilizing strain and o... We study the effect of strain on band structure and valley-dependent transport properties of graphene heterojunctions.It is found that valley-dependent separation of electrons can be achieved by utilizing strain and on-site energies.In the presence of strain,the values of transmission can be effectively adjusted by changing the strengths of the strain,while the transport angle basically keeps unchanged.When an extra on-site energy is simultaneously applied to the central scattering region,not only are the electrons of valleys K and K'separated into two distinct transmission lobes in opposite transverse directions,but the transport angles of two valleys can be significantly changed.Therefore,one can realize an effective modulation of valley-dependent transport by changing the strength and stretch angle of the strain and on-site energies,which can be exploited for graphene-based valleytronics devices. 展开更多
关键词 strain engineering valley-dependent separation GRAPHENE on-site energy
下载PDF
Valley-dependent topological edge states in plasma photonic crystals
3
作者 李健飞 周晨 +5 位作者 姚静锋 袁承勋 王莹 周忠祥 张景文 Anatoly A KUDRYAVTSEV 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第3期6-14,共9页
Plasma photonic crystals designed in this paper are composed of gas discharge tubes to control the flow of electromagnetic waves.The band structures calculated by the finite element method are consistent with the expe... Plasma photonic crystals designed in this paper are composed of gas discharge tubes to control the flow of electromagnetic waves.The band structures calculated by the finite element method are consistent with the experimental results which have two distinct attenuation peaks in the ranges of 1-2.5 GHz and 5-6 GHz.Electromagnetic parameters of the plasma are extracted by the Nicolson-Ross-Weir method and effective medium theory.The measured electron density is between 1×1011 cm-3 and1×1012 cm-3,which verifies the correctness of the parameter used in the simulation,and the collision frequency is near 1.5×1010 Hz.As the band structures are corroborated by the measured scattering parameters,we introduce the concept of photonic topological insulator based on the quantum Valley Hall effect into the plasma photonic crystal.A valley-dependent plasma photonic crystal with hexagonal lattice is constructed,and the phase transition of the valley K(K’)occurs by breaking the spatial inversion symmetry.Valley-spin locked topological edge states are generated and excited by chiral sources.The frequency of the non-bulk state can be dynamically regulated by the electron density.This concept paves the way for novel,tunable topological edge states.More interestingly,the Dirac cone is broken when the electron density increases to 3.1×1012 cm-3,which distinguishes from the methods of applying a magnetic field and changing the symmetry of the point group. 展开更多
关键词 plasma photonic crystal valley-dependent topological state electron density
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部