The effect of diboron trioxide(B_2O_3) on the crushing strength and smelting mechanism of high-chromium vanadium–titanium magnetite pellets was investigated in this work. The main characterization methods were X-ray ...The effect of diboron trioxide(B_2O_3) on the crushing strength and smelting mechanism of high-chromium vanadium–titanium magnetite pellets was investigated in this work. The main characterization methods were X-ray fluorescence, inductively coupled plasma–atomic emission spectroscopy, mercury injection porosimetry, X-ray diffraction, metallographic microscopy, and scanning electron microscopy–energy-dispersive X-ray spectroscopy. The results showed that the crushing strength increased greatly with increasing B_2O_3 content and that the increase in crushing strength was strongly correlated with a decrease in porosity, the formation of liquid phases, and the growth and recrystallization consolidation of hematite crystalline grains. The smelting properties were measured under simulated blast furnace conditions; the results showed that the smelting properties within a certain B_2O_3 content range were improved and optimized except in the softening stage. The valuable element B was easily transformed to the slag, and this phenomenon became increasingly evident with increasing B_2O_3 content. The formation of Ti(C,N) was mostly avoided, and the slag and melted iron were separated well during smelting with the addition of B_2O_3. The size increase of the melted iron was consistent with the gradual optimization of the dripping characteristics with increasing B_2O_3 content.展开更多
A new method by liquid-liquid-liquid three phase system, consisting of acidified primary amine N1923 (abbreviated as A-N1923), poly(ethylene glycol) (PEG) and (NH4)2S04 aqueous solution, was suggested for the ...A new method by liquid-liquid-liquid three phase system, consisting of acidified primary amine N1923 (abbreviated as A-N1923), poly(ethylene glycol) (PEG) and (NH4)2S04 aqueous solution, was suggested for the separation and simultaneous extraction of Ⅴ(Ⅴ) and Cr(Ⅵ) from the acidic leach solutions of high- chromium vanadium-titanium magnetite. Experimental results indicated that Ⅴ(Ⅴ) and Cr(Ⅵ) could be selectively enriched into the A-N1923 organic top phase and PEG-rich middle phase, respectively, while AI(Ⅲ) and other co-existing impurity ions, such as Si(Ⅳ), Fe(Ⅲ), Ti(Ⅳ), Mg(Ⅱ) and Ca(Ⅱ) in acidic leach solutions, could be enriched in the (NH4)2SO4 bottom aqueous phase. During the process for extraction and separation of Ⅴ(Ⅴ) and Cr(Ⅵ), almost all of impurity ions could be removed. The separation factors between Ⅴ (Ⅴ) and Cr(Ⅵ) could reach 630 and 908, respectively in the organic top phase and PEG middle phase, and yields of recovered Ⅴ(Ⅴ) and Cr(Ⅵ) in the top phase and middle phase respectively were all above 90%. Various effects including aqueous pH, A-N1923 concentration, PEG added amount and (NH4)2SO4 concentration on three-phase partitioning of Ⅴ(Ⅴ) and Cr(Ⅵ) were discussed. It was found that the partition of Cr(Ⅵ) into the PEG-rich middle phase was driven by hydrophobic interaction, while extraction of Ⅴ(Ⅴ) by A-N1923 resulted of anion exchange between NO; and H2V10O4-28. Stripping of Ⅴ(Ⅴ) and Cr(Ⅵ) from the top organic phase and the middle PEG-rich phase were achieved by mixing respectively with NANO3 aqueous solutions and NaOH-(NH4)2SO4 solutions. The present work highlights a new approach for the extraction and purification of V and Cr from the complex multi-metal co-existing acidic leach solutions of high-chromium vanadium-titanium magnetite.展开更多
To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures rangi...To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures ranging from 60 to 200 ℃ was obtained by recently published critically assessed standard Gibbs energies and activity coefficients of various species. When pH2, stable regions of V3+, VO2+ and VO2+ exist in the stable region of TiO2. The pH values of stable regions of vanadium and titanium decrease and redox potentials become more positive with the temperature increasing. Vanadium and titanium could be separated by one-step leaching based on thermodynamics. The experiment results of pressure acid leaching of converter slag show that leaching rates of vanadium and titanium are 96.87% and 8.76% respectively, at 140 ℃ of temperature, 0.5 MPa of oxygen partial pressure, 0.055-0.075mm of particle size, 15:1 of liquid to solid ratio, 120 min of leaching time, 500 r/min of stirring speed and 200 g/L of initial acid concentration. Vanadium and titanium could be selectively separated in the pressure acid leaching process, and the experiment result is in agreement with thermodynamic calculation result.展开更多
To achieve high efficiency utilization of high-chromium vanadium-titanium magnetite (V-Ti-Cr) fines, an investigation of V Ti42r fines was conducted using a sinter pot. The chemical composition, particle parameters,...To achieve high efficiency utilization of high-chromium vanadium-titanium magnetite (V-Ti-Cr) fines, an investigation of V Ti42r fines was conducted using a sinter pot. The chemical composition, particle parameters, and granulation of V-Ti-Cr mixtures were analyzed, and the effects of sintering parameters on the sintering behaviors were investigated. The results indicated that the optimum quicklime dosage, mixture moisture, wetting time, and granulation time for V-Ti-Cr fines are 5wt%, 7.5wt%, 10 min, and 5-8 min, respectively. Meanwhile, the vertical sintering speed, yield, tumbler strength, and productivity gains were shown to be 21.28 mm/min, 60.50wt% , 58.26wt%, and 1.36 t·m^-2·h^-1, respectively. Furthermore, the consolidation mechanism of V-Ti-Cr fines was clarified, revealing that the consolidation of a V-Ti-Cr sinter requires an approximately 14vo1% calcium ferrite liquid-state, an approximately 15vo1% silicate liq- uid-state, a solid-state reaction, and the recrystallization of magnetite. Compared to an ordinary sinter, calcium ferrite content in a V-Ti-Cr sinter is lower, while the perovskite content is higher, possibly resulting in unsatisfactory sinter outcomes.展开更多
Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, ins...Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, insufficient Hg^0 oxidation activity, SO_2 oxidation, ammonia slip, and other disadvantages,modifications to traditional vanadium-titanium-based selective catalytic reduction(SCR)catalysts have been attempted by many researchers to promote their relevant performance. This article reviewed the research progress of modified vanadium-titanium-based SCR catalysts from seven aspects, namely,(1) improving low-temperature deNO_x efficiency,(2) enhancing thermal stability,(3) improving Hg^0 oxidation efficiency,(4) oxidizing slip ammonia,(5) reducing SO_2 oxidation,(6) increasing alkali resistance, and(7) others. Their catalytic performance and the influence mechanisms have been discussed in detail. These catalysts were also divided into different categories according to their modified components such as noble metals(e.g., silver, ruthenium), transition metals(e.g., manganese, iron, copper, zirconium, etc.), rare earth metals(e.g., cerium, praseodymium),and other metal chlorides(e.g., calcium chloride, copper chloride) and non-metals(fluorine,sulfur, silicon, nitrogen, etc.). The advantages and disadvantages of these catalysts were summarized.Based on previous studies and the author's point of view, doping the appropriate modified components is beneficial to further improve the overall performance of vanadium-titanium-based SCR catalysts. This has enormous development potential and is a promising way to realize the control of multiple pollutants on the basis of the existing flue gas treatment system.展开更多
The suitable titanium slag composition with high titanium content for electric furnace smelting of vanadium titanomagnetite was investigated through thermodynamics and related phase diagram analysis.According to the t...The suitable titanium slag composition with high titanium content for electric furnace smelting of vanadium titanomagnetite was investigated through thermodynamics and related phase diagram analysis.According to the thermodynamic results,low-melting-point regions and MgTi2O5primary phase area in the phase diagrams,the suggested titanium slag composition for the present vanadium titanomagnetite metallized pellets should consist of50%TiO2,8%-12%MgO and13%Al2O3(mass fraction)with a binary basicity of0.8-1.2.Finally,the verified smelting experiments were conducted and successful separation of the molten iron from the titanium slag is obtained.The obtained vanadium-containing molten iron contains0.681%V and0.267%Ti,and the obtained titanium slag contains52.21%TiO2(mass fraction),in which MgTi2O5is the primary phase.The titanium resource in the final titanium slag production could be used to produce TiO2pigment by acid leaching methods.展开更多
The sintering of chromium-containing vanadium-titanium magnetite using different coke contents was studied through the sintering pot tests, X-ray diffraction analysis and mineralogical phase analysis. Results showed t...The sintering of chromium-containing vanadium-titanium magnetite using different coke contents was studied through the sintering pot tests, X-ray diffraction analysis and mineralogical phase analysis. Results showed that, as the coke content increased from 3.2% to 4.4%, the liquid phase and combustion zone thickness increased while the vertical sintering rate and ratio of sintered product decreased. In addition, the combustion ratio of exhaust gas also increased with increasing the coke content, indicating that combustion zone temperature also increased, and the excessive the coke content in the sintering process of vanadiumtitanium magnetite is harmful. As the coke content increased, the magnetite, silicates, and perovskite contents of the sintered ore increased while the contents of hematite and calcium ferrite of sintered ore decreased; drum strength decreased, and reduction degradation properties increased while reduction ability decreased. We found that the appropriate coke content for the sintering process is 3.6 wt%.展开更多
Titanium mineral was prepared from vanadium titanomagnetite concentrates by hydrogen reduction and acid leaching.The leaching behaviors of elements like Fe,V,Mn,Al,Mg,Ca,and Si were highly related to the reduction deg...Titanium mineral was prepared from vanadium titanomagnetite concentrates by hydrogen reduction and acid leaching.The leaching behaviors of elements like Fe,V,Mn,Al,Mg,Ca,and Si were highly related to the reduction degree.The phase compositions of the reduced materials and the leached residues were analyzed by XRD to identify the effect of reduction degree on the leaching mechanisms.The results showed that the concentrates were reduced to iron metal and titanomagnetite at 800-1000°C for 0.5 h,and the above elements of Fe and impurities were easily leached.Deeper reduction led to the formation of ilmenite and Mg-Al spinel,which hindered leaching.Mg-bearing anosovite appeared in the further reduced materials,and the leaching rates of impurities became much lower.An upgraded titanium mineral with a normalized TiO_(2) grade of 70.3%was achieved by H_(2) reduction at 850°C for 0.5 h and acid leaching,which is a satisfactory Ti resource for the preparation of titanium oxide by sulfate process.展开更多
Compared with traditional sodium or calcification roasting process for vanadium extraction from raw vanadium slag(V-slag),ammonium sulfate(AS)roasting could reduce about 470℃ roasting temperature and avoid Cl_(2),HCl...Compared with traditional sodium or calcification roasting process for vanadium extraction from raw vanadium slag(V-slag),ammonium sulfate(AS)roasting could reduce about 470℃ roasting temperature and avoid Cl_(2),HCl,sodium-containing waste-water and waste gypsum discharging.To reduce the amount of AS added in vanadium extraction process,an efficient AS two-stage cyclic roasting and acid leaching process was proposed.The result of TG analysis indicates V-slag could be decomposed in 275-380℃ using AS roasting process.Using 2.03:1 total mass ratio of AS to V-slag,90.86%V and 80.54%Ti could be extracted after 380℃ roasting for 30 min and 8%initial concentration of H_(2)SO_(4) leaching at 70℃ for 100 min.XRD analysis indicates V-containing spinel phase in the 1st stage leaching residue would be efficiently decomposed by the cyclic two-stage roasting and leaching process.Furthermore,the valence of V(Ⅲ)in raw V-slag was not changed after the 1st AS roasting stage,but a part of V(Ⅲ)in the 1st leaching residue was oxidized to V(V)after 2nd roasting process.展开更多
An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water lea...An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water leaching of roasting slag. During the roasting process, the reduction of iron oxides to metallic iron, the sodium oxidation of vanadium oxides to water-soluble sodium vanadate, and the smelting separation of metallic iron and slag were accomplished simultaneously. Optimal roasting conditions for iron/slag separation were achieved with a mixture thickness of 42.5 mm, a roasting temperature of 1200°C, a residence time of 2 h, a molar ratio of C/O of 1.7, and a sodium carbonate addition of 70 wt%, as well as with the use of anthracite as a reductant. Under the optimal conditions, 93.67% iron from the raw ore was recovered in the form of iron nugget with 95.44% iron grade. After a water leaching process, 85.61% of the vanadium from the roasting slag was leached, confirming the sodium oxidation of most of the vanadium oxides to water-soluble sodium vanadate during the roasting process. The total recoveries of iron, vanadium, and titanium were 93.67%, 72.68%, and 99.72%, respectively.展开更多
Electron beam welding experiment of titanium alloy to chromium bronze with a vanadium filler metal was carried out. Microstructure of the joint was observed by optical microscopy and scanning electron microscopy. Tens...Electron beam welding experiment of titanium alloy to chromium bronze with a vanadium filler metal was carried out. Microstructure of the joint was observed by optical microscopy and scanning electron microscopy. Tensile strength of the joint was evaluated. The fracture surface of the joint was also analyzed. The results showed that the addition of vanadium filler metal reduced the brittleness of joint by increasing the amount of vanadium-based solid solution in the weld. But the melting point of vanadium.filler metal was so high that large heat input was needed to completely melt the filler metal. Thus, a large amount of interfacial compounds were produced. The tensile strength of joint was 280 MPa with a brittle fracture mode.展开更多
A comparative study was made of the reduction kinetics for high temperature smelting of vadium-titanium-containing magnetite,together with Hainan iron ore,using iron bath method.Three peaks were revealed on the reduct...A comparative study was made of the reduction kinetics for high temperature smelting of vadium-titanium-containing magnetite,together with Hainan iron ore,using iron bath method.Three peaks were revealed on the reduction rate curves for the magnetite,while one peak only for Hainan ore.Under the same conditions,the smelting reduction rate of the magnetite was found to be lower than that of Hainan ore.The rate increases evidently with the increase of the bath volume.The expressions of smelting reduction rate were suggested for the reduction with and without iron bath respectively.展开更多
A stable and insoluble V2O5·n H2O/tetra-n-butyl titanate(TBO) hybrid xerogel was synthesized by the sol–gel method. This novel material proved to be an efficient absorbent with an absorption capacity of 179 mg...A stable and insoluble V2O5·n H2O/tetra-n-butyl titanate(TBO) hybrid xerogel was synthesized by the sol–gel method. This novel material proved to be an efficient absorbent with an absorption capacity of 179 mg·g^-1for Rhodamine B(Rh B) in water due to its unique layered structure, which can effectively accommodate Rh B molecules between its layers as demonstrated by XRD and FTIR spectroscopic analyses.展开更多
The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O ...The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deforma-tion resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near- complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissol-ution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder- coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundament-al findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review.展开更多
Titanium alloys are widely used in the aerospace industries because of their excellent strength-to-weight ratio, high resistance to corrosion, high chemical reactivity and low thermal conductivity and ability to withs...Titanium alloys are widely used in the aerospace industries because of their excellent strength-to-weight ratio, high resistance to corrosion, high chemical reactivity and low thermal conductivity and ability to withstand high temperatures. However, these properties make titanium alloys difficult to machine. Drilling of titanium alloy may generate high temperature and high cutting forces. This paper is aimed at determining the suitable cutting parameters in the drilling of titanium alloys to minimize the cutting temperature and cutting forces. A finite element 3D model of the drilling process is simulated in this research. A combination of drilling speeds and feed rates are simulated to obtain the resulting responses of cutting force and temperature. The central composite design (CCD) is used to generate different combinations of cutting parameters to reduce the number of experiments and optimize the temperature and cutting force responses. Results show at the drilling speed of 5000 rpm with a feed rate of 0.1 mm/rev, temperature and cutting force significantly reduced.展开更多
Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titaniu...Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems.展开更多
Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-gr...Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.展开更多
The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an effici...The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed.展开更多
基金financially supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No. 2015BAB19B02)the National Program on Key Basic Research Project of China (No. 2013CB632603)
文摘The effect of diboron trioxide(B_2O_3) on the crushing strength and smelting mechanism of high-chromium vanadium–titanium magnetite pellets was investigated in this work. The main characterization methods were X-ray fluorescence, inductively coupled plasma–atomic emission spectroscopy, mercury injection porosimetry, X-ray diffraction, metallographic microscopy, and scanning electron microscopy–energy-dispersive X-ray spectroscopy. The results showed that the crushing strength increased greatly with increasing B_2O_3 content and that the increase in crushing strength was strongly correlated with a decrease in porosity, the formation of liquid phases, and the growth and recrystallization consolidation of hematite crystalline grains. The smelting properties were measured under simulated blast furnace conditions; the results showed that the smelting properties within a certain B_2O_3 content range were improved and optimized except in the softening stage. The valuable element B was easily transformed to the slag, and this phenomenon became increasingly evident with increasing B_2O_3 content. The formation of Ti(C,N) was mostly avoided, and the slag and melted iron were separated well during smelting with the addition of B_2O_3. The size increase of the melted iron was consistent with the gradual optimization of the dripping characteristics with increasing B_2O_3 content.
基金Supported by the National Basic Research and Development Program of China(973ProgramNo.2013CB632602)the National Natural Science Foundation of China(Nos.51574213,51074150)
文摘A new method by liquid-liquid-liquid three phase system, consisting of acidified primary amine N1923 (abbreviated as A-N1923), poly(ethylene glycol) (PEG) and (NH4)2S04 aqueous solution, was suggested for the separation and simultaneous extraction of Ⅴ(Ⅴ) and Cr(Ⅵ) from the acidic leach solutions of high- chromium vanadium-titanium magnetite. Experimental results indicated that Ⅴ(Ⅴ) and Cr(Ⅵ) could be selectively enriched into the A-N1923 organic top phase and PEG-rich middle phase, respectively, while AI(Ⅲ) and other co-existing impurity ions, such as Si(Ⅳ), Fe(Ⅲ), Ti(Ⅳ), Mg(Ⅱ) and Ca(Ⅱ) in acidic leach solutions, could be enriched in the (NH4)2SO4 bottom aqueous phase. During the process for extraction and separation of Ⅴ(Ⅴ) and Cr(Ⅵ), almost all of impurity ions could be removed. The separation factors between Ⅴ (Ⅴ) and Cr(Ⅵ) could reach 630 and 908, respectively in the organic top phase and PEG middle phase, and yields of recovered Ⅴ(Ⅴ) and Cr(Ⅵ) in the top phase and middle phase respectively were all above 90%. Various effects including aqueous pH, A-N1923 concentration, PEG added amount and (NH4)2SO4 concentration on three-phase partitioning of Ⅴ(Ⅴ) and Cr(Ⅵ) were discussed. It was found that the partition of Cr(Ⅵ) into the PEG-rich middle phase was driven by hydrophobic interaction, while extraction of Ⅴ(Ⅴ) by A-N1923 resulted of anion exchange between NO; and H2V10O4-28. Stripping of Ⅴ(Ⅴ) and Cr(Ⅵ) from the top organic phase and the middle PEG-rich phase were achieved by mixing respectively with NANO3 aqueous solutions and NaOH-(NH4)2SO4 solutions. The present work highlights a new approach for the extraction and purification of V and Cr from the complex multi-metal co-existing acidic leach solutions of high-chromium vanadium-titanium magnetite.
基金Project(2007CB613504)supported by the National Key Basic Research Program of ChinaProjects(51004033,50974035,51074047)supported by the National Natural Science Foundation of ChinaProject(2008BAB34B01)supported by National Science and Technology Support Plan of China during the 11th Five-Year Plan
文摘To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures ranging from 60 to 200 ℃ was obtained by recently published critically assessed standard Gibbs energies and activity coefficients of various species. When pH2, stable regions of V3+, VO2+ and VO2+ exist in the stable region of TiO2. The pH values of stable regions of vanadium and titanium decrease and redox potentials become more positive with the temperature increasing. Vanadium and titanium could be separated by one-step leaching based on thermodynamics. The experiment results of pressure acid leaching of converter slag show that leaching rates of vanadium and titanium are 96.87% and 8.76% respectively, at 140 ℃ of temperature, 0.5 MPa of oxygen partial pressure, 0.055-0.075mm of particle size, 15:1 of liquid to solid ratio, 120 min of leaching time, 500 r/min of stirring speed and 200 g/L of initial acid concentration. Vanadium and titanium could be selectively separated in the pressure acid leaching process, and the experiment result is in agreement with thermodynamic calculation result.
基金financially supported by the National Basic Research Program of China(Nos.2013CB632601 and 2013CB632604)the National Science Foundation for Distinguished Young Scholars of China(Nos.51125018 and 51504230)+2 种基金the Key Research Program of Chinese Academy of Sciences(No.KGZD-EW-201-2)the National Natural Science Foundation of China(Nos.51374191 and 2110616751104139)China Postdoctoral Science Foundation(Nos.2012M510552 and 2013T60175)
基金the National High Technology Research and Development Program of China (Nos. 2012AA062302 and 2012AA062304)the Program of the National Natural Science Foundation of China (Nos. 51090384 and 51174051)The International Cooperation of the Ministry of Science and Technology of China (No. 2012DFR60210)
文摘To achieve high efficiency utilization of high-chromium vanadium-titanium magnetite (V-Ti-Cr) fines, an investigation of V Ti42r fines was conducted using a sinter pot. The chemical composition, particle parameters, and granulation of V-Ti-Cr mixtures were analyzed, and the effects of sintering parameters on the sintering behaviors were investigated. The results indicated that the optimum quicklime dosage, mixture moisture, wetting time, and granulation time for V-Ti-Cr fines are 5wt%, 7.5wt%, 10 min, and 5-8 min, respectively. Meanwhile, the vertical sintering speed, yield, tumbler strength, and productivity gains were shown to be 21.28 mm/min, 60.50wt% , 58.26wt%, and 1.36 t·m^-2·h^-1, respectively. Furthermore, the consolidation mechanism of V-Ti-Cr fines was clarified, revealing that the consolidation of a V-Ti-Cr sinter requires an approximately 14vo1% calcium ferrite liquid-state, an approximately 15vo1% silicate liq- uid-state, a solid-state reaction, and the recrystallization of magnetite. Compared to an ordinary sinter, calcium ferrite content in a V-Ti-Cr sinter is lower, while the perovskite content is higher, possibly resulting in unsatisfactory sinter outcomes.
基金supported by the Science and Technology Plan Project of Hebei Province of China(16273703D)the Fundamental Research Funds for the Central Universities(2015ZD24,2017XS123)~~
文摘Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, insufficient Hg^0 oxidation activity, SO_2 oxidation, ammonia slip, and other disadvantages,modifications to traditional vanadium-titanium-based selective catalytic reduction(SCR)catalysts have been attempted by many researchers to promote their relevant performance. This article reviewed the research progress of modified vanadium-titanium-based SCR catalysts from seven aspects, namely,(1) improving low-temperature deNO_x efficiency,(2) enhancing thermal stability,(3) improving Hg^0 oxidation efficiency,(4) oxidizing slip ammonia,(5) reducing SO_2 oxidation,(6) increasing alkali resistance, and(7) others. Their catalytic performance and the influence mechanisms have been discussed in detail. These catalysts were also divided into different categories according to their modified components such as noble metals(e.g., silver, ruthenium), transition metals(e.g., manganese, iron, copper, zirconium, etc.), rare earth metals(e.g., cerium, praseodymium),and other metal chlorides(e.g., calcium chloride, copper chloride) and non-metals(fluorine,sulfur, silicon, nitrogen, etc.). The advantages and disadvantages of these catalysts were summarized.Based on previous studies and the author's point of view, doping the appropriate modified components is beneficial to further improve the overall performance of vanadium-titanium-based SCR catalysts. This has enormous development potential and is a promising way to realize the control of multiple pollutants on the basis of the existing flue gas treatment system.
文摘The suitable titanium slag composition with high titanium content for electric furnace smelting of vanadium titanomagnetite was investigated through thermodynamics and related phase diagram analysis.According to the thermodynamic results,low-melting-point regions and MgTi2O5primary phase area in the phase diagrams,the suggested titanium slag composition for the present vanadium titanomagnetite metallized pellets should consist of50%TiO2,8%-12%MgO and13%Al2O3(mass fraction)with a binary basicity of0.8-1.2.Finally,the verified smelting experiments were conducted and successful separation of the molten iron from the titanium slag is obtained.The obtained vanadium-containing molten iron contains0.681%V and0.267%Ti,and the obtained titanium slag contains52.21%TiO2(mass fraction),in which MgTi2O5is the primary phase.The titanium resource in the final titanium slag production could be used to produce TiO2pigment by acid leaching methods.
基金Funded by the National Natural Science Foundation of China(Nos.51604065,51674084)the Fundamental Funds for the Program of the Science Foundation of Liaoning Province(No.20170540316)
文摘The sintering of chromium-containing vanadium-titanium magnetite using different coke contents was studied through the sintering pot tests, X-ray diffraction analysis and mineralogical phase analysis. Results showed that, as the coke content increased from 3.2% to 4.4%, the liquid phase and combustion zone thickness increased while the vertical sintering rate and ratio of sintered product decreased. In addition, the combustion ratio of exhaust gas also increased with increasing the coke content, indicating that combustion zone temperature also increased, and the excessive the coke content in the sintering process of vanadiumtitanium magnetite is harmful. As the coke content increased, the magnetite, silicates, and perovskite contents of the sintered ore increased while the contents of hematite and calcium ferrite of sintered ore decreased; drum strength decreased, and reduction degradation properties increased while reduction ability decreased. We found that the appropriate coke content for the sintering process is 3.6 wt%.
基金financially supported by the Beijing Natural Science Foundation, China (No. 2192056)the National Natural Science Foundation of China (No. 51771179)+1 种基金the National Key R&D Program of China (No. 2018YFC1900505)The financial supports from the Youth Innovation Promotion Association CAS and the CAS Interdisciplinary Innovation Team
文摘Titanium mineral was prepared from vanadium titanomagnetite concentrates by hydrogen reduction and acid leaching.The leaching behaviors of elements like Fe,V,Mn,Al,Mg,Ca,and Si were highly related to the reduction degree.The phase compositions of the reduced materials and the leached residues were analyzed by XRD to identify the effect of reduction degree on the leaching mechanisms.The results showed that the concentrates were reduced to iron metal and titanomagnetite at 800-1000°C for 0.5 h,and the above elements of Fe and impurities were easily leached.Deeper reduction led to the formation of ilmenite and Mg-Al spinel,which hindered leaching.Mg-bearing anosovite appeared in the further reduced materials,and the leaching rates of impurities became much lower.An upgraded titanium mineral with a normalized TiO_(2) grade of 70.3%was achieved by H_(2) reduction at 850°C for 0.5 h and acid leaching,which is a satisfactory Ti resource for the preparation of titanium oxide by sulfate process.
基金funded by National Natural Science Foundation of China(22008161).
文摘Compared with traditional sodium or calcification roasting process for vanadium extraction from raw vanadium slag(V-slag),ammonium sulfate(AS)roasting could reduce about 470℃ roasting temperature and avoid Cl_(2),HCl,sodium-containing waste-water and waste gypsum discharging.To reduce the amount of AS added in vanadium extraction process,an efficient AS two-stage cyclic roasting and acid leaching process was proposed.The result of TG analysis indicates V-slag could be decomposed in 275-380℃ using AS roasting process.Using 2.03:1 total mass ratio of AS to V-slag,90.86%V and 80.54%Ti could be extracted after 380℃ roasting for 30 min and 8%initial concentration of H_(2)SO_(4) leaching at 70℃ for 100 min.XRD analysis indicates V-containing spinel phase in the 1st stage leaching residue would be efficiently decomposed by the cyclic two-stage roasting and leaching process.Furthermore,the valence of V(Ⅲ)in raw V-slag was not changed after the 1st AS roasting stage,but a part of V(Ⅲ)in the 1st leaching residue was oxidized to V(V)after 2nd roasting process.
基金financially supported by the National Basic Research Program of China(Nos.2013CB632601 and 2013CB632604)the National Science Foundation for Distinguished Young Scholars of China(Nos.51125018 and 51504230)+3 种基金the Key Research Program of the Chinese Academy of Sciences(No.KGZD-EW-201-2)the National Natural Science Foundation of China(Nos.51374191,21106167,2160624,and 51104139)the Financial Grant from the China Postdoctoral Science Foundation(Nos.2012M510552 and 2013T60175)the Nonprofit Industry Research Subject of Environmental Projection(No.201509053)
文摘An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water leaching of roasting slag. During the roasting process, the reduction of iron oxides to metallic iron, the sodium oxidation of vanadium oxides to water-soluble sodium vanadate, and the smelting separation of metallic iron and slag were accomplished simultaneously. Optimal roasting conditions for iron/slag separation were achieved with a mixture thickness of 42.5 mm, a roasting temperature of 1200°C, a residence time of 2 h, a molar ratio of C/O of 1.7, and a sodium carbonate addition of 70 wt%, as well as with the use of anthracite as a reductant. Under the optimal conditions, 93.67% iron from the raw ore was recovered in the form of iron nugget with 95.44% iron grade. After a water leaching process, 85.61% of the vanadium from the roasting slag was leached, confirming the sodium oxidation of most of the vanadium oxides to water-soluble sodium vanadate during the roasting process. The total recoveries of iron, vanadium, and titanium were 93.67%, 72.68%, and 99.72%, respectively.
文摘Electron beam welding experiment of titanium alloy to chromium bronze with a vanadium filler metal was carried out. Microstructure of the joint was observed by optical microscopy and scanning electron microscopy. Tensile strength of the joint was evaluated. The fracture surface of the joint was also analyzed. The results showed that the addition of vanadium filler metal reduced the brittleness of joint by increasing the amount of vanadium-based solid solution in the weld. But the melting point of vanadium.filler metal was so high that large heat input was needed to completely melt the filler metal. Thus, a large amount of interfacial compounds were produced. The tensile strength of joint was 280 MPa with a brittle fracture mode.
文摘A comparative study was made of the reduction kinetics for high temperature smelting of vadium-titanium-containing magnetite,together with Hainan iron ore,using iron bath method.Three peaks were revealed on the reduction rate curves for the magnetite,while one peak only for Hainan ore.Under the same conditions,the smelting reduction rate of the magnetite was found to be lower than that of Hainan ore.The rate increases evidently with the increase of the bath volume.The expressions of smelting reduction rate were suggested for the reduction with and without iron bath respectively.
基金The authors gratefully acknowledge the research assistance of Wei Qiu and the University of Auckland Summer Research Scholarship for Mona LiuThe authors are also thankful to Higher Education Commission,Pakistan for scholarship grant for one of authors,Dr.Surayya Mukhtar for this research work.
文摘A stable and insoluble V2O5·n H2O/tetra-n-butyl titanate(TBO) hybrid xerogel was synthesized by the sol–gel method. This novel material proved to be an efficient absorbent with an absorption capacity of 179 mg·g^-1for Rhodamine B(Rh B) in water due to its unique layered structure, which can effectively accommodate Rh B molecules between its layers as demonstrated by XRD and FTIR spectroscopic analyses.
基金supported by the National Natural Science Foundation of China (Nos.52074254 and 52174349)the CAS Project for Young Scientists in Basic Research,China (No.YSBR-025)+3 种基金the Shandong Provincial Science and Technology Innovation Project,China (No.2019JZZY010363)the Key Projects of International Cooperation,China (No.122111KYSB20200034)the Project of Key Laboratory of Science and Technology on Particle Materials,China (No.CXJJ-22S043)Chinese Academy of Sciences.This work was also financially supported by the Selection of Best Candidates to Undertake Key Research Projects,China (No.211110230200).
文摘The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deforma-tion resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near- complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissol-ution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder- coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundament-al findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review.
文摘Titanium alloys are widely used in the aerospace industries because of their excellent strength-to-weight ratio, high resistance to corrosion, high chemical reactivity and low thermal conductivity and ability to withstand high temperatures. However, these properties make titanium alloys difficult to machine. Drilling of titanium alloy may generate high temperature and high cutting forces. This paper is aimed at determining the suitable cutting parameters in the drilling of titanium alloys to minimize the cutting temperature and cutting forces. A finite element 3D model of the drilling process is simulated in this research. A combination of drilling speeds and feed rates are simulated to obtain the resulting responses of cutting force and temperature. The central composite design (CCD) is used to generate different combinations of cutting parameters to reduce the number of experiments and optimize the temperature and cutting force responses. Results show at the drilling speed of 5000 rpm with a feed rate of 0.1 mm/rev, temperature and cutting force significantly reduced.
基金supported by the National Natural Science Foundation of China(No.52274359)Guangdong Basic and Applied Basic Research Foundation,China(No.2022A1515110406)+3 种基金Beijing Natural Science Foundation,China(No.2212035)the Fundamental Research Funds for the Central Universities,China(Nos.FRF-TP-19005C1Z and 00007718)the Aeroengine Group University Research Cooperation Project,China(No.HFZL2021CXY021)the State Key Lab of Advanced Metals and Materials,University of Science and Technology Beijing,China(Nos.2021Z-03 and 2022Z-14).
文摘Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.22075159,22002066)Shandong Taishan Scholars Project(Grant Nos.ts20190932,tsqn202103058)+1 种基金Open Fund of Hubei Key Laboratory of Processing and Application of Catalytic Materials(Grant No.202203404)Postdoctoral Applied Research Project in Qingdao,and the Youth Innovation Team Project of Shandong Provincial Education Department(Grant No.2019KJC023).
文摘Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.
基金supported by the National Natural Science Foundation of China(No.92160301)the Industrial Technology Development Program,China(No.JCKY2021605 B026)。
文摘The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed.