This paper presents a novel electronic tuner with high power handling capability utilizing varactors based on the asymmetric bilateral coupled microstrip transmission line. Through varying the bias voltage of the vara...This paper presents a novel electronic tuner with high power handling capability utilizing varactors based on the asymmetric bilateral coupled microstrip transmission line. Through varying the bias voltage of the varactor at the Ultra High Frequency (UHF) band, the performance of the tuner is demonstrated according to simulated and measured results from several cases with the return loss (S11 ) below -20 dB and the insertion loss (S21 ) within ±0.5 dB. Compared with tuners using p and t network, electronic tuner of this paper shows superior frequency agility as well as wide impendence coverage. Advanced biasing structure has been developed to improve power handling for high power level applications. It is expected that the novel tuner would be part of intelligent Radio Frequency (RF) front-ends system and cognitive wireless system in the future.展开更多
A 2 5GHz fully integrated LC VCO is fabricated in a standard single poly 4 metal 0 35μm digital CMOS process,using a complementary cross coupled topology for lowering power dissipation and reducing the effect of...A 2 5GHz fully integrated LC VCO is fabricated in a standard single poly 4 metal 0 35μm digital CMOS process,using a complementary cross coupled topology for lowering power dissipation and reducing the effect of 1/ f noise.An on chip LC filtering technique is used to lower the high frequency noise.Accumulation varactors are used to widen frequency tuning.The measured tuning range is 23 percent.A single hexadecagon symmetric on chip spiral is used with grounded shield pattern to reduce the chip area and maximize the quality factor.A phase noise of -118dBc/Hz at 1MHz offset is measured.The power dissipation is 4mA at V DD =3 3V.展开更多
The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to...The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to obtain a wide band and a large tuning range,a parallel switched capacitor bank is added in the LC tank.The proposed VCO is implemented in SMIC 0.18-μm RF CMOS technology and the chip area is 750 μm×560 μm,including the test buffer circuit and the pads.Measured results show that the tuning range is 44.6%;i.e.,the frequency turning range is from 2.27 to 3.57 GHz.The measured phase noise is-122.22 dBc/Hz at a 1 MHz offset from the carrier.The maximum power consumption of the core part is 6.16 mW at a 1.8 V power supply.展开更多
An accurate 1.08GHz CMOS LC voltage-controlled oscillator is implemented in a 0.35μm standard 2P4M CMOS process.A new convenient method of calculating oscillator period is presented.With this period calculation tech...An accurate 1.08GHz CMOS LC voltage-controlled oscillator is implemented in a 0.35μm standard 2P4M CMOS process.A new convenient method of calculating oscillator period is presented.With this period calculation technique,the frequency tuning curves agree well with the experiment.At a 3.3V supply,the LC-VCO measures a phase noise of -82.2dBc/Hz at a 10kHz frequency offset while dissipating 3.1mA current.The chip size is 0.86mm×0.82mm.展开更多
A 4. 224GHz quadrature voltage-controlled oscillator (QVCO) applied in MB-OFDM UWB synthesizers is implemented in 0.18μm RF-CMOS technology. An improved structure of the QVCO is presented for better phase noise. A ...A 4. 224GHz quadrature voltage-controlled oscillator (QVCO) applied in MB-OFDM UWB synthesizers is implemented in 0.18μm RF-CMOS technology. An improved structure of the QVCO is presented for better phase noise. A novel configuration of a MOS varactor is designed for good linearity of K as well as a new digital capacitor controlled array topology with lower parasitic capacitance and lower Ron. Measurement results show a phase noise of - 90.4dBc/Hz at 100kHz offset and - 116.7dBc/Hz at 1MHz offset from a carrier close to 4. 224GHz. The power dissipation is 10. 55mW from a 1.8V supply.展开更多
Using an in-house MMIC and an off-chip,high-quality varactor, a novel wide band VCO covered Ku band is introduced. In contrast to HMIC technology, this method reduces the complexity of microchip assembly. More importa...Using an in-house MMIC and an off-chip,high-quality varactor, a novel wide band VCO covered Ku band is introduced. In contrast to HMIC technology, this method reduces the complexity of microchip assembly. More importantly,it overcomes the constraint that the standard commercial GaAs pHEMT MMIC process is usually not compatible with highquality varactors for VCO,and it significantly improves the phase noise and frequency tuning linearity performances compared to either MMIC or HMIC implementation. It is a novel and high-quality method to develop microwave and millimeter wave VCO.展开更多
The excellent reverse breakdown characteristics of Schottky barrier varactor(SBV)are crucially required for the application of high power and high efficiency multipliers.The SBV with a novel Schottky structure named m...The excellent reverse breakdown characteristics of Schottky barrier varactor(SBV)are crucially required for the application of high power and high efficiency multipliers.The SBV with a novel Schottky structure named metal-brim is fabricated and systemically evaluated.Compared with normal structure,the reverse breakdown voltage of the new type SBV improves from-7.31 V to-8.75 V.The simulation of the Schottky metal-brim SBV is also proposed.Three factors,namely distribution of leakage current,the electric field,and the area of space charge region are mostly concerned to explain the physical mechanism.Schottky metal-brim structure is a promising approach to improve the reverse breakdown voltage and reduce leakage current by eliminating the accumulation of charge at Schottky electrode edge.展开更多
A fabrication technology of GaAs planar Schottky varactor diode (PSVD) is successfully developed and used to design and manufacture CaAs-based monolithic frequency multiplication based on 23-section nonlinear transm...A fabrication technology of GaAs planar Schottky varactor diode (PSVD) is successfully developed and used to design and manufacture CaAs-based monolithic frequency multiplication based on 23-section nonlinear transmission lines (NLTLs) consisting of a coplanar waveguide transmission line and periodically distributed PSVDs. The throughout design and optimization procedure of 23-section monolithic NLTLs for frequency multiplication in the k-band range is based on a large signal equivalent model of PSVD extracted from small-signal S-parameter measurements. This paper reports that the distributed SPVD exhibits a capacitance ratio of 5.4, a normalized capacitance of 0.86 fF/μm2 and a breakdown voltage in excess of 22 V. The integrated 23-section NLTLs fed by 20-dBm input power demonstrates a 26-GHz peak second harmonic output power of 14-dBm with 25.3% conversion efficiency in the second harmonic output frequency range of 6 GHz-26 GHz.展开更多
An effective approach to designing a tunable electromagnetic absorber is presented and experimentally verified; it is based on an idea that an existing frequency selective surface (FSS) absorber is regarded as a loa...An effective approach to designing a tunable electromagnetic absorber is presented and experimentally verified; it is based on an idea that an existing frequency selective surface (FSS) absorber is regarded as a loaded receiving antenna array. The existing absorber is effectively simplified by withdrawing half of the loaded resistors; a more compact one is obtained when lumped capacitors are introduced. Building on this, a varactor-tunable absorber with a proper bias network is proposed. Numerical simulations of one tunable absorber with 1.6 mm in thickness show that a wide tuning range from 3.05 GHz to 1.96 GHz is achieved by changing the capacitance of the loaded varactor from 0.5 pF to 5.0 pF. An experiment is carried out using a rectangular waveguide measurement setup and excellent agreement between the simulated and measured results is demonstrated.展开更多
This paper presents a concurrent dual-band branch-line coupler with an independently tunable center frequency. In the proposed architecture, the quarter-wavelength lines, which work at two separated bands concurrently...This paper presents a concurrent dual-band branch-line coupler with an independently tunable center frequency. In the proposed architecture, the quarter-wavelength lines, which work at two separated bands concurrently and can be tuned in one of them, are key components. Based on the analysis of ABCD-matrix, a novel hybrid structure and a pair of varactors topology are utilized to achieve concurrent dual-band operation and independent tunability, respectively. Using this configuration, it is convenient to tune the center frequency of the upper band, while the responses of the lower band remain unaltered. To verify the proposed idea, a demonstration is implemented and the simulated results are presented.展开更多
In this paper we propose a two-pole varactor-tuned superconducting filter using coplanar waveguide (CPW) spiralin-spiral-out (SISO) resonators. Novel internal and external coupling structures are introduced to mee...In this paper we propose a two-pole varactor-tuned superconducting filter using coplanar waveguide (CPW) spiralin-spiral-out (SISO) resonators. Novel internal and external coupling structures are introduced to meet the requirements for a tunable filter with a constant absolute bandwidth. The fabricated device has a frequency tuning range of 14.4% at frequencies ranging from 274.1 MHz to 317.7 MHz, a 3-dB bandwidth of 5.14±0.06 MHz, and an insertion loss of 0.08 dB-0.70 dB. The simulated and measured results are in excellent agreement with each other.展开更多
The left-handed nonlinear transmission line (LH-NLTL) based on monolithic microwave integrated circuit (MMIC) technology possesses significant advantages such as wide frequency band, high operating frequency, high...The left-handed nonlinear transmission line (LH-NLTL) based on monolithic microwave integrated circuit (MMIC) technology possesses significant advantages such as wide frequency band, high operating frequency, high conversion efficiency, and applications in millimeter and submillimeter wave frequency multiplier. The planar Schottky varactor diode (PSVD) is a major limitation to the performance of the LH-NLTL frequency multiplier as a nonlinear component. The design and the fabrication of the diode for such an application are presented. An accurate large-signal model of the diode is proposed. A 16 GHz-39,6 GHz LH NLTL frequency doubler using our large-signal model is reported for the first time. The measured maximum output powers of the 2nd harmonic are up to 8 dBm at 26.4 GHz, and above 0 dBm from 16 GHz to 39.6 GHz when the input power is 20 dBm. The application of the LH-NLTL frequency doubler furthermore validates the accuracy of the large-signal model of the PSVD.展开更多
A new technique for designing a varactor-tunable frequency selective surface (FSS) with an embedded bias network is proposed and experimentally verified. The proposed FSS is based on a square-ring slot FSS. The freq...A new technique for designing a varactor-tunable frequency selective surface (FSS) with an embedded bias network is proposed and experimentally verified. The proposed FSS is based on a square-ring slot FSS. The frequency tuning is achieved by inserting varactor diodes between the square mesh and each unattached square patch. The square mesh is divided into two parts for biasing the varactor diodes. Full-wave numerical simulations show that a wide tuning range can be achieved by changing the capacitances of these loaded varactors. Two homo-type samples using fixed lumped capacitors are fabricated and measured using a standard waveguide measurement setup. Excellent agreement between the measured and simulated results is demonstrated.展开更多
The optimization of high power terahertz monolithic integrated circuit (TMIC) is systemically studied based on the physical model of the Schottky barrier varactor (SBV) with interface defects and tunneling effect. An ...The optimization of high power terahertz monolithic integrated circuit (TMIC) is systemically studied based on the physical model of the Schottky barrier varactor (SBV) with interface defects and tunneling effect. An ultra-thin dielectric layer is added to describe the extra tunneling effect and the damping of thermionic emission current induced by the interface defects. Power consumption of the dielectric layer results in the decrease of capacitance modulation ration (Cmax/Cmin), and thus leads to poor nonlinear C–V characteristics. The proposed Schottky metal-brim (SMB) terminal structure could improve the capacitance modulation ration by reducing the influence of the interface charge and eliminating the fringing capacitance effect. Finally, a 215 GHz tripler TMIC is fabricated based on the SMB terminal structure. The output power is above 5 mW at 210–218 GHz and the maximum could exceed 10 mW at 216 GHz, which could be widely used in terahertz imaging, radiometers, and so on. This paper also provides theoretical support for the SMB structure to optimize the TMIC performance.展开更多
In this paper, we design a varactor-tunable metamaterial absorber (MA). The tunable MA is based on a mushroom-type high impedance surface (HIS), in which varactors are loaded between adjacent metal patches to adju...In this paper, we design a varactor-tunable metamaterial absorber (MA). The tunable MA is based on a mushroom-type high impedance surface (HIS), in which varactors are loaded between adjacent metal patches to adjust the capacitance and tune the resonance frequency, the primary ground plane is etched as the bias network to bias all of the varactors in parallel, and another ultra-thin grounded film is attached to the bottom. Its absorption characteristics are realized for electrically dielectric loss. The simulated values of a sample indicate that a tunable frequency range from 2.85 GHz to 2.22 GHz is achieved by adjusting the varactor capacitance from 0.1 pF to 2.0 pF, and better than 0.97 absorbance is realized; in addition, the tunable frequency range is expanded from 4.12 GHz to 1.70 GHz after optimization.展开更多
An analysis of a 3 dB lumped-element directional coupler (LEDC) based on arbitrary terminal impedance is described numerically. To solve the conflicted requirement for broad bandwidth and small size in LEDC, a new s...An analysis of a 3 dB lumped-element directional coupler (LEDC) based on arbitrary terminal impedance is described numerically. To solve the conflicted requirement for broad bandwidth and small size in LEDC, a new structure of coupler is introduced, which can significantly improve bandwidth and whose size is only 3 cm×4 cm on the conditions of the frequency domain of 410 MHz to 490 MHz. The measure results are in good agreement with simulations despite the unexpected resistor loss.展开更多
Modern telecommunication systems need to be equipped with antennas that are precisely tuned to more than one frequency in order to allow operation in several bands. Antenna precise tuning to the desired frequency is v...Modern telecommunication systems need to be equipped with antennas that are precisely tuned to more than one frequency in order to allow operation in several bands. Antenna precise tuning to the desired frequency is very important for system performance. In this paper the operating frequency of a PIFA antenna is adjusted using a varactor. This configuration has the advantage of continuous tuning, thus correcting any frequency deviation due to environmental or other changes. The PIFA antenna’s tuning ranges from 860 MHz to 1025 MHz. Also, the geometry of the antenna is studied through simulations and the effect of the varactor is tested experimentally.展开更多
In this study we present the design and realization of a tunable dual band wireless power transfer(TDB-WPT)coupled resonator system.The frequency response of the tunable band can be controlled using a surface-mounted ...In this study we present the design and realization of a tunable dual band wireless power transfer(TDB-WPT)coupled resonator system.The frequency response of the tunable band can be controlled using a surface-mounted varactor.The transmitter(Tx)and the receiver(Rx)circuits are symmetric.The top layer contains a feed line with an impedance of 50Ω.Two identical half rings defected ground structures(HR-DGSs)are loaded on the bottom using a varactor diode.We propose a solution for restricted WPT systems working at a single band application according to the operating frequency.The effects of geometry,orientation,relative distance,and misalignments on the coupling coefficients were studied.To validate the simulation results,the proposed TDB-WPT system was fabricated and tested.The system occupied a space of 40 mm×40 mm.It can deliver power to the receiver with an average coupling efficiency of 98%at the tuned band from 817 to 1018 MHz and an efficiency of 95%at a fixed band of 1.6 GHz at a significant transmission distance of 22 mm.The results of the measurements accorded well with those of an equivalent model and the simulation.展开更多
As the tuning frequency of an integrated LC-voltage controlled oscillator (LC-VCO) increases, it is difficult to co-design the active negative resistance core and the varactor to achieve wideband frequency range, lo...As the tuning frequency of an integrated LC-voltage controlled oscillator (LC-VCO) increases, it is difficult to co-design the active negative resistance core and the varactor to achieve wideband frequency range, low phase noise, constant bandwidth and small tuning gain together. The presented VCO solves the problem by designing a set of changeable varactor units. The whole VCO was implemented in a 0.18μm CMOS process. The measured result shows -120 dBc/Hz phase noise at 1 MHz offset. The measured tuning range is from 4.2 to 5 GHz and the tuning gain is 8-10 MHz/V. The VCO draws 4 mA from a 1.5 V supply voltage.展开更多
A low power VCO with a wide tuning range and low phase noise has been designed and realized in a standard 90 nm CMOS technology. A newly proposed current-reuse cross-connected pair is utilized as a negative conductanc...A low power VCO with a wide tuning range and low phase noise has been designed and realized in a standard 90 nm CMOS technology. A newly proposed current-reuse cross-connected pair is utilized as a negative conductance generator to compensate the energy loss of the resonator. The supply current is reduced by half compared to that of the conventional LC-VCO. An improved inversion-mode MOSFET(IMOS) varactor is introduced to extend the capacitance tuning range from 32.8% to 66%. A detailed analysis of the proposed varactor is provided. The VCO achieves a tuning range of 27–32.5 GHz, exhibiting a frequency tuning range(FTR) of 18.4%and a phase noise of –101.38 dBc/Hz at 1 MHz offset from a 30 GHz carrier, and shows an excellent FOM of –185dBc/Hz. With the voltage supply of 1.5 V, the core circuit of VCO draws only 2.1 m A DC current.展开更多
基金Supported by the National Science and Technology Major Project of China (No. 2010ZX03007-003-04)Ningbo University - Agilent Joint Laboratory, the National Natural Science Foundation of China (No. 61171040)+5 种基金the Key Project of International Cooperation of the Provincial Science Technology Major Projects of Zhejiang (No. 2010C14007)the Provincial Natural Science Foundation of Zhejiang (No. Y1101270)the Natural Science Foundation of Ningbo (No. 2011A610188)the Scientific Research Foundation of Graduate School of Ningbo University (No. G12JA019)Scientific Research Fund of Zhejiang Provincial Education Department (No. Y201224247)Research Foundation of Ningbo University (No. XKL11D2064)
文摘This paper presents a novel electronic tuner with high power handling capability utilizing varactors based on the asymmetric bilateral coupled microstrip transmission line. Through varying the bias voltage of the varactor at the Ultra High Frequency (UHF) band, the performance of the tuner is demonstrated according to simulated and measured results from several cases with the return loss (S11 ) below -20 dB and the insertion loss (S21 ) within ±0.5 dB. Compared with tuners using p and t network, electronic tuner of this paper shows superior frequency agility as well as wide impendence coverage. Advanced biasing structure has been developed to improve power handling for high power level applications. It is expected that the novel tuner would be part of intelligent Radio Frequency (RF) front-ends system and cognitive wireless system in the future.
文摘A 2 5GHz fully integrated LC VCO is fabricated in a standard single poly 4 metal 0 35μm digital CMOS process,using a complementary cross coupled topology for lowering power dissipation and reducing the effect of 1/ f noise.An on chip LC filtering technique is used to lower the high frequency noise.Accumulation varactors are used to widen frequency tuning.The measured tuning range is 23 percent.A single hexadecagon symmetric on chip spiral is used with grounded shield pattern to reduce the chip area and maximize the quality factor.A phase noise of -118dBc/Hz at 1MHz offset is measured.The power dissipation is 4mA at V DD =3 3V.
文摘The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to obtain a wide band and a large tuning range,a parallel switched capacitor bank is added in the LC tank.The proposed VCO is implemented in SMIC 0.18-μm RF CMOS technology and the chip area is 750 μm×560 μm,including the test buffer circuit and the pads.Measured results show that the tuning range is 44.6%;i.e.,the frequency turning range is from 2.27 to 3.57 GHz.The measured phase noise is-122.22 dBc/Hz at a 1 MHz offset from the carrier.The maximum power consumption of the core part is 6.16 mW at a 1.8 V power supply.
文摘An accurate 1.08GHz CMOS LC voltage-controlled oscillator is implemented in a 0.35μm standard 2P4M CMOS process.A new convenient method of calculating oscillator period is presented.With this period calculation technique,the frequency tuning curves agree well with the experiment.At a 3.3V supply,the LC-VCO measures a phase noise of -82.2dBc/Hz at a 10kHz frequency offset while dissipating 3.1mA current.The chip size is 0.86mm×0.82mm.
文摘A 4. 224GHz quadrature voltage-controlled oscillator (QVCO) applied in MB-OFDM UWB synthesizers is implemented in 0.18μm RF-CMOS technology. An improved structure of the QVCO is presented for better phase noise. A novel configuration of a MOS varactor is designed for good linearity of K as well as a new digital capacitor controlled array topology with lower parasitic capacitance and lower Ron. Measurement results show a phase noise of - 90.4dBc/Hz at 100kHz offset and - 116.7dBc/Hz at 1MHz offset from a carrier close to 4. 224GHz. The power dissipation is 10. 55mW from a 1.8V supply.
文摘Using an in-house MMIC and an off-chip,high-quality varactor, a novel wide band VCO covered Ku band is introduced. In contrast to HMIC technology, this method reduces the complexity of microchip assembly. More importantly,it overcomes the constraint that the standard commercial GaAs pHEMT MMIC process is usually not compatible with highquality varactors for VCO,and it significantly improves the phase noise and frequency tuning linearity performances compared to either MMIC or HMIC implementation. It is a novel and high-quality method to develop microwave and millimeter wave VCO.
文摘The excellent reverse breakdown characteristics of Schottky barrier varactor(SBV)are crucially required for the application of high power and high efficiency multipliers.The SBV with a novel Schottky structure named metal-brim is fabricated and systemically evaluated.Compared with normal structure,the reverse breakdown voltage of the new type SBV improves from-7.31 V to-8.75 V.The simulation of the Schottky metal-brim SBV is also proposed.Three factors,namely distribution of leakage current,the electric field,and the area of space charge region are mostly concerned to explain the physical mechanism.Schottky metal-brim structure is a promising approach to improve the reverse breakdown voltage and reduce leakage current by eliminating the accumulation of charge at Schottky electrode edge.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 60806024)the Fundamental Research Funds for Central Universities, China (Grant No. XDJK2009C020)the Singapore–China Joint Research Project (Grant No. 2009DFA12130)
文摘A fabrication technology of GaAs planar Schottky varactor diode (PSVD) is successfully developed and used to design and manufacture CaAs-based monolithic frequency multiplication based on 23-section nonlinear transmission lines (NLTLs) consisting of a coplanar waveguide transmission line and periodically distributed PSVDs. The throughout design and optimization procedure of 23-section monolithic NLTLs for frequency multiplication in the k-band range is based on a large signal equivalent model of PSVD extracted from small-signal S-parameter measurements. This paper reports that the distributed SPVD exhibits a capacitance ratio of 5.4, a normalized capacitance of 0.86 fF/μm2 and a breakdown voltage in excess of 22 V. The integrated 23-section NLTLs fed by 20-dBm input power demonstrates a 26-GHz peak second harmonic output power of 14-dBm with 25.3% conversion efficiency in the second harmonic output frequency range of 6 GHz-26 GHz.
基金Project supported by the National Natural Science Foundations of China (Grant Nos.61271250 and 61202490)
文摘An effective approach to designing a tunable electromagnetic absorber is presented and experimentally verified; it is based on an idea that an existing frequency selective surface (FSS) absorber is regarded as a loaded receiving antenna array. The existing absorber is effectively simplified by withdrawing half of the loaded resistors; a more compact one is obtained when lumped capacitors are introduced. Building on this, a varactor-tunable absorber with a proper bias network is proposed. Numerical simulations of one tunable absorber with 1.6 mm in thickness show that a wide tuning range from 3.05 GHz to 1.96 GHz is achieved by changing the capacitance of the loaded varactor from 0.5 pF to 5.0 pF. An experiment is carried out using a rectangular waveguide measurement setup and excellent agreement between the simulated and measured results is demonstrated.
基金Supported by the Provincial Natural Science Foundation of Zhejiang(No.Y1101270)the National Natural Science Foundation of China(No.61171040)+1 种基金Ningbo University Disciplinary Project(No.XKL141038)Agilent Technologies Inc.Research Project(No.3110)
文摘This paper presents a concurrent dual-band branch-line coupler with an independently tunable center frequency. In the proposed architecture, the quarter-wavelength lines, which work at two separated bands concurrently and can be tuned in one of them, are key components. Based on the analysis of ABCD-matrix, a novel hybrid structure and a pair of varactors topology are utilized to achieve concurrent dual-band operation and independent tunability, respectively. Using this configuration, it is convenient to tune the center frequency of the upper band, while the responses of the lower band remain unaltered. To verify the proposed idea, a demonstration is implemented and the simulated results are presented.
基金supported by the National Natural Science Foundation of China(Grant No.61371009)the National High Technology Research and Development Program of China(Grant No.2014AA032703)
文摘In this paper we propose a two-pole varactor-tuned superconducting filter using coplanar waveguide (CPW) spiralin-spiral-out (SISO) resonators. Novel internal and external coupling structures are introduced to meet the requirements for a tunable filter with a constant absolute bandwidth. The fabricated device has a frequency tuning range of 14.4% at frequencies ranging from 274.1 MHz to 317.7 MHz, a 3-dB bandwidth of 5.14±0.06 MHz, and an insertion loss of 0.08 dB-0.70 dB. The simulated and measured results are in excellent agreement with each other.
基金Project supported by the National Scientific Major Projects of China (Grant No. 2011ZX03004-001-02)the National Natural Science Foundation of China (Grant No. 60806024)
文摘The left-handed nonlinear transmission line (LH-NLTL) based on monolithic microwave integrated circuit (MMIC) technology possesses significant advantages such as wide frequency band, high operating frequency, high conversion efficiency, and applications in millimeter and submillimeter wave frequency multiplier. The planar Schottky varactor diode (PSVD) is a major limitation to the performance of the LH-NLTL frequency multiplier as a nonlinear component. The design and the fabrication of the diode for such an application are presented. An accurate large-signal model of the diode is proposed. A 16 GHz-39,6 GHz LH NLTL frequency doubler using our large-signal model is reported for the first time. The measured maximum output powers of the 2nd harmonic are up to 8 dBm at 26.4 GHz, and above 0 dBm from 16 GHz to 39.6 GHz when the input power is 20 dBm. The application of the LH-NLTL frequency doubler furthermore validates the accuracy of the large-signal model of the PSVD.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60901029, 61172148, and 60925005)the Natural Science Foundation of Shaanxi Province, China (Grant No. 2011JQ8040)
文摘A new technique for designing a varactor-tunable frequency selective surface (FSS) with an embedded bias network is proposed and experimentally verified. The proposed FSS is based on a square-ring slot FSS. The frequency tuning is achieved by inserting varactor diodes between the square mesh and each unattached square patch. The square mesh is divided into two parts for biasing the varactor diodes. Full-wave numerical simulations show that a wide tuning range can be achieved by changing the capacitances of these loaded varactors. Two homo-type samples using fixed lumped capacitors are fabricated and measured using a standard waveguide measurement setup. Excellent agreement between the measured and simulated results is demonstrated.
文摘The optimization of high power terahertz monolithic integrated circuit (TMIC) is systemically studied based on the physical model of the Schottky barrier varactor (SBV) with interface defects and tunneling effect. An ultra-thin dielectric layer is added to describe the extra tunneling effect and the damping of thermionic emission current induced by the interface defects. Power consumption of the dielectric layer results in the decrease of capacitance modulation ration (Cmax/Cmin), and thus leads to poor nonlinear C–V characteristics. The proposed Schottky metal-brim (SMB) terminal structure could improve the capacitance modulation ration by reducing the influence of the interface charge and eliminating the fringing capacitance effect. Finally, a 215 GHz tripler TMIC is fabricated based on the SMB terminal structure. The output power is above 5 mW at 210–218 GHz and the maximum could exceed 10 mW at 216 GHz, which could be widely used in terahertz imaging, radiometers, and so on. This paper also provides theoretical support for the SMB structure to optimize the TMIC performance.
基金supported by the National Natural Science Foundations of China(Grant Nos.61271250 and 11204378)
文摘In this paper, we design a varactor-tunable metamaterial absorber (MA). The tunable MA is based on a mushroom-type high impedance surface (HIS), in which varactors are loaded between adjacent metal patches to adjust the capacitance and tune the resonance frequency, the primary ground plane is etched as the bias network to bias all of the varactors in parallel, and another ultra-thin grounded film is attached to the bottom. Its absorption characteristics are realized for electrically dielectric loss. The simulated values of a sample indicate that a tunable frequency range from 2.85 GHz to 2.22 GHz is achieved by adjusting the varactor capacitance from 0.1 pF to 2.0 pF, and better than 0.97 absorbance is realized; in addition, the tunable frequency range is expanded from 4.12 GHz to 1.70 GHz after optimization.
文摘An analysis of a 3 dB lumped-element directional coupler (LEDC) based on arbitrary terminal impedance is described numerically. To solve the conflicted requirement for broad bandwidth and small size in LEDC, a new structure of coupler is introduced, which can significantly improve bandwidth and whose size is only 3 cm×4 cm on the conditions of the frequency domain of 410 MHz to 490 MHz. The measure results are in good agreement with simulations despite the unexpected resistor loss.
文摘Modern telecommunication systems need to be equipped with antennas that are precisely tuned to more than one frequency in order to allow operation in several bands. Antenna precise tuning to the desired frequency is very important for system performance. In this paper the operating frequency of a PIFA antenna is adjusted using a varactor. This configuration has the advantage of continuous tuning, thus correcting any frequency deviation due to environmental or other changes. The PIFA antenna’s tuning ranges from 860 MHz to 1025 MHz. Also, the geometry of the antenna is studied through simulations and the effect of the varactor is tested experimentally.
文摘In this study we present the design and realization of a tunable dual band wireless power transfer(TDB-WPT)coupled resonator system.The frequency response of the tunable band can be controlled using a surface-mounted varactor.The transmitter(Tx)and the receiver(Rx)circuits are symmetric.The top layer contains a feed line with an impedance of 50Ω.Two identical half rings defected ground structures(HR-DGSs)are loaded on the bottom using a varactor diode.We propose a solution for restricted WPT systems working at a single band application according to the operating frequency.The effects of geometry,orientation,relative distance,and misalignments on the coupling coefficients were studied.To validate the simulation results,the proposed TDB-WPT system was fabricated and tested.The system occupied a space of 40 mm×40 mm.It can deliver power to the receiver with an average coupling efficiency of 98%at the tuned band from 817 to 1018 MHz and an efficiency of 95%at a fixed band of 1.6 GHz at a significant transmission distance of 22 mm.The results of the measurements accorded well with those of an equivalent model and the simulation.
文摘As the tuning frequency of an integrated LC-voltage controlled oscillator (LC-VCO) increases, it is difficult to co-design the active negative resistance core and the varactor to achieve wideband frequency range, low phase noise, constant bandwidth and small tuning gain together. The presented VCO solves the problem by designing a set of changeable varactor units. The whole VCO was implemented in a 0.18μm CMOS process. The measured result shows -120 dBc/Hz phase noise at 1 MHz offset. The measured tuning range is from 4.2 to 5 GHz and the tuning gain is 8-10 MHz/V. The VCO draws 4 mA from a 1.5 V supply voltage.
基金supported by the National Basic Research Program of China(No.2010CB327404)the National High Technology Research and Development Program of China(No.2011AA10305)the National Natural Science Foundation of China(No.60901012)
文摘A low power VCO with a wide tuning range and low phase noise has been designed and realized in a standard 90 nm CMOS technology. A newly proposed current-reuse cross-connected pair is utilized as a negative conductance generator to compensate the energy loss of the resonator. The supply current is reduced by half compared to that of the conventional LC-VCO. An improved inversion-mode MOSFET(IMOS) varactor is introduced to extend the capacitance tuning range from 32.8% to 66%. A detailed analysis of the proposed varactor is provided. The VCO achieves a tuning range of 27–32.5 GHz, exhibiting a frequency tuning range(FTR) of 18.4%and a phase noise of –101.38 dBc/Hz at 1 MHz offset from a 30 GHz carrier, and shows an excellent FOM of –185dBc/Hz. With the voltage supply of 1.5 V, the core circuit of VCO draws only 2.1 m A DC current.