Wiener amalgam spaces are a class of function spaces where the function’s local and global behavior can be easily distinguished. These spaces are ex-tensively used in Harmonic analysis that originated in the work of ...Wiener amalgam spaces are a class of function spaces where the function’s local and global behavior can be easily distinguished. These spaces are ex-tensively used in Harmonic analysis that originated in the work of Wiener. In this paper: we first introduce a two-variable exponent amalgam space (L<sup>q</sup><sup>()</sup>,l<sup>p</sup><sup>()</sup>)(Ω). Secondly, we investigate some basic properties of these spaces, and finally, we study their dual.展开更多
The boundedness of multilinear singular integrals of Calder′on-Zygmund type onproduct of variable exponent Lebesgue spaces over both bounded and unbounded domains areobtained. Further more, the boundedness for this t...The boundedness of multilinear singular integrals of Calder′on-Zygmund type onproduct of variable exponent Lebesgue spaces over both bounded and unbounded domains areobtained. Further more, the boundedness for this type multilinear operators on product ofvariable exponent Morrey spaces over domains is shown in the paper.展开更多
In this article, by extending classical Dellacherie's theorem on stochastic se- quences to variable exponent spaces, we prove that the famous Burkholder-Gundy-Davis in- equality holds for martingales in variable expo...In this article, by extending classical Dellacherie's theorem on stochastic se- quences to variable exponent spaces, we prove that the famous Burkholder-Gundy-Davis in- equality holds for martingales in variable exponent Hardy spaces. We also obtain the variable exponent analogues of several martingale inequalities in classical theory, including convexity lemma, Chevalier's inequality and the equivalence of two kinds of martingale spaces with predictable control. Moreover, under the regular condition on σ-algebra sequence we prove the equivalence between five kinds of variable exponent martingale Hardy spaces.展开更多
In this paper, by applying the technique of the sharp maximal function and the equivalent representation of the norm in the Lebesgue spaces with variable exponent, the boundedness of the parameterized Litflewood-Paley...In this paper, by applying the technique of the sharp maximal function and the equivalent representation of the norm in the Lebesgue spaces with variable exponent, the boundedness of the parameterized Litflewood-Paley operators, including the parameterized Lusin area integrals and the parameterized Littlewood-Paley gλ^*- functions, is established on the Lebesgue spaces with variable exponent. Furthermore, the boundedness of their commutators generated respectively by BMO functions and Lipschitz functions are also obtained.展开更多
In this paper, we will discuss the behavior of a class of rough fractional integral operators on variable exponent Lebesgue spaces,and establish their boundedness from Lp1 (') (Rn) to Lp2() (Rn).
Our aim in the present paper is to prove the boundedness of commutators on Morrey spaces with variable exponent. In order to obtain the result, we clarify a relation between variable exponent and BMO norms.
In this paper,the authors obtain the boundedness of the fractional integral operators with variable kernels on the variable exponent generalized weighted Morrey spaces and the variable exponent vanishing generalized w...In this paper,the authors obtain the boundedness of the fractional integral operators with variable kernels on the variable exponent generalized weighted Morrey spaces and the variable exponent vanishing generalized weighted Morrey spaces.And the corresponding commutators generated by BMO function are also considered.展开更多
In this paper, we obtain the necessary and sufficient condition of the pre-compact sets in the variable exponent Lebesgue spaces, which is also called the Riesz-Kolmogorov theorem. The main novelty appearing in this a...In this paper, we obtain the necessary and sufficient condition of the pre-compact sets in the variable exponent Lebesgue spaces, which is also called the Riesz-Kolmogorov theorem. The main novelty appearing in this approach is the constructive approximation which does not rely on the boundedness of the Hardy-Littlewood maximal operator in the considered spaces such that we do not need the log-H¨older continuous conditions on the variable exponent. As applications, we establish the boundedness of Riemann-Liouville integral operators and prove the compactness of truncated Riemann-Liouville integral operators in the variable exponent Lebesgue spaces. Moreover, applying the Riesz-Kolmogorov theorem established in this paper, we obtain the existence and the uniqueness of solutions to a Cauchy type problem for fractional differential equations in variable exponent Lebesgue spaces.展开更多
In this paper, we will establish Poincare inequalities in variable exponent non-isotropic Sobolev spaces. The crucial part is that we prove the boundedness of the fractional integral operator on variable exponent Lebe...In this paper, we will establish Poincare inequalities in variable exponent non-isotropic Sobolev spaces. The crucial part is that we prove the boundedness of the fractional integral operator on variable exponent Lebesgue spaces on spaces of homogeneous type. We obtain the first order Poincare inequalities for vector fields satisfying Hormander's condition in variable non-isotropic Sobolev spaces. We also set up the higher order Poincare inequalities with variable exponents on stratified Lie groups. Moreover, we get the Sobolev inequalities in variable exponent Sobolev spaces on whole stratified Lie groups. These inequalities are important and basic tools in studying nonlinear subelliptic PDEs with variable exponents such as the p(x)-subLaplacian. Our results are only stated and proved for vector fields satisfying Hormander's condition, but they also hold for Grushin vector fields as well with obvious modifications.展开更多
We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
Let Ω be a domain in RN. It is shown that a generalized Poincaré inequality holds in cones contained in the Sobolev space Wl,P( )(Ω), where p(.) : Ω → [1, ∞[ is a variable exponent. This inequality is...Let Ω be a domain in RN. It is shown that a generalized Poincaré inequality holds in cones contained in the Sobolev space Wl,P( )(Ω), where p(.) : Ω → [1, ∞[ is a variable exponent. This inequality is itself a corollary to a more general result about equivalent norms over such cones. The approach in this paper avoids the difficulty arising from the possible lack of density of the space ;D(Ω) in the space {v ∈ Wl,P( )(Ω); tr v = 0 on δΩ}. Two applications are also discussed.展开更多
A generalized incompressable magnetohydrodynamics system is considered in this paper.Furthermore, results of global well-posednenss are established with the aid of Littlewood–Paley decomposition and Fourier localizat...A generalized incompressable magnetohydrodynamics system is considered in this paper.Furthermore, results of global well-posednenss are established with the aid of Littlewood–Paley decomposition and Fourier localization method in mentioned system with small initial condition in the variable exponent Fourier–Besov–Morrey spaces. Moreover, the Gevrey class regularity of the solution is also achieved in this paper.展开更多
This article is devoted to study the existence of renormalized solutions for the nonlinear p (x)-parabolic problem in the Weighted-Variable-Exponent Sobolev spaces, without the sign condition and the coercivity cond...This article is devoted to study the existence of renormalized solutions for the nonlinear p (x)-parabolic problem in the Weighted-Variable-Exponent Sobolev spaces, without the sign condition and the coercivity condition.展开更多
After studying in a previous work the smoothness of the space where dr- measF0 〉 O, with p(.) E C(~) and p(x) 〉 1 for all x E , the authors study in this paper the strict and uniform convexity as well as some ...After studying in a previous work the smoothness of the space where dr- measF0 〉 O, with p(.) E C(~) and p(x) 〉 1 for all x E , the authors study in this paper the strict and uniform convexity as well as some special properties of duality mappings defined on the same space. The results obtained in this direction are used for proving existence results for operator equations having the form Ju = Niu, where J is a duality mapping on Uro corresponding to the gauge function ~, and Nf is the Nemytskij operator generated by a Caratheodory function f satisfying an appropriate growth condition ensuring that Nf may be viewed as acting from Ur0 into its dual.展开更多
We investigate the boundedness of singular and fractional integral operators on generalized Hardy spaces defined on spaces of homogeneous type, which are preduals of Campanato spaces with variable growth condition. To...We investigate the boundedness of singular and fractional integral operators on generalized Hardy spaces defined on spaces of homogeneous type, which are preduals of Campanato spaces with variable growth condition. To do this we introduce molecules with variable growth condition. Our results are new even for R^n case.展开更多
We study a nonlinear periodic problem driven by the p(t)-Laplacian and having a nonsmooth potential (hemivariational inequalities). Using a variational method based on nonsmooth critical point theory for locally L...We study a nonlinear periodic problem driven by the p(t)-Laplacian and having a nonsmooth potential (hemivariational inequalities). Using a variational method based on nonsmooth critical point theory for locally Lipschitz functions, we first prove the existence of at least two nontrivial solutions under the generalized subquadratic and then establish the existence of at least one nontrivial solution under the generalized superquadratic.展开更多
This paper is devoted to the study of a nonlinear anisotropic elliptic e-quation with degenerate coercivity,lower order term and L1 datum in appropriate anisotropic variable exponents Sobolev spaced We obtain the exis...This paper is devoted to the study of a nonlinear anisotropic elliptic e-quation with degenerate coercivity,lower order term and L1 datum in appropriate anisotropic variable exponents Sobolev spaced We obtain the existence of distributional solutions.展开更多
Using the theory of weighted Sobolev spaces with variable exponent and the <em>L</em><sup>1</sup>-version on Minty’s lemma, we investigate the existence of solutions for some nonhomogeneous Di...Using the theory of weighted Sobolev spaces with variable exponent and the <em>L</em><sup>1</sup>-version on Minty’s lemma, we investigate the existence of solutions for some nonhomogeneous Dirichlet problems generated by the Leray-Lions operator of divergence form, with right-hand side measure. Among the interest of this article is the given of a very important approach to ensure the existence of a weak solution of this type of problem and of generalization to a system with the minimum of conditions.展开更多
We prove a global estimate in the Sobolev spaces with variable exponents to the solution of a class of higher-order divergence parabolic equations with measurable coefficients over the non-smooth domains.Here,it is ma...We prove a global estimate in the Sobolev spaces with variable exponents to the solution of a class of higher-order divergence parabolic equations with measurable coefficients over the non-smooth domains.Here,it is mainly assumed that the coefficients are allowed to be merely measurable in one of the spatial variables and have a small BMO quasi-norm in the other variables at a sufficiently small scale,while the boundary of the underlying domain belongs to the so-called Reifenberg flatness.This is a natural outgrowth of Dong-Kim-Zhang’s papers[1,2]from the W^(m,p)-regularity to the W^(m,p(t,x))-regularity for such higher-order parabolic equations with merely measurable coefficients with Reifenberg flat domain which is beyond the Lipschitz domain with small Lipschitz constant.展开更多
We consider a Neumann problem driven by a(p(z), q(z))-Laplacian(anisotropic problem) plus a parametric potential term with λ > 0 being the parameter. The reaction is superlinear but need not satisfy the Ambrosetti...We consider a Neumann problem driven by a(p(z), q(z))-Laplacian(anisotropic problem) plus a parametric potential term with λ > 0 being the parameter. The reaction is superlinear but need not satisfy the Ambrosetti-Rabinowitz condition. We prove a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter λ moves on R_(+)=(0,+∞).展开更多
文摘Wiener amalgam spaces are a class of function spaces where the function’s local and global behavior can be easily distinguished. These spaces are ex-tensively used in Harmonic analysis that originated in the work of Wiener. In this paper: we first introduce a two-variable exponent amalgam space (L<sup>q</sup><sup>()</sup>,l<sup>p</sup><sup>()</sup>)(Ω). Secondly, we investigate some basic properties of these spaces, and finally, we study their dual.
基金Supported by the National Natural Science Foundation of China (11071065, 10771110, 10471069)sponsored by the 151 Talent Fund of Zhejiang Province
文摘The boundedness of multilinear singular integrals of Calder′on-Zygmund type onproduct of variable exponent Lebesgue spaces over both bounded and unbounded domains areobtained. Further more, the boundedness for this type multilinear operators on product ofvariable exponent Morrey spaces over domains is shown in the paper.
基金supported by NSFC(11471251)supported by NSFC(11271293)
文摘In this article, by extending classical Dellacherie's theorem on stochastic se- quences to variable exponent spaces, we prove that the famous Burkholder-Gundy-Davis in- equality holds for martingales in variable exponent Hardy spaces. We also obtain the variable exponent analogues of several martingale inequalities in classical theory, including convexity lemma, Chevalier's inequality and the equivalence of two kinds of martingale spaces with predictable control. Moreover, under the regular condition on σ-algebra sequence we prove the equivalence between five kinds of variable exponent martingale Hardy spaces.
基金supported by National Natural Foundation of China (Grant Nos. 11161042 and 11071250)
文摘In this paper, by applying the technique of the sharp maximal function and the equivalent representation of the norm in the Lebesgue spaces with variable exponent, the boundedness of the parameterized Litflewood-Paley operators, including the parameterized Lusin area integrals and the parameterized Littlewood-Paley gλ^*- functions, is established on the Lebesgue spaces with variable exponent. Furthermore, the boundedness of their commutators generated respectively by BMO functions and Lipschitz functions are also obtained.
基金Supported by the NSF of Zhejiang Province (Y6090681)the Education Dept.of Zhejiang Province(Y201120509)
文摘In this paper, we will discuss the behavior of a class of rough fractional integral operators on variable exponent Lebesgue spaces,and establish their boundedness from Lp1 (') (Rn) to Lp2() (Rn).
基金supported by NSFC (No. 11101001 and No. 11201003)Education Committee of Anhui Province (No. KJ2011A138 and No. KJ2012A133)
文摘Our aim in the present paper is to prove the boundedness of commutators on Morrey spaces with variable exponent. In order to obtain the result, we clarify a relation between variable exponent and BMO norms.
基金supported by the National Natural Science Foundation of China(No.11561062)Natural Science Foundation of Gansu Province(21JR1RM337).
文摘In this paper,the authors obtain the boundedness of the fractional integral operators with variable kernels on the variable exponent generalized weighted Morrey spaces and the variable exponent vanishing generalized weighted Morrey spaces.And the corresponding commutators generated by BMO function are also considered.
基金supported by the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(Grant No.2017r098)Zunwei Fu was supported by National Natural Science Foundation of China(Grant Nos.11671185 and 11771195)+1 种基金National Science Foundation of Shandong Province(Grant No.ZR2017MA041)Jingshi Xu was supported by National Natural Science Foundation of China(Grant No.11761026)
文摘In this paper, we obtain the necessary and sufficient condition of the pre-compact sets in the variable exponent Lebesgue spaces, which is also called the Riesz-Kolmogorov theorem. The main novelty appearing in this approach is the constructive approximation which does not rely on the boundedness of the Hardy-Littlewood maximal operator in the considered spaces such that we do not need the log-H¨older continuous conditions on the variable exponent. As applications, we establish the boundedness of Riemann-Liouville integral operators and prove the compactness of truncated Riemann-Liouville integral operators in the variable exponent Lebesgue spaces. Moreover, applying the Riesz-Kolmogorov theorem established in this paper, we obtain the existence and the uniqueness of solutions to a Cauchy type problem for fractional differential equations in variable exponent Lebesgue spaces.
基金supported by NSFC(Grant No.11371056)supported by a US NSF grant
文摘In this paper, we will establish Poincare inequalities in variable exponent non-isotropic Sobolev spaces. The crucial part is that we prove the boundedness of the fractional integral operator on variable exponent Lebesgue spaces on spaces of homogeneous type. We obtain the first order Poincare inequalities for vector fields satisfying Hormander's condition in variable non-isotropic Sobolev spaces. We also set up the higher order Poincare inequalities with variable exponents on stratified Lie groups. Moreover, we get the Sobolev inequalities in variable exponent Sobolev spaces on whole stratified Lie groups. These inequalities are important and basic tools in studying nonlinear subelliptic PDEs with variable exponents such as the p(x)-subLaplacian. Our results are only stated and proved for vector fields satisfying Hormander's condition, but they also hold for Grushin vector fields as well with obvious modifications.
文摘We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
文摘Let Ω be a domain in RN. It is shown that a generalized Poincaré inequality holds in cones contained in the Sobolev space Wl,P( )(Ω), where p(.) : Ω → [1, ∞[ is a variable exponent. This inequality is itself a corollary to a more general result about equivalent norms over such cones. The approach in this paper avoids the difficulty arising from the possible lack of density of the space ;D(Ω) in the space {v ∈ Wl,P( )(Ω); tr v = 0 on δΩ}. Two applications are also discussed.
基金The Research was Supported by Zhejiang Normal University Postdoctoral Research fund under(Grant No.ZC304020909)NSF of China(Grant No.10271437)。
文摘A generalized incompressable magnetohydrodynamics system is considered in this paper.Furthermore, results of global well-posednenss are established with the aid of Littlewood–Paley decomposition and Fourier localization method in mentioned system with small initial condition in the variable exponent Fourier–Besov–Morrey spaces. Moreover, the Gevrey class regularity of the solution is also achieved in this paper.
文摘This article is devoted to study the existence of renormalized solutions for the nonlinear p (x)-parabolic problem in the Weighted-Variable-Exponent Sobolev spaces, without the sign condition and the coercivity condition.
文摘After studying in a previous work the smoothness of the space where dr- measF0 〉 O, with p(.) E C(~) and p(x) 〉 1 for all x E , the authors study in this paper the strict and uniform convexity as well as some special properties of duality mappings defined on the same space. The results obtained in this direction are used for proving existence results for operator equations having the form Ju = Niu, where J is a duality mapping on Uro corresponding to the gauge function ~, and Nf is the Nemytskij operator generated by a Caratheodory function f satisfying an appropriate growth condition ensuring that Nf may be viewed as acting from Ur0 into its dual.
基金supported by Grant-in-Aid for Scientific Research (B) (Grant No. 15H03621), Japan Society for the Promotion of Science
文摘We investigate the boundedness of singular and fractional integral operators on generalized Hardy spaces defined on spaces of homogeneous type, which are preduals of Campanato spaces with variable growth condition. To do this we introduce molecules with variable growth condition. Our results are new even for R^n case.
基金supported by the National Science Foundation of China (11001063, 10971043)the Fundamental Research Funds for the Central Universities (HEUCF 20111134)+2 种基金China Postdoctoral Science Foundation Funded Project (20110491032)Heilongjiang Provincial Science Foundation for Distinguished Young Scholars (JC200810)Program of Excellent Team in Harbin Institute of Technology and the Natural Science Foundation of Heilongjiang Province (A200803)
文摘We study a nonlinear periodic problem driven by the p(t)-Laplacian and having a nonsmooth potential (hemivariational inequalities). Using a variational method based on nonsmooth critical point theory for locally Lipschitz functions, we first prove the existence of at least two nontrivial solutions under the generalized subquadratic and then establish the existence of at least one nontrivial solution under the generalized superquadratic.
文摘This paper is devoted to the study of a nonlinear anisotropic elliptic e-quation with degenerate coercivity,lower order term and L1 datum in appropriate anisotropic variable exponents Sobolev spaced We obtain the existence of distributional solutions.
文摘Using the theory of weighted Sobolev spaces with variable exponent and the <em>L</em><sup>1</sup>-version on Minty’s lemma, we investigate the existence of solutions for some nonhomogeneous Dirichlet problems generated by the Leray-Lions operator of divergence form, with right-hand side measure. Among the interest of this article is the given of a very important approach to ensure the existence of a weak solution of this type of problem and of generalization to a system with the minimum of conditions.
基金supported by the National Natural Science Foundation of China(Grant Nos.11901429 and 12071021).
文摘We prove a global estimate in the Sobolev spaces with variable exponents to the solution of a class of higher-order divergence parabolic equations with measurable coefficients over the non-smooth domains.Here,it is mainly assumed that the coefficients are allowed to be merely measurable in one of the spatial variables and have a small BMO quasi-norm in the other variables at a sufficiently small scale,while the boundary of the underlying domain belongs to the so-called Reifenberg flatness.This is a natural outgrowth of Dong-Kim-Zhang’s papers[1,2]from the W^(m,p)-regularity to the W^(m,p(t,x))-regularity for such higher-order parabolic equations with merely measurable coefficients with Reifenberg flat domain which is beyond the Lipschitz domain with small Lipschitz constant.
基金supported by National Natural Science Foundation of China (Grant No.12071413)Natural Science Foundation of Guangxi Grant No.2023GXNSFAA026085the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement (No.823731) CONMECH。
文摘We consider a Neumann problem driven by a(p(z), q(z))-Laplacian(anisotropic problem) plus a parametric potential term with λ > 0 being the parameter. The reaction is superlinear but need not satisfy the Ambrosetti-Rabinowitz condition. We prove a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter λ moves on R_(+)=(0,+∞).