The increasing pressure from consumers and policy makers to reduce the use of synthetic polymers,whose production contributes to the depletion of non-renewable resources and are usually non-biodegradable,has prompted ...The increasing pressure from consumers and policy makers to reduce the use of synthetic polymers,whose production contributes to the depletion of non-renewable resources and are usually non-biodegradable,has prompted the efforts to find suitable bio-based sources for the production of polymers.Vegetable oils have been a frequently spotted in this search because they are versatile,highly available and a low cost liquid biosource,which can be used in the synthesis of a wide plethora of different polymers and reactive monomers.Following the same idea of reducing the environmental stress,the traditional polyurethanes that are soluble in organic solvents have been targeted for replacement,particularly in applications such as adhesives and coatings,in which the solvent is released to the atmosphere increasing the air pollution.Instead,waterborne polyurethanes(WBPU),which are polyurethane dispersions(PUD)prepared in aqueous media,release benign water to the atmosphere during use as supported or self-standing films for different applications.In this brief review,the contributions to the development of WBPUs based on vegetable oils are discussed,focusing mainly on the contributions of the last decade.The synthesis of ionic and nonionic PUDs,their characterization and the properties of the resulting dried materials,as well as derived composite materials are considered.展开更多
Phenol is considered as pollutant due to its toxicity and carcinogenic effect.Thus,variety of innovative methods for separation and recovery of phenolic compounds is developed in order to remove the unwanted phenol fr...Phenol is considered as pollutant due to its toxicity and carcinogenic effect.Thus,variety of innovative methods for separation and recovery of phenolic compounds is developed in order to remove the unwanted phenol from wastewater and obtain valuable phenolic compound.One of potential method is extraction using green based liquid organic solvent.Therefore,the feasibility of using palm oil was investigated.In this research,palm oil based organic phase was used as diluents to treat a simulated wastewater containing 300×10^(-6) of phenol solution using emulsion liquid membrane process(ELM).The stability of water-in-oil(W/O) emulsion on diluent composition and the parameters affecting the phenol removal efficiency and stability of the emulsion;such as emulsification speed,emulsification time,agitation speed,surfactant concentration,pH of external phase,contact time,stripping agent concentration and treat ratio were carried out.The results of ELM study showed that at ratio7 to 3 of palm oil to kerosene,5 min and 1300 r·min^(-1) of emulsification process the stabile primary emulsion were formed.Also,no carrier is needed to facilitate the phenol extraction.In experimental conditions of500 r·min^(-1) of agitation speed,3%Span 80,pH 8 of external phase,5 min of contact time,0.1 mol·L^(-1) NaOH as stripping agent and 1:10 of treat ratio,the ELM process was very promising for removing the phenol from the wastewater.The extraction performance at about 83%of phenol was removed for simulated wastewater and an enrichment of phenol in recovery phase as phenolate compound was around 11 times.展开更多
基金the Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET,Argentina)(PIP 20170100677)the Fondo para la Investigación Científica y Tecnológica(FONCYT)(PICT-2017-1318)the Universidad Nacional de Mar del Plata(UNMdP,15/G557,ING561/19)and to the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires(CIC)and the Universidad Tecnológica Nacional(UTN)for their financial support.
文摘The increasing pressure from consumers and policy makers to reduce the use of synthetic polymers,whose production contributes to the depletion of non-renewable resources and are usually non-biodegradable,has prompted the efforts to find suitable bio-based sources for the production of polymers.Vegetable oils have been a frequently spotted in this search because they are versatile,highly available and a low cost liquid biosource,which can be used in the synthesis of a wide plethora of different polymers and reactive monomers.Following the same idea of reducing the environmental stress,the traditional polyurethanes that are soluble in organic solvents have been targeted for replacement,particularly in applications such as adhesives and coatings,in which the solvent is released to the atmosphere increasing the air pollution.Instead,waterborne polyurethanes(WBPU),which are polyurethane dispersions(PUD)prepared in aqueous media,release benign water to the atmosphere during use as supported or self-standing films for different applications.In this brief review,the contributions to the development of WBPUs based on vegetable oils are discussed,focusing mainly on the contributions of the last decade.The synthesis of ionic and nonionic PUDs,their characterization and the properties of the resulting dried materials,as well as derived composite materials are considered.
基金Supported by the Ministry of Higher Education(MOHE)Universiti Teknologi Malaysia(RU Research GrantGUP:Q.J130000.2546.12H50)
文摘Phenol is considered as pollutant due to its toxicity and carcinogenic effect.Thus,variety of innovative methods for separation and recovery of phenolic compounds is developed in order to remove the unwanted phenol from wastewater and obtain valuable phenolic compound.One of potential method is extraction using green based liquid organic solvent.Therefore,the feasibility of using palm oil was investigated.In this research,palm oil based organic phase was used as diluents to treat a simulated wastewater containing 300×10^(-6) of phenol solution using emulsion liquid membrane process(ELM).The stability of water-in-oil(W/O) emulsion on diluent composition and the parameters affecting the phenol removal efficiency and stability of the emulsion;such as emulsification speed,emulsification time,agitation speed,surfactant concentration,pH of external phase,contact time,stripping agent concentration and treat ratio were carried out.The results of ELM study showed that at ratio7 to 3 of palm oil to kerosene,5 min and 1300 r·min^(-1) of emulsification process the stabile primary emulsion were formed.Also,no carrier is needed to facilitate the phenol extraction.In experimental conditions of500 r·min^(-1) of agitation speed,3%Span 80,pH 8 of external phase,5 min of contact time,0.1 mol·L^(-1) NaOH as stripping agent and 1:10 of treat ratio,the ELM process was very promising for removing the phenol from the wastewater.The extraction performance at about 83%of phenol was removed for simulated wastewater and an enrichment of phenol in recovery phase as phenolate compound was around 11 times.