An extensive experimental and theoretical research study was undertaken to study the vibration serviceability of a long-span prestressed concrete floor system to be used in the lounge of a major airport.Specifically,j...An extensive experimental and theoretical research study was undertaken to study the vibration serviceability of a long-span prestressed concrete floor system to be used in the lounge of a major airport.Specifically,jumping impact tests were carried out to obtain the floor’s modal parameters,followed by an analysis of the distribution of peak accelerations.Running tests were also performed to capture the acceleration responses.The prestressed concrete floor was found to have a low fundamental natural frequency(≈8.86 Hz)corresponding to the average modal damping ratio of≈2.17%.A coefficients plate with simply-supported edges.The calculated analytical results(natural frequencies and root-mean-square acceleration)agree well with the experimental ones.The analytical approach is thus validated.展开更多
The human-induced vertical vibration serviceability of low-frequency and lightweight footbridges is studied based on the moving mass-spring-damper(MMSD) biodynamic model, and the mass damper(TMD) with different op...The human-induced vertical vibration serviceability of low-frequency and lightweight footbridges is studied based on the moving mass-spring-damper(MMSD) biodynamic model, and the mass damper(TMD) with different optimal model parameters being used to control the vertical vibration.First, the MMSD biodynamic model is employed to simulate the pedestrians, and the time-varying control equations of the vertical dynamic coupling system of the pedestrian-bridgeTMD are established with the consideration of pedestrianbridge dynamic interaction; and the equations are solved by using the Runge-Kutta-Felhberg integral method with variable step size. Secondly, the footbridge dynamic response is calculated under the model of pedestrian-structure dynamic interaction and the model of moving load when the pedestrian pace frequency is consistent with the natural frequency of footbridge. Finally, a comparative study and analysis are made on the control effects of the vertical dynamic coupling system in different optimal models of the TMD. The calculation results show that the pedestrian-bridge dynamic interaction cannot be ignored when the vertical human-induced vibration serviceability of low-frequency and light-weight footbridge is evaluated. The TMD can effectively reduce the vibration under the resonance of pedestrian-bridge, and TMD parameters are recommended for the determination by the Warburton optimization model.展开更多
The increasing strength of new structural materials and the span of new structures, accompanied by aesthetic requirements for greater slenderness, are resulting in more applications of long-span structures. In this pa...The increasing strength of new structural materials and the span of new structures, accompanied by aesthetic requirements for greater slenderness, are resulting in more applications of long-span structures. In this paper, serviceability control technology and its design theory are studied. First, a novel tuned mass damper (TMD) with controllable stiffness is developed. Second, methods for modeling human-induced loads are proposed, including standing up, walking, jumping and running, and an analysis method for long-span floor response is proposed based on a finite element model. Third, a design method for long-span floors installed with a multiple TMD (MTMD) system considering human comfort is introduced, largely based on a study of existing literature. Finally, a design, analysis and field test is conducted using several large scale buildings in China including the Beijing Olympic Park National Conference Center, Changsha New Railway Station and the Xi'an Northern Railway Station. The analytical and field test results show that the MTMD system designed using the proposed method is capable of effectively mitigating the vertical vibration of long-span floor structures. The study presented in this paper provides an important reference for the analysis of vibration serviceability of similar long-span floors and design of control system for these structures.展开更多
The field test of a typical Tibetan ancient structure instrumented with displacement and acceleration transducers was conducted to measure time histories due to crowd walking and running. The test case is introduced f...The field test of a typical Tibetan ancient structure instrumented with displacement and acceleration transducers was conducted to measure time histories due to crowd walking and running. The test case is introduced firstly. The displacement time histories are then used to analyze the dynamic property such as fundamental frequency of vertical vibration and damping ratio of the test structure, and the acceleration time histories are applied to evaluate the floor vibration serviceability. The floor interaction and comparison of human walking and running are also discussed. Some valuable conclusions are given.展开更多
基金National Natural Science Foundation of China under Grant No.51438001Fundamental Research Funds for the Central Universities under Grant Nos.106112014CDJZR200001 and 106112015CDJXZ208804+1 种基金Chongqing basic and frontier research project under Grant No.cstc2014jcyjys30001National key research and development program of China under Grant No.2016YFC0701201
文摘An extensive experimental and theoretical research study was undertaken to study the vibration serviceability of a long-span prestressed concrete floor system to be used in the lounge of a major airport.Specifically,jumping impact tests were carried out to obtain the floor’s modal parameters,followed by an analysis of the distribution of peak accelerations.Running tests were also performed to capture the acceleration responses.The prestressed concrete floor was found to have a low fundamental natural frequency(≈8.86 Hz)corresponding to the average modal damping ratio of≈2.17%.A coefficients plate with simply-supported edges.The calculated analytical results(natural frequencies and root-mean-square acceleration)agree well with the experimental ones.The analytical approach is thus validated.
基金The National Natural Science Foundation of China(No.51508257,51668042,51578274)the Yangtze River Scholar and the Innovation Team of M inistry of Education(No.IRT13068)the Scientific Research Project of Gansu Higher Education(No.2015B-34)
文摘The human-induced vertical vibration serviceability of low-frequency and lightweight footbridges is studied based on the moving mass-spring-damper(MMSD) biodynamic model, and the mass damper(TMD) with different optimal model parameters being used to control the vertical vibration.First, the MMSD biodynamic model is employed to simulate the pedestrians, and the time-varying control equations of the vertical dynamic coupling system of the pedestrian-bridgeTMD are established with the consideration of pedestrianbridge dynamic interaction; and the equations are solved by using the Runge-Kutta-Felhberg integral method with variable step size. Secondly, the footbridge dynamic response is calculated under the model of pedestrian-structure dynamic interaction and the model of moving load when the pedestrian pace frequency is consistent with the natural frequency of footbridge. Finally, a comparative study and analysis are made on the control effects of the vertical dynamic coupling system in different optimal models of the TMD. The calculation results show that the pedestrian-bridge dynamic interaction cannot be ignored when the vertical human-induced vibration serviceability of low-frequency and light-weight footbridge is evaluated. The TMD can effectively reduce the vibration under the resonance of pedestrian-bridge, and TMD parameters are recommended for the determination by the Warburton optimization model.
基金National Natural Science Foundation of China Under Grant No.51178100Foundation of the Priority Sciences Development Program of Higher Education Institutions of Jiangsu Province Under Grant No.1105007001+1 种基金Teaching and Research Foundation for Excellent Young Teachers of Southeast University Under Grant No.3205001205Scientific Research Foundation the Scientific Research Foundation of Graduate School of Southeast University Under Grant No.YBJJ1006
文摘The increasing strength of new structural materials and the span of new structures, accompanied by aesthetic requirements for greater slenderness, are resulting in more applications of long-span structures. In this paper, serviceability control technology and its design theory are studied. First, a novel tuned mass damper (TMD) with controllable stiffness is developed. Second, methods for modeling human-induced loads are proposed, including standing up, walking, jumping and running, and an analysis method for long-span floor response is proposed based on a finite element model. Third, a design method for long-span floors installed with a multiple TMD (MTMD) system considering human comfort is introduced, largely based on a study of existing literature. Finally, a design, analysis and field test is conducted using several large scale buildings in China including the Beijing Olympic Park National Conference Center, Changsha New Railway Station and the Xi'an Northern Railway Station. The analytical and field test results show that the MTMD system designed using the proposed method is capable of effectively mitigating the vertical vibration of long-span floor structures. The study presented in this paper provides an important reference for the analysis of vibration serviceability of similar long-span floors and design of control system for these structures.
基金Acknowledgements The supports provided for the paper by the National Natural Science Foundation of China (Grant No. 50778019) and the Natural Science Foundation of Beijing (Grant No. 8092024) are gratefully appreciated.
文摘The field test of a typical Tibetan ancient structure instrumented with displacement and acceleration transducers was conducted to measure time histories due to crowd walking and running. The test case is introduced firstly. The displacement time histories are then used to analyze the dynamic property such as fundamental frequency of vertical vibration and damping ratio of the test structure, and the acceleration time histories are applied to evaluate the floor vibration serviceability. The floor interaction and comparison of human walking and running are also discussed. Some valuable conclusions are given.