The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were ...The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were effectively synthesized. Emulsions with various characteristics have been developed by adjusting the weight ratios between the vinyl acetate monomer and the VAE component. The impacts on the mechanical, thermal, and physical properties of the films were investigated using tests for pencil hardness, tensile shear strength, pH, contact angle measurement, differential scanning calorimetry (DSC), and viscosity. When 5.0 weight percent VAE was added, the tensile shear strength in dry conditions decreased by 18.75% after a 24-hour bonding period, the heat resistance decreased by 26.29% (as per WATT 91) and the tensile shear strength decreased by approximately 36.52% in wet conditions (per EN 204). The pristine sample’s results were also confirmed by the contact angle test. The interpenetrating network (IPN) formation in hybrid PVAc emulsion as primary bonds does not directly attach to PVAc and VAE chains. The addition of VAE reduced the mechanical properties (at dry conditions) and heat resistance as per WATT 91. Contact angle analysis demonstrated that PVAc adhesives containing VAE had increased water resistance when compared to conventional PVA stabilised PVAc homopolymer-based adhesives. When compared to virgin PVAc Homo, the water resistance of the PVAc emulsion polymerization was enhanced by the addition of VAE.展开更多
The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different pol...The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies.展开更多
Hydrogel is a kind of three-dimensional crosslinked polymer material with high moisture content.However,due to the network defects of polymer gels,traditional hydrogels are usually brittle and fragile,which limits the...Hydrogel is a kind of three-dimensional crosslinked polymer material with high moisture content.However,due to the network defects of polymer gels,traditional hydrogels are usually brittle and fragile,which limits their practical applications.Herein,we present a Hofmeister effect-aided facile strategy to prepare high-performance poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels.Layered montmorillonite nanosheets can not only serve as crosslinking agents to enhance the mechanical properties of the hydrogel but also promote the ion conduction.More importantly,based on the Hofmeister effect,the presence of(NH_(4))_(2)SO_(4)can endow nanocomposite hydrogels with excellent mechanical properties by affecting PVA chains'aggregation state and crystallinity.As a result,the as-prepared nanocomposite hydrogels possess unique physical properties,including robust mechanical and electrical properties.The as-prepared hydrogels can be further assembled into a high-performance flexible sensor,which can sensitively detect large-scale and small-scale human activities.The simple design concept of this work is believed to provide a new prospect for developing robust nanocomposite hydrogels and flexible devices in the future.展开更多
Pervaporation desalination by highly hydrophilic materials such as poly(vinyl alcohol)(PVA)based separation membrane is a burgeoning technology of late years.However,the improvement of membrane flux in pervaporation d...Pervaporation desalination by highly hydrophilic materials such as poly(vinyl alcohol)(PVA)based separation membrane is a burgeoning technology of late years.However,the improvement of membrane flux in pervaporation desalination has been a difficult task.Here,a novel hybrid membrane with doped graphene oxide quantum dots(GOQDs)which is rich in hydrophilic groups and small size into the matrix of PVA was prepared to improve the membrane flux.The membranes structures were described by field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM),Fourier transform infrared(FT-IR),differential scanning calorimetry(DSC),thermogravimetric analysis(TGA)and X-ray diffraction(XRD).And more,Water contact angle,swelling degree,and pervaporation properties were carried out to explore the effect of GOQDs in PVA matrix.In addition,GOQDs content in the hybrid membrane,NaCl concentration,and feed temperature were investigated accordingly.Moreover,the hydrogen bonds between PVA chains were weakened by the interaction between GOQDs and PVA chains.Significantly,the hybrid membrane with optimized doped GOQDs content,200 mg·L^(-1),displays a high membrane flux of 17.09 kg·m^(-2)·h^(-1)and the salt rejection is consistently greater than 99.6%.展开更多
Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate ...Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT)showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy.Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend withthe localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix,a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8%to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36%decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy.展开更多
This study investigates the aftermath of a significant train derailment and vinyl chloride release incident in East Palestine, Ohio, with a particular focus on the analysis of precipitation acidity changes and the con...This study investigates the aftermath of a significant train derailment and vinyl chloride release incident in East Palestine, Ohio, with a particular focus on the analysis of precipitation acidity changes and the concentration of vinyl chloride in samples. The research seeks to elucidate the complex relationship between industrial accidents, atmospheric chemistry, and their potential implications for human health and the environment. Through meticulous examination of variations in precipitation acidity patterns, this study provides valuable insights into the dispersion and impact of toxic agents in the environment following industrial mishaps. The results underscore the intricate interplay between these factors, highlighting the need for a multidisciplinary approach that bridges the realms of environmental science and biomedical concerns. This research contributes to a growing body of knowledge that addresses the broader consequences of industrial incidents on public health. It underscores the importance of proactive measures, such as enhanced monitoring and surveillance, risk assessment, public education, and regulatory reform, to mitigate the environmental and health risks associated with industrial activities involving hazardous materials. By fostering collaboration between experts and stakeholders, this study advocates for a holistic approach to safeguarding both our environment and the well-being of communities affected by industrial accidents.展开更多
A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts c...A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 ℃ exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites.展开更多
In this review we discuss the history of research into the use of gold for the acetylene hydrochlorin‐ation reaction, and describe the recent developments which have led to its commercialisation. We discuss the use o...In this review we discuss the history of research into the use of gold for the acetylene hydrochlorin‐ation reaction, and describe the recent developments which have led to its commercialisation. We discuss the use of different precursors and the addition to gold of a secondary metal as methods which attempt to improve these catalysts, and consider the nature of the active gold species. The vast majority of poly vinyl chloride (PVC) produced globally still uses a mercuric chloride as a cata‐lyst, despite the environmental problems associated with it. Due to the agreement by the Chinese government to remove mercury usage in the PVC industry over the course of the next few years there is an obvious need to find a replacement catalyst;the potential use of gold for this process has been well known for several decades and to date gold seems to be the best candidate for this, pri‐marily due to its superior selectivity when compared to other metals.展开更多
[Objective] The aim was to explore release characteristics of vinyl chlo- ride-vinyl acetate copolymer controlled-release N fertilizer and the effects on minerat nitrogen in soils. [Method] Vinyl chloride-vinyl acetat...[Objective] The aim was to explore release characteristics of vinyl chlo- ride-vinyl acetate copolymer controlled-release N fertilizer and the effects on minerat nitrogen in soils. [Method] Vinyl chloride-vinyl acetate copolymer and hydroxyl-modi- fied VCNAc were taken as coating materials to prepare slow release fertilizer. Nutri- ent release characteristics of VC/VAc slow release fertilizer was evaluated by water immersion method and the effects of VC/VAc slow release fertilizer on mineral ni- trogen were researched by pot experiment. [Result] The release periods of VC-VAc controlled-release urea and hydroxyl-modified VC/VAc coated urea were 60 and 50 d, respectively. Furthermore, the content of ammonium nitrogen reached the peak on the 30th d and the content of nitrate nitrogen reached the peak on the 60th d in soils in treatments with VCNAc and hydroxyl-modified VC/VAc; the content of nitrate nitrogen rose again on the 120th d in the treatment with VC/VAc. In terms of wheat yield, different treatments showed insignificant differences and rice yield in the treatment with VCNAc was significantly higher than that in the treatment with hy- droxyl-modified VCNAc (P〈0.05). [Conclusion] The release days of slow controlled- release fertilizer vary upon pot experiment method and water immersion method. Slow controlled-release fertilizer is not suitable for monoculture, due to long fertilizer efficiency, but multiple cropping would be optimal for its role to be fully exploited.展开更多
Polymerization of isobutyl vinyl ether(IBVE)has been studied with mononuclear half-titanocene,CpTiCl_3[1]and dinuclear half-titanocenes,[(C_5H_4)_2(CH_2)_n][(TiCl_3)_2][2(n=3),3(n=6)],and[(C_5H_4)_2(CH_2)_n[(TiCl_2OR_...Polymerization of isobutyl vinyl ether(IBVE)has been studied with mononuclear half-titanocene,CpTiCl_3[1]and dinuclear half-titanocenes,[(C_5H_4)_2(CH_2)_n][(TiCl_3)_2][2(n=3),3(n=6)],and[(C_5H_4)_2(CH_2)_n[(TiCl_2OR_2](R=2,6- diisopropylphenoxyl)[4(n=3),5(n=6)],in the presence of methyl aluminoxanes(MAO)as cocatalyst in methylene chloride.The influences of the length of polymethylene brigde and the substitution of aryloxy group at the metal center have been investigated at three polymerization temperature(...展开更多
The insertion of elemental selenium into the Csp(2)-Zr bond of alkenylchloro-zirconocenes affords (E)-vinylseleno zirconocenes, which were trapped by alkyl halides giving (E)-vinylic selenides in moderate to good yields.
Poly(vinyl phosphonic acid-co-glycidyl methacrylate-co-divinyl benzene) (PVGD) and PVGD containing an iminodi-acetic acid group (IPVGD), which has indium ion selectivity, were synthesized by suspension polymerization,...Poly(vinyl phosphonic acid-co-glycidyl methacrylate-co-divinyl benzene) (PVGD) and PVGD containing an iminodi-acetic acid group (IPVGD), which has indium ion selectivity, were synthesized by suspension polymerization, and their indium adsorption properties were investigated. The synthesized PVGD and IPVGD resins were characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and mercury porosimetry. The cation-exchange capacity, the water uptake and the indium adsorption properties were investigated. The cation-exchange capacities of PVGD and IPVGD were 1.2 - 4.5 meq/g and 2.5 - 6.4 meq/g, respectively. The water uptakes were decreased with increasing contents of divinyl benzene (DVB). The water uptake values were 25% - 40% and 20% - 35%, respectively. The optimum adsorption of indium from a pure indium solution and an artificial indium tin oxide (ITO) solution by the PVGD and IPVGD ion-exchange resins were 2.3 and 3.5 meq/g, respectively. The indium adsorption capacities of IPVGD were higher than those of PVGD. The indium ion adsorption selectivity in the artificial ITO solution by PVGD and IPVGD was excellent, and other ions were adsorbed only slightly.展开更多
Commercial production of vinyl chloride from acetylene relies on the use of HgCla as the catalyst, which has caused severe environmental problem and threats to human health because of its toxicity. Therefore, it is vi...Commercial production of vinyl chloride from acetylene relies on the use of HgCla as the catalyst, which has caused severe environmental problem and threats to human health because of its toxicity. Therefore, it is vital to explore alternative catalysts without mercury. We report here that N-doped carbon can catalyze directly transformation of acetylene to vinyl chloride. Particularly, N-doped high surface area mesoporous carbon exhibits a rather high activity with the acetylene conversion reaching 77% and vinyl chloride selectivity above 98% at a space velocity of 1.0 mL.min-l.g-1 and 200 ~C. It delivers a stable performa℃nce within a test period of 100h and no obvious deactivation is observed, demonstrating potentials to substitute the notoriously toxic mercuric chloride catalyst.展开更多
A series of stearates with different rare-earth ion were investigated as thermal stabilizers for rigid PVC at 180 ℃ in air. Their stabilizing efficiency was based on measuring the rate of dehydrochlorination. The res...A series of stearates with different rare-earth ion were investigated as thermal stabilizers for rigid PVC at 180 ℃ in air. Their stabilizing efficiency was based on measuring the rate of dehydrochlorination. The resulted revealed the higher stabilizing efficiency of the investigated rare-earth stearates as thermal stabilizers for rigid PVC compared with the thermal stabilizers for industry: calcium stearate, zinc stearate, butyl stannum mercaptide, phosphite esters, β-diketone and epoxidized sunflower oil. This was well illustrated by longer incubation period (T_S) values and lower rate of dehydrochlorination. The stable efficiency was affected by the nature of rare-earth element's individual electronic shell. The mechanism for the stabilizing effect of rare-earth stearates was proposed. The result was experimentally proved based on IR spectrum.展开更多
Hydrogels composed of poly(vinyl alcohol)(PVA) and poly(ethylene glycol)(PEG) were synthesized using glutaraldehyde as crosslinker and investigated for controlled delivery of the common anti-inflammatory drug, ibuprof...Hydrogels composed of poly(vinyl alcohol)(PVA) and poly(ethylene glycol)(PEG) were synthesized using glutaraldehyde as crosslinker and investigated for controlled delivery of the common anti-inflammatory drug, ibuprofen(IBF). To regulate the drug delivery, solid inclusion complexes(ICs) of IBF in β–cyclodextrin(β–CD) were prepared and added to the hydrogels. The ICs were prepared by the microwave irradiation method, which is more environmentally benign. The formation of IC was confirmed by various analytical techniques and the synthesized hydrogels were also characterized. Controlled release of drug was achieved from the hydrogels containing the ICs in comparison to the rapid release from hydrogels containing free IBF.The preliminary kinetic analysis emphasized the crucial role of β–CD in the drug release process that influences the polymer relaxation, thereby leading to prolonged release. The cytotoxicity assay validated the hydrogels as non-toxic in nature and hence can be utilized for controlled delivery of IBF.展开更多
Proton conducting membranes composed of phosphotungstic acid (PWA) and poly(vinyl alcohol) (PVA)were prepared. Conductivity and Fourier transform infrared spectrometer(FTIR) measurements show that most ofthe acid embe...Proton conducting membranes composed of phosphotungstic acid (PWA) and poly(vinyl alcohol) (PVA)were prepared. Conductivity and Fourier transform infrared spectrometer(FTIR) measurements show that most ofthe acid embedded are stable in the PVA matrix when the membrane is immerged in water or methanol solution atroom temperature. Conductivity of the composite membranes scatters around 10-3 S.cm-1 at room temperature.The methanol crossover through the membranes is about an order of magnitude lower than that through Nafion117 membrane.展开更多
Suspended emulsion polymerization was used to prepare poly(vinyl chloride) (PVC) resin. Fine PVC particleswere formed at low polymerization conversions. The amount of fine panicles decreases as conversion increases an...Suspended emulsion polymerization was used to prepare poly(vinyl chloride) (PVC) resin. Fine PVC particleswere formed at low polymerization conversions. The amount of fine panicles decreases as conversion increases anddisappears at conversions greater than 30%. Scanning electron micrographs show that PVC grains are composed of looselycoalesced primary particles, especially for PVC resins prepared in the presence of poly(vinyl alcohol) dispersant. The size ofprimary particles increases and porosity decreases with the increase of conversion. In view of the particle features of PVCresin, a particle formation mechanism including the formation of primary particles and grains is proposed. The formationprocess of primary particles includes the formation of particle nuclei, coalescence of particle nuclei to form primary particles,and growth of primary particles. PVC grains are formed by the coagulation of primary particles. The loose coalescence ofprimary particles is caused by the colloidal stability of primary particles and the low swelling degree of vinyl chloride in the primary particles.展开更多
The experimental creep data were focused on wood-flour (WF)/poly vinyl chloride (PVC) composites with the variations in additive concentrations of wood flour, silane coupling agent, organomodified montmorillonite ...The experimental creep data were focused on wood-flour (WF)/poly vinyl chloride (PVC) composites with the variations in additive concentrations of wood flour, silane coupling agent, organomodified montmorillonite (OMMT) and nano-cacium carbonate (nano-CaCO3). Their effects were analyzed using the Four-element Burger Model incorporating microscopic mechanisms. Total creep strain was low with increasing WF while elastic strain was high and plastic flow strain was low in modeling. Modification of WF with silane was beneficial to creep resistance, so did adding low ratio of OMMT (1.5 wt%) and nano-CaCO3 in composites. Thus, it was effective in reducing creep either by stiffening the PVC matrix using rigid nano-particles or by improving their adhesion with resin. However, superfluous quantity of any additament did not benefit the improvement owing to either earlier destruction of their agglomerates or stress-concentrated cracks in the over-incrassated interface.展开更多
A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacet...A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacetic acid (PAA). The effect on specific area, structure, pH and surface acidity groups of carders by modification was discussed. Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment. The productivity of the new catalyst was 14.58% higher than that of catalyst prepared using untreated activated carbon. The relationship between amount of carbonyl and carboxyl groups (m) and catalyst productivity (P) was P = 1.83 + 2.26 × 10^-3*e^3.17m. Reaction mechanism was proposed. C 2009 Liang Rong Feng. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Acrylate latex modified by vinyl triisopropoxy silane (C-1706) was synthesized by seeded emulsion polymerization with anionic emulsifier sodium dodecyl sulphonate(SDS) and nonionic emulsifier OP-10 as the multiple emu...Acrylate latex modified by vinyl triisopropoxy silane (C-1706) was synthesized by seeded emulsion polymerization with anionic emulsifier sodium dodecyl sulphonate(SDS) and nonionic emulsifier OP-10 as the multiple emulsifiers at (78±2) ℃. The effects of different factors, such as the emulsifier, C-1706 monomer and its feeding manner on the properties of acrylate latex modified by C-1706 were investigated. The particle size distribution and the structure, the configuration, the weather durability and stain resistance of copolymer latex were characterized by particle size analyzer, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope(TEM), scanning electron microscope(SEM) and ultraviolet aging instrument respectively. The results show that SDS to OP-10 as multiple emulsifiers can lead to coordinated efficiency, the optimal emulsifier dosage is 2.4%?3.2%(mass fraction), and the mass ratio of SDS to OP-10 is 1?1? 1?2. The seeded emulsion polymerization can effectively introduce a organic-siloxane bonding in a macromolecule inter polymer, and the obtained acrylate latex modified by organic-siloxane possesses narrow distribution of particle size with mean diameter of 51.8?76.6 nm and has the excellent properties in weather durability and stain-resistance especially.展开更多
文摘The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were effectively synthesized. Emulsions with various characteristics have been developed by adjusting the weight ratios between the vinyl acetate monomer and the VAE component. The impacts on the mechanical, thermal, and physical properties of the films were investigated using tests for pencil hardness, tensile shear strength, pH, contact angle measurement, differential scanning calorimetry (DSC), and viscosity. When 5.0 weight percent VAE was added, the tensile shear strength in dry conditions decreased by 18.75% after a 24-hour bonding period, the heat resistance decreased by 26.29% (as per WATT 91) and the tensile shear strength decreased by approximately 36.52% in wet conditions (per EN 204). The pristine sample’s results were also confirmed by the contact angle test. The interpenetrating network (IPN) formation in hybrid PVAc emulsion as primary bonds does not directly attach to PVAc and VAE chains. The addition of VAE reduced the mechanical properties (at dry conditions) and heat resistance as per WATT 91. Contact angle analysis demonstrated that PVAc adhesives containing VAE had increased water resistance when compared to conventional PVA stabilised PVAc homopolymer-based adhesives. When compared to virgin PVAc Homo, the water resistance of the PVAc emulsion polymerization was enhanced by the addition of VAE.
文摘The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies.
基金Project supported by the National Natural Science Foundation of China(Grant No.12274356)the Fundamental Research Funds for the Central Universities(Grant No.20720220022)the 111 Project(Grant No.B16029)。
文摘Hydrogel is a kind of three-dimensional crosslinked polymer material with high moisture content.However,due to the network defects of polymer gels,traditional hydrogels are usually brittle and fragile,which limits their practical applications.Herein,we present a Hofmeister effect-aided facile strategy to prepare high-performance poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels.Layered montmorillonite nanosheets can not only serve as crosslinking agents to enhance the mechanical properties of the hydrogel but also promote the ion conduction.More importantly,based on the Hofmeister effect,the presence of(NH_(4))_(2)SO_(4)can endow nanocomposite hydrogels with excellent mechanical properties by affecting PVA chains'aggregation state and crystallinity.As a result,the as-prepared nanocomposite hydrogels possess unique physical properties,including robust mechanical and electrical properties.The as-prepared hydrogels can be further assembled into a high-performance flexible sensor,which can sensitively detect large-scale and small-scale human activities.The simple design concept of this work is believed to provide a new prospect for developing robust nanocomposite hydrogels and flexible devices in the future.
文摘Pervaporation desalination by highly hydrophilic materials such as poly(vinyl alcohol)(PVA)based separation membrane is a burgeoning technology of late years.However,the improvement of membrane flux in pervaporation desalination has been a difficult task.Here,a novel hybrid membrane with doped graphene oxide quantum dots(GOQDs)which is rich in hydrophilic groups and small size into the matrix of PVA was prepared to improve the membrane flux.The membranes structures were described by field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM),Fourier transform infrared(FT-IR),differential scanning calorimetry(DSC),thermogravimetric analysis(TGA)and X-ray diffraction(XRD).And more,Water contact angle,swelling degree,and pervaporation properties were carried out to explore the effect of GOQDs in PVA matrix.In addition,GOQDs content in the hybrid membrane,NaCl concentration,and feed temperature were investigated accordingly.Moreover,the hydrogen bonds between PVA chains were weakened by the interaction between GOQDs and PVA chains.Significantly,the hybrid membrane with optimized doped GOQDs content,200 mg·L^(-1),displays a high membrane flux of 17.09 kg·m^(-2)·h^(-1)and the salt rejection is consistently greater than 99.6%.
基金the National Natural Science Foundation of China (No.51673059)the Science and Technology Planning Project of Henan Province (No. 212102210636)the Opening Project of Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices (East China University of Technology)。
文摘Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT)showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy.Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend withthe localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix,a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8%to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36%decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy.
文摘This study investigates the aftermath of a significant train derailment and vinyl chloride release incident in East Palestine, Ohio, with a particular focus on the analysis of precipitation acidity changes and the concentration of vinyl chloride in samples. The research seeks to elucidate the complex relationship between industrial accidents, atmospheric chemistry, and their potential implications for human health and the environment. Through meticulous examination of variations in precipitation acidity patterns, this study provides valuable insights into the dispersion and impact of toxic agents in the environment following industrial mishaps. The results underscore the intricate interplay between these factors, highlighting the need for a multidisciplinary approach that bridges the realms of environmental science and biomedical concerns. This research contributes to a growing body of knowledge that addresses the broader consequences of industrial incidents on public health. It underscores the importance of proactive measures, such as enhanced monitoring and surveillance, risk assessment, public education, and regulatory reform, to mitigate the environmental and health risks associated with industrial activities involving hazardous materials. By fostering collaboration between experts and stakeholders, this study advocates for a holistic approach to safeguarding both our environment and the well-being of communities affected by industrial accidents.
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20873125),
文摘A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 ℃ exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites.
文摘In this review we discuss the history of research into the use of gold for the acetylene hydrochlorin‐ation reaction, and describe the recent developments which have led to its commercialisation. We discuss the use of different precursors and the addition to gold of a secondary metal as methods which attempt to improve these catalysts, and consider the nature of the active gold species. The vast majority of poly vinyl chloride (PVC) produced globally still uses a mercuric chloride as a cata‐lyst, despite the environmental problems associated with it. Due to the agreement by the Chinese government to remove mercury usage in the PVC industry over the course of the next few years there is an obvious need to find a replacement catalyst;the potential use of gold for this process has been well known for several decades and to date gold seems to be the best candidate for this, pri‐marily due to its superior selectivity when compared to other metals.
基金Supported by National Department Public Benefit Research Foundation(201203013)Modern Agricultural Industry Technology System(CARS-11-B-15)+2 种基金IPNI Project(JIANGSU-10)Special Fund for Agro-scientific Research in the Public Interest(201003014-1-2)Jiangsu Agriculture S&T Self-Innovation Project[CX(12)3037]~~
文摘[Objective] The aim was to explore release characteristics of vinyl chlo- ride-vinyl acetate copolymer controlled-release N fertilizer and the effects on minerat nitrogen in soils. [Method] Vinyl chloride-vinyl acetate copolymer and hydroxyl-modi- fied VCNAc were taken as coating materials to prepare slow release fertilizer. Nutri- ent release characteristics of VC/VAc slow release fertilizer was evaluated by water immersion method and the effects of VC/VAc slow release fertilizer on mineral ni- trogen were researched by pot experiment. [Result] The release periods of VC-VAc controlled-release urea and hydroxyl-modified VC/VAc coated urea were 60 and 50 d, respectively. Furthermore, the content of ammonium nitrogen reached the peak on the 30th d and the content of nitrate nitrogen reached the peak on the 60th d in soils in treatments with VCNAc and hydroxyl-modified VC/VAc; the content of nitrate nitrogen rose again on the 120th d in the treatment with VC/VAc. In terms of wheat yield, different treatments showed insignificant differences and rice yield in the treatment with VCNAc was significantly higher than that in the treatment with hy- droxyl-modified VCNAc (P〈0.05). [Conclusion] The release days of slow controlled- release fertilizer vary upon pot experiment method and water immersion method. Slow controlled-release fertilizer is not suitable for monoculture, due to long fertilizer efficiency, but multiple cropping would be optimal for its role to be fully exploited.
基金the Korea Ministry of Commerce,Industry,and Energy(Grant RTI04-01-04,Regional Technology Innovation Program).
文摘Polymerization of isobutyl vinyl ether(IBVE)has been studied with mononuclear half-titanocene,CpTiCl_3[1]and dinuclear half-titanocenes,[(C_5H_4)_2(CH_2)_n][(TiCl_3)_2][2(n=3),3(n=6)],and[(C_5H_4)_2(CH_2)_n[(TiCl_2OR_2](R=2,6- diisopropylphenoxyl)[4(n=3),5(n=6)],in the presence of methyl aluminoxanes(MAO)as cocatalyst in methylene chloride.The influences of the length of polymethylene brigde and the substitution of aryloxy group at the metal center have been investigated at three polymerization temperature(...
文摘The insertion of elemental selenium into the Csp(2)-Zr bond of alkenylchloro-zirconocenes affords (E)-vinylseleno zirconocenes, which were trapped by alkyl halides giving (E)-vinylic selenides in moderate to good yields.
文摘Poly(vinyl phosphonic acid-co-glycidyl methacrylate-co-divinyl benzene) (PVGD) and PVGD containing an iminodi-acetic acid group (IPVGD), which has indium ion selectivity, were synthesized by suspension polymerization, and their indium adsorption properties were investigated. The synthesized PVGD and IPVGD resins were characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and mercury porosimetry. The cation-exchange capacity, the water uptake and the indium adsorption properties were investigated. The cation-exchange capacities of PVGD and IPVGD were 1.2 - 4.5 meq/g and 2.5 - 6.4 meq/g, respectively. The water uptakes were decreased with increasing contents of divinyl benzene (DVB). The water uptake values were 25% - 40% and 20% - 35%, respectively. The optimum adsorption of indium from a pure indium solution and an artificial indium tin oxide (ITO) solution by the PVGD and IPVGD ion-exchange resins were 2.3 and 3.5 meq/g, respectively. The indium adsorption capacities of IPVGD were higher than those of PVGD. The indium ion adsorption selectivity in the artificial ITO solution by PVGD and IPVGD was excellent, and other ions were adsorbed only slightly.
基金supported by the Natural Science Foundation of China(No.11079005 and 21033009)the Ministry of Science and Technology of China(2011CBA00503 and 2012CB720302)
文摘Commercial production of vinyl chloride from acetylene relies on the use of HgCla as the catalyst, which has caused severe environmental problem and threats to human health because of its toxicity. Therefore, it is vital to explore alternative catalysts without mercury. We report here that N-doped carbon can catalyze directly transformation of acetylene to vinyl chloride. Particularly, N-doped high surface area mesoporous carbon exhibits a rather high activity with the acetylene conversion reaching 77% and vinyl chloride selectivity above 98% at a space velocity of 1.0 mL.min-l.g-1 and 200 ~C. It delivers a stable performa℃nce within a test period of 100h and no obvious deactivation is observed, demonstrating potentials to substitute the notoriously toxic mercuric chloride catalyst.
文摘A series of stearates with different rare-earth ion were investigated as thermal stabilizers for rigid PVC at 180 ℃ in air. Their stabilizing efficiency was based on measuring the rate of dehydrochlorination. The resulted revealed the higher stabilizing efficiency of the investigated rare-earth stearates as thermal stabilizers for rigid PVC compared with the thermal stabilizers for industry: calcium stearate, zinc stearate, butyl stannum mercaptide, phosphite esters, β-diketone and epoxidized sunflower oil. This was well illustrated by longer incubation period (T_S) values and lower rate of dehydrochlorination. The stable efficiency was affected by the nature of rare-earth element's individual electronic shell. The mechanism for the stabilizing effect of rare-earth stearates was proposed. The result was experimentally proved based on IR spectrum.
文摘Hydrogels composed of poly(vinyl alcohol)(PVA) and poly(ethylene glycol)(PEG) were synthesized using glutaraldehyde as crosslinker and investigated for controlled delivery of the common anti-inflammatory drug, ibuprofen(IBF). To regulate the drug delivery, solid inclusion complexes(ICs) of IBF in β–cyclodextrin(β–CD) were prepared and added to the hydrogels. The ICs were prepared by the microwave irradiation method, which is more environmentally benign. The formation of IC was confirmed by various analytical techniques and the synthesized hydrogels were also characterized. Controlled release of drug was achieved from the hydrogels containing the ICs in comparison to the rapid release from hydrogels containing free IBF.The preliminary kinetic analysis emphasized the crucial role of β–CD in the drug release process that influences the polymer relaxation, thereby leading to prolonged release. The cytotoxicity assay validated the hydrogels as non-toxic in nature and hence can be utilized for controlled delivery of IBF.
基金Supported by the National Natural Science Foundation of China (No. 29976033) and the State Key Basic Science Research Project (G20000264).
文摘Proton conducting membranes composed of phosphotungstic acid (PWA) and poly(vinyl alcohol) (PVA)were prepared. Conductivity and Fourier transform infrared spectrometer(FTIR) measurements show that most ofthe acid embedded are stable in the PVA matrix when the membrane is immerged in water or methanol solution atroom temperature. Conductivity of the composite membranes scatters around 10-3 S.cm-1 at room temperature.The methanol crossover through the membranes is about an order of magnitude lower than that through Nafion117 membrane.
基金The project is supported by the National Natural Science Foundation of China (No. 29906009)
文摘Suspended emulsion polymerization was used to prepare poly(vinyl chloride) (PVC) resin. Fine PVC particleswere formed at low polymerization conversions. The amount of fine panicles decreases as conversion increases anddisappears at conversions greater than 30%. Scanning electron micrographs show that PVC grains are composed of looselycoalesced primary particles, especially for PVC resins prepared in the presence of poly(vinyl alcohol) dispersant. The size ofprimary particles increases and porosity decreases with the increase of conversion. In view of the particle features of PVCresin, a particle formation mechanism including the formation of primary particles and grains is proposed. The formationprocess of primary particles includes the formation of particle nuclei, coalescence of particle nuclei to form primary particles,and growth of primary particles. PVC grains are formed by the coagulation of primary particles. The loose coalescence ofprimary particles is caused by the colloidal stability of primary particles and the low swelling degree of vinyl chloride in the primary particles.
文摘The experimental creep data were focused on wood-flour (WF)/poly vinyl chloride (PVC) composites with the variations in additive concentrations of wood flour, silane coupling agent, organomodified montmorillonite (OMMT) and nano-cacium carbonate (nano-CaCO3). Their effects were analyzed using the Four-element Burger Model incorporating microscopic mechanisms. Total creep strain was low with increasing WF while elastic strain was high and plastic flow strain was low in modeling. Modification of WF with silane was beneficial to creep resistance, so did adding low ratio of OMMT (1.5 wt%) and nano-CaCO3 in composites. Thus, it was effective in reducing creep either by stiffening the PVC matrix using rigid nano-particles or by improving their adhesion with resin. However, superfluous quantity of any additament did not benefit the improvement owing to either earlier destruction of their agglomerates or stress-concentrated cracks in the over-incrassated interface.
文摘A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacetic acid (PAA). The effect on specific area, structure, pH and surface acidity groups of carders by modification was discussed. Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment. The productivity of the new catalyst was 14.58% higher than that of catalyst prepared using untreated activated carbon. The relationship between amount of carbonyl and carboxyl groups (m) and catalyst productivity (P) was P = 1.83 + 2.26 × 10^-3*e^3.17m. Reaction mechanism was proposed. C 2009 Liang Rong Feng. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金Project(2003B10506) supported by Science and Technology Department of Guangdong Province, China
文摘Acrylate latex modified by vinyl triisopropoxy silane (C-1706) was synthesized by seeded emulsion polymerization with anionic emulsifier sodium dodecyl sulphonate(SDS) and nonionic emulsifier OP-10 as the multiple emulsifiers at (78±2) ℃. The effects of different factors, such as the emulsifier, C-1706 monomer and its feeding manner on the properties of acrylate latex modified by C-1706 were investigated. The particle size distribution and the structure, the configuration, the weather durability and stain resistance of copolymer latex were characterized by particle size analyzer, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope(TEM), scanning electron microscope(SEM) and ultraviolet aging instrument respectively. The results show that SDS to OP-10 as multiple emulsifiers can lead to coordinated efficiency, the optimal emulsifier dosage is 2.4%?3.2%(mass fraction), and the mass ratio of SDS to OP-10 is 1?1? 1?2. The seeded emulsion polymerization can effectively introduce a organic-siloxane bonding in a macromolecule inter polymer, and the obtained acrylate latex modified by organic-siloxane possesses narrow distribution of particle size with mean diameter of 51.8?76.6 nm and has the excellent properties in weather durability and stain-resistance especially.