The spectrum characteristics and wake structures for a circular cylinder oscillating in a wake are investigated by use of the currently modified virtual boundary method. A forced system of two cylinders with a small s...The spectrum characteristics and wake structures for a circular cylinder oscillating in a wake are investigated by use of the currently modified virtual boundary method. A forced system of two cylinders with a small spacing (the downstream one is made to oscillate in the transverse direction) is studied and interesting flow characteristics are observed. A vortex switch and the change of vortex modes (between 2S mode and 2P mode) are observed in the “lock in' region. Vortex bands are formed and lost with the increasing excitation frequency. Information concerning saddle points in the flow field is obtained for different excitation frequencies. For a forced system of two cylinders with a large spacing, the upstream cylinder sheds vortexes because there is no downstream cylinder oscillating in the wake. No distinct “lock in' response is found for the downstream cylinder.展开更多
The spatial evolution of vortices and transition to three-dimensionality in the wake of two circular cylinders in tandem arrangement have been numerically studied. An improved virtual body method developed from the vi...The spatial evolution of vortices and transition to three-dimensionality in the wake of two circular cylinders in tandem arrangement have been numerically studied. An improved virtual body method developed from the virtual boundary method is used here. A Reynolds number range between 220 and 270 has been considered, and the spacing between two cylinders is selected as L/D=3 and L/D=3.5. When L/D=3, the secondary vortices of Mode-A are seen to appear at Re=240 and persist over the range of the Reynolds number of 240~270. When L/D=3.5, the similar critical Reynolds number has been found at Re=250. No obvious discontinuity has been found in the Strouhal-Reynolds number relationship, and this is different from three-dimensional flow around a single cylinder at the critical Reynolds number. The spanwise wavelength is about four times the diameter of the cylinder, and it is the characteristic wavelength for Mode-A instability. This paper can give some foremost insight into the three-dimensional instability of flow by complicated geometrical configuration.展开更多
The flow around two tandem circular cylinders was studied by a three-dimensional numerical simulation of the Navier-Stokes equations at Re=220 . The improved virtual boundary method was applied to model the no-slip bo...The flow around two tandem circular cylinders was studied by a three-dimensional numerical simulation of the Navier-Stokes equations at Re=220 . The improved virtual boundary method was applied to model the no-slip boundary condition of the cylinders. The results show that as the spac ing ratio L/D≥4 , the three dimensionality occurs in the wake. When L/D≤3.5 the wake keeps a two-dimensional state at the Reynolds number Re=220 . The critical spacing for the appearance of three-dimensional instability obtained is at the range 3.5〈 L/D 〈 4, similar to the critical spacing found in two-dimensional case. Two sources of instability from upstream and downstream cylinder generate a complicat ed vortex structures in the wake, investigated by streamlines topology analysis in the streamwise plane. Many other interesting problems were also addressed in this paper.展开更多
文摘The spectrum characteristics and wake structures for a circular cylinder oscillating in a wake are investigated by use of the currently modified virtual boundary method. A forced system of two cylinders with a small spacing (the downstream one is made to oscillate in the transverse direction) is studied and interesting flow characteristics are observed. A vortex switch and the change of vortex modes (between 2S mode and 2P mode) are observed in the “lock in' region. Vortex bands are formed and lost with the increasing excitation frequency. Information concerning saddle points in the flow field is obtained for different excitation frequencies. For a forced system of two cylinders with a large spacing, the upstream cylinder sheds vortexes because there is no downstream cylinder oscillating in the wake. No distinct “lock in' response is found for the downstream cylinder.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No. 10272094)
文摘The spatial evolution of vortices and transition to three-dimensionality in the wake of two circular cylinders in tandem arrangement have been numerically studied. An improved virtual body method developed from the virtual boundary method is used here. A Reynolds number range between 220 and 270 has been considered, and the spacing between two cylinders is selected as L/D=3 and L/D=3.5. When L/D=3, the secondary vortices of Mode-A are seen to appear at Re=240 and persist over the range of the Reynolds number of 240~270. When L/D=3.5, the similar critical Reynolds number has been found at Re=250. No obvious discontinuity has been found in the Strouhal-Reynolds number relationship, and this is different from three-dimensional flow around a single cylinder at the critical Reynolds number. The spanwise wavelength is about four times the diameter of the cylinder, and it is the characteristic wavelength for Mode-A instability. This paper can give some foremost insight into the three-dimensional instability of flow by complicated geometrical configuration.
基金Project supported by the National Natural Science Foundation of China(Grant No :10272094)
文摘The flow around two tandem circular cylinders was studied by a three-dimensional numerical simulation of the Navier-Stokes equations at Re=220 . The improved virtual boundary method was applied to model the no-slip boundary condition of the cylinders. The results show that as the spac ing ratio L/D≥4 , the three dimensionality occurs in the wake. When L/D≤3.5 the wake keeps a two-dimensional state at the Reynolds number Re=220 . The critical spacing for the appearance of three-dimensional instability obtained is at the range 3.5〈 L/D 〈 4, similar to the critical spacing found in two-dimensional case. Two sources of instability from upstream and downstream cylinder generate a complicat ed vortex structures in the wake, investigated by streamlines topology analysis in the streamwise plane. Many other interesting problems were also addressed in this paper.