期刊文献+
共找到974篇文章
< 1 2 49 >
每页显示 20 50 100
Virtual Power Plants for Grid Resilience: A Concise Overview of Research and Applications
1
作者 Yijing Xie Yichen Zhang +2 位作者 Wei-Jen Lee Zongli Lin Yacov A.Shamash 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期329-343,共15页
The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challeng... The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challenges to grid resilience. Virtual power plants(VPPs) are emerging technologies to improve the grid resilience and advance the transformation. By judiciously aggregating geographically distributed energy resources(DERs) as individual electrical entities, VPPs can provide capacity and ancillary services to grid operations and participate in electricity wholesale markets. This paper aims to provide a concise overview of the concept and development of VPPs and the latest progresses in VPP operation, with the focus on VPP scheduling and control. Based on this overview, we identify a few potential challenges in VPP operation and discuss the opportunities of integrating the multi-agent system(MAS)-based strategy into the VPP operation to enhance its scalability, performance and resilience. 展开更多
关键词 Climate change renewable energy resources RESILIENCE smart grids virtual power plants(VPPs)
下载PDF
GRU-integrated constrained soft actor-critic learning enabled fully distributed scheduling strategy for residential virtual power plant
2
作者 Xiaoyun Deng Yongdong Chen +2 位作者 Dongchuan Fan Youbo Liu Chao Ma 《Global Energy Interconnection》 EI CSCD 2024年第2期117-129,共13页
In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-in... In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets,lowering the electricity purchase costs and consumption risks for end-users.The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process(CMDP)into an unconstrained optimization problem,which guarantees that the constraints are strictly satisfied without determining the penalty coefficients.Furthermore,to enhance the scalability of the constrained soft actor-critic(CSAC)-based RVPP scheduling approach,a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources(RDER).Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs,balancing the supply and demand of the power grid,and ensuring customer comfort. 展开更多
关键词 Residential virtual power plant Residential distributed energy resource Constrained soft actor-critic Fully distributed scheduling strategy
下载PDF
Peer-to-Peer Energy Trading Method of Multi-Virtual Power Plants Based on Non-Cooperative Game
3
作者 Jingjing Bai Hongyi Zhou +1 位作者 Zheng Xu Yu Zhong 《Energy Engineering》 EI 2023年第5期1163-1183,共21页
The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be furth... The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be further explored.This paper proposes a Peer-to-Peer energy trading method for multi-virtual power plants based on a non-cooperative game.Firstly,a coordinated control model of public buildings is incorporated into the scheduling framework of the virtual power plant,considering the energy consumption characteristics of users.Secondly,the utility functions of multiple virtual power plants are analyzed,and a non-cooperative game model is established to explore the game relationship between electricity sellers in the Peer-to-Peer transaction process.Finally,the influence of user energy consumption characteristics on the virtual power plant operation and the Peer-to-Peer transaction process is analyzed by case studies.Furthermore,the effect of different parameters on the Nash equilibrium point is explored,and the influence factors of Peer-to-Peer transactions between virtual power plants are summarized.According to the obtained results,compared with the central air conditioning set as constant temperature control strategy,the flexible control strategy proposed in this paper improves the market power of each VPP and the overall revenue of the VPPs.In addition,the upper limit of the service quotation of the market operator have a great impact on the transaction mode of VPPs.When the service quotation decreases gradually,the P2P transaction between VPPs is more likely to occur. 展开更多
关键词 virtual power plant PEER-TO-PEER energy trading public building non-cooperative game
下载PDF
Electricity-Carbon Interactive Optimal Dispatch of Multi-Virtual Power Plant Considering Integrated Demand Response
4
作者 Shiwei Su Guangyong Hu +2 位作者 Xianghua Li Xin Li Wei Xiong 《Energy Engineering》 EI 2023年第10期2343-2368,共26页
As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve t... As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve the coordinated optimal operation and low-carbon economic operation problem in multi-virtual power plant,a multi-virtual power plant(VPP)electricity-carbon interaction optimal scheduling model considering integrated demand response(IDR)is proposed.Firstly,a multi-VPP electricity-carbon interaction framework is established.The interaction of electric energy and carbon quotas can realize energy complementarity,reduce energy waste and promote low-carbon operation.Secondly,in order to coordinate the multiple types of energy and load in VPPC to further achieve low-carbon operation,the IDR mechanism based on the user comprehensive satisfaction(UCS)of electricity,heat as well as hydrogen is designed,which can effectively maintain the UCS in the cluster within a relatively high range.Finally,the unit output scheme is formulated to minimize the total cost of VPPC and the model is solved using theCPLEX solver.The simulation results showthat the proposed method effectively promotes the coordinated operation among multi-VPP,increases the consumption rate of renewable energy sources and the economics of VPPC and reduces carbon emissions. 展开更多
关键词 virtual power plant cluster carbon quota interaction electricity interaction integrated demand response user comprehensive satisfaction coordinated optimal operation
下载PDF
Impact of industrial virtual power plant on renewable energy integration 被引量:4
5
作者 Runze Liu Yu Liu Zhaoxia Jing 《Global Energy Interconnection》 CAS 2020年第6期545-552,共8页
An industrial park is one of the typical en ergy con sumption schemes in power systems owing to the heavy in dustrial loads and their abilities to resp ond to electricity price cha nges.Therefore,en ergy in tegrati on... An industrial park is one of the typical en ergy con sumption schemes in power systems owing to the heavy in dustrial loads and their abilities to resp ond to electricity price cha nges.Therefore,en ergy in tegrati on in the industrial sector is significant.Accordingly,the concept of industrial virtual power plant(IVPP)has been proposed to deal with such problems.This study demonstrates an IVPP model to man age resources in an eco-i ndustrial park,including en ergy storage systems,dema nd resp onse(DR)resources,and distributed energies.In addition,fuzzy theory is used to cha nge the deterministic system constraints to fuzzy parameters,considering the uncertainty of renewable energy,and fuzzy chance constraints are then set based on the credibility theory.By maximizi ng the daily ben efits of the IVPP owners in day-ahead markets,DR and energy storage systems can be scheduled economically.Therefore,the energy between the grid and IVPP can flow in both directions:the surplus renewable electricity of IVPP can be sold in the market;when the electricity gen erated in side IVPP is not enough for its use,IVPP can also purchase power through the market.Case studies based on three win d-level scenarios dem on strate the efficie nt syn ergies betwee n IVPP resources.The validatio n results indicate that IVPP can optimize the supply and demand resources in in dustrial parks,thereby decarbonizing the power systems. 展开更多
关键词 IVPP virtual power plants Industrial loads Renewable energy integration Fuzzy chanee constraint Credibility theory
下载PDF
Distributionally Robust Optimal Dispatch of Virtual Power Plant Based on Moment of Renewable Energy Resource 被引量:1
6
作者 Wenlu Ji YongWang +2 位作者 Xing Deng Ming Zhang Ting Ye 《Energy Engineering》 EI 2022年第5期1967-1983,共17页
Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This ... Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This paper proposes a distributionally robust optimal dispatch approach for virtual power plants to determine an optimal day-ahead dispatch under uncertainties of renewable energy sources.The proposed distributionally robust approach characterizes probability distributions of renewable power output by moments.In this regard,the faults of stochastic optimization and traditional robust optimization can be overcome.Firstly,a second-order cone-based ambiguity set that incorporates the first and second moments of renewable power output is constructed,and a day-ahead two-stage distributionally robust optimization model is proposed for virtual power plants participating in day-ahead electricity markets.Then,an effective solution method based on the affine policy and second-order cone duality theory is employed to reformulate the proposed model into a deterministic mixed-integer second-order cone programming problem,which improves the computational efficiency of the model.Finally,the numerical results demonstrate that the proposed method achieves a better balance between robustness and economy.They also validate that the dispatch strategy of virtual power plants can be adjusted to reduce costs according to the moment information of renewable power output. 展开更多
关键词 virtual power plant optimal dispatch UNCERTAINTY distributionally robust optimization affine policy
下载PDF
Optimal Control and Bidding Strategy of Virtual Power Plant with Renewable Generation
7
作者 Yuchang Kang Kwoklun Lo 《World Journal of Engineering and Technology》 2016年第3期27-34,共9页
A Virtual Power Plant (VPP), aggregating the capacities of distributed energy resources (DER) as a single profile, provides presence of DERs in the electricity market. In this paper, a stochastic bidding model is prop... A Virtual Power Plant (VPP), aggregating the capacities of distributed energy resources (DER) as a single profile, provides presence of DERs in the electricity market. In this paper, a stochastic bidding model is proposed for the VPP to optimise the bids in the day-ahead and balancing market, with the objective to maximise its expected economic profit. The performance of proposed strategy has been assessed in a modified commercial VPP (CVPP) system with wind generation installed, and also the results are compared with the ones achieved from other commonly-used strategies to verify its feasibility. 展开更多
关键词 virtual power plant Electricity Market Distributed Energy Resources
下载PDF
Accelerated Particle Swarm Optimization for Controlling Virtual Power Plant Consisting of Renewable Energy Sources
8
作者 Jan Ivanecky Daniel Hropko Miroslav Kovac 《Journal of Energy and Power Engineering》 2013年第7期1408-1414,共7页
RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (v... RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (virtual power plant) has been developed. The VPP is composed of several RES, from which at least one of them is fully controllable. Because the production of noncontrollable RES can not be forecasted perfectly, therefore an optimal dispatch schedule within VPP is needed. To address this problem, an APSO (accelerated particle swarm optimization) is used to solve the constrained optimal dispatch problem within VPP. The experimental results show that the proposed optimization method provides high quality solutions while meeting constraints. 展开更多
关键词 virtual power plant particle swarm optimization renewable energy sources optimal dispatch.
下载PDF
Optimal Energy Management for Virtual Power Plant with Renewable Generation 被引量:1
9
作者 Yuchang Kang Kwoklun Lo Ivana Kockar 《Energy and Power Engineering》 2017年第4期308-316,共9页
The nature of variable and uncertainty from renewable energy sources (RESs) makes them challenging to be integrated into the main grid separately. A Virtual Power Plant (VPP) is proposed to aggregate the capacities of... The nature of variable and uncertainty from renewable energy sources (RESs) makes them challenging to be integrated into the main grid separately. A Virtual Power Plant (VPP) is proposed to aggregate the capacities of RESs and facilitate the integration and management in a decentralized manner. In this paper, a novel framework for optimal energy management of VPP considering key features such as handling uncertainties with RESs, reducing operating costs and regulating system voltage levels is proposed, and a two-stage stochastic simulation is formulated to address the uncertainties of RESs generation and electricity prices. Simulation result show that the framework can benefit from ensuring the energy balance and system security, as well as reducing the operation costs. 展开更多
关键词 virtual power plant RENEWABLE ENERGY SOURCES ENERGY Management
下载PDF
Battery Energy Storage System and Demand Response Based Optimal Virtual Power Plant Operation
10
作者 Ya-Chin Chang Rung-Fang Chang 《Journal of Applied Mathematics and Physics》 2017年第4期766-773,共8页
With certain controllability of various distribution energy resources (DERs) such as battery energy storage system (BESS), demand response (DR) and distributed generations (DGs), virtual power plant (VPP) can suitably... With certain controllability of various distribution energy resources (DERs) such as battery energy storage system (BESS), demand response (DR) and distributed generations (DGs), virtual power plant (VPP) can suitably regulate the powers access to the distribution network. In this paper, an optimal VPP operating problem is used to optimize the charging/discharging schedule of each BESS and the DR scheme with the objective to maximize the benefit by regulating the supplied powers over daily 24 hours. The proposed solution method is composed of an iterative dynamic programming optimal BESS schedule approach and a particle swarm optimization based (PSO-based) DR scheme approach. The two approaches are executed alternatively until the minimum elec-tricity cost of the whole day is obtained. The validity of the proposed method was confirmed with the obviously decreased supplied powers in the peak-load hours and the largely reduced electricity cost. 展开更多
关键词 Battery ENERGY Storage System Distributed ENERGY RESOURCE DEMAND Response ITERATIVE Dynamic PROGRAMMING Particle SWARM Optimization virtual power plant
下载PDF
Low-Carbon Dispatching for Virtual Power Plant with Aggregated Distributed Energy Storage Considering Spatiotemporal Distribution of Cleanness Value
11
作者 Hongchao Gao Tai Jin +3 位作者 Guanxiong Wang Qixin Chen Chongqing Kang Jingkai Zhu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第2期346-358,共13页
The scale of distributed energy resources is increasing,but imperfect business models and value transmission mechanisms lead to low utilization ratio and poor responsiveness.To address this issue,the concept of cleann... The scale of distributed energy resources is increasing,but imperfect business models and value transmission mechanisms lead to low utilization ratio and poor responsiveness.To address this issue,the concept of cleanness value of distributed energy storage(DES)is proposed,and the spatiotemporal distribution mechanism is discussed from the perspectives of electrical energy and cleanness.Based on this,an evaluation system for the environmental benefits of DES is constructed to balance the interests between the aggregator and the power system operator.Then,an optimal low-carbon dispatching for a virtual power plant(VPP)with aggregated DES is constructed,where-in energy value and cleanness value are both considered.To achieve the goal,a green attribute labeling method is used to establish a correlation constraint between the nodal carbon potential of the distribution network(DN)and DES behavior,but as a cost,it brings multiple nonlinear relationships.Subsequently,a solution method based on the convex envelope(CE)linear re-construction method is proposed for the multivariate nonlinear programming problem,thereby improving solution efficiency and feasibility.Finally,the simulation verification based on the IEEE 33-bus DN is conducted.The simulation results show that the multidimensional value recognition of DES motivates the willingness of resource users to respond.Meanwhile,resolving the impact of DES on the nodal carbon potential can effectively alleviate overcompensation of the cleanness value. 展开更多
关键词 Distributed energy storage virtual power plant(VPP) spatiotemporal distribution low-carbon dispatching
原文传递
Stochastic Flexibility Evaluation for Virtual Power Plants by Aggregating Distributed Energy Resources
12
作者 Siyuan Wang Wenchuan Wu +2 位作者 Qizhan Chen Junjie Yu Peng Wang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第3期988-999,共12页
To manage a large amount of flexible distributed energy resources(DERs)in the distribution networks,the virtual power plant(VPP)is introduced into the industry.The VPP can optimally dispatch these resources in a clust... To manage a large amount of flexible distributed energy resources(DERs)in the distribution networks,the virtual power plant(VPP)is introduced into the industry.The VPP can optimally dispatch these resources in a cluster manner and provide flexibility for the power system operation as a whole.Most existing studies formulate the equivalent power flexibility of the aggregating DERs as deterministic optimization models without considering their uncertainties.In this paper,we introduce the stochastic power flexibility range(PFR)and timecoupling flexibility(TCF)to describe the power flexibility of VPP.In this model,both operational constraints and the randomness of the DERs’output are incorporated,and a combined model and data-driven solution is proposed to obtain the stochastic PFR,TCF,and cost function of VPP.The aggregating model can be easily incorporated into the optimization model for the power system operator or market bidding,considering uncertainties.Finally,a numerical test is performed.The results show that the proposed model not only has higher computational efficiency than the scenario-based methods but also achieves more economic benefits. 展开更多
关键词 Chance constrained optimization combined model and data-driven stochastic power flexibility virtual power plant
原文传递
Model-free Demand Response Scheduling Strategy for Virtual Power Plants Considering Risk Attitude of Consumers 被引量:3
13
作者 Yi Kuang Xiuli Wang +4 位作者 Hongyang Zhao Tao Qian Nailiang Li Jianxue Wang Xifan Wang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第2期516-528,共13页
Driven by modern advanced information and communication technologies,distributed energy resources have great potential for energy supply within the framework of the virtual power plant(VPP).Meanwhile,demand response(D... Driven by modern advanced information and communication technologies,distributed energy resources have great potential for energy supply within the framework of the virtual power plant(VPP).Meanwhile,demand response(DR)is becoming increasingly important for enhancing the VPP operation and mitigating the risks associated with the fluctuation of renewable energy resources(RESs).In this paper,we propose an incentivebased DR program for the VPP to minimize the deviation penalty from participating in the power market.The Markov decision process(MDP)with unknown transition probability is constructed from the VPP’s prospective to formulate an incentivebased DR program,in which the randomness of consumer behavior and RES generation are taken into consideration.Furthermore,a value function of prospect theory(PT)is developed to characterize consumer’s risk attitude and describe the psychological factors.A model-free deep reinforcement learning(DRL)-based approach is proposed to deal with the randomness existing in the model and adaptively determine the optimal DR pricing strategy for the VPP,without requiring any system model information.Finally,the results of cases tested demonstrate the effectiveness of the proposed approach. 展开更多
关键词 Incentive-based demand response Markov decision process virtual power plant
原文传递
Allocating Ex-post Deviation Cost of Virtual Power Plants in Distribution Networks 被引量:2
14
作者 Yue Yang Yue Wang Wenchuan Wu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第3期1014-1019,共6页
Virtual power plants(VPPs)including distributed generation,energy storage,and elastic load are emerging in distribution networks.Multiple VPPs can participate in electricity market as an aggregated entity and effectiv... Virtual power plants(VPPs)including distributed generation,energy storage,and elastic load are emerging in distribution networks.Multiple VPPs can participate in electricity market as an aggregated entity and effective cost allocation mechanism among VPPs is a crucial issue.This paper focuses on allocating ex-post cost of VPPs incurred by deviation between actual power and ex-ante schedule in a two-settlement electricity market.We obtain approximate quadratic formulation of ex-post deviation cost considering network loss and develop an analytical cost allocation algorithm based on cooperative game theory.The allocated cost is consistent with cost causation principle and provides VPPs with incentive for aggregation.The proposed allocation method and relevant theoretical result are evaluated and verified by numerical tests. 展开更多
关键词 Renewable energy virtual power plant(VPP) cost allocation distribution network electricity market
原文传递
Comprehensive Optimization-based Techno-economic Assessment of Hybrid Renewable Electricity-hydrogen Virtual Power Plants 被引量:1
15
作者 James Naughton Shariq Riaz +2 位作者 Michael Cantoni Xiao-Ping Zhang Pierluigi Mancarella 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第2期553-566,共14页
Hydrogen is being considered as an important option to contribute to energy system decarbonization.However,currently its production from renewables is expensive compared with the methods that utilize fossil fuels.This... Hydrogen is being considered as an important option to contribute to energy system decarbonization.However,currently its production from renewables is expensive compared with the methods that utilize fossil fuels.This paper proposes a comprehensive optimization-based techno-economic assessment of a hybrid renewable electricity-hydrogen virtual power plant(VPP)that boosts its business case by co-optimizing across multiple markets and contractual services to maximize its profits and eventually deliver hydrogen at a lower net cost.Additionally,multiple possible investment options are considered.Case studies of VPP placement in a renewable-rich,congested area of the Australian network and based on real market data and relevant sensitivities show that multi-market participation can significantly boost the business case for cleaner hydrogen.This highlights the importance of value stacking for driving down the cost of cleaner hydrogen.Due to the participation in multiple markets,all VPP configurations considered are found to be economically viable for a hydrogen price of 3 AUD$/kg(2.25 USD$/kg),which has been identified as a threshold value for Australia to export hydrogen at a competitive price.Additionally,if the high price volatility that has been seen in gas prices in 2022(and by extension electricity prices)continues,the flexibility of hybrid VPPs will further improve their business cases. 展开更多
关键词 virtual power plant techno-economic assessment ELECTROLYSER FLEXIBILITY HYDROGEN multi-energy system optimal power flow
原文传递
Secondary Frequency Control Considering Optimized Power Support From Virtual Power Plant Containing Aluminum Smelter Loads Through VSC-HVDC Link 被引量:1
16
作者 Peng Bao Wen Zhang Yuxi Zhang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第1期355-367,共13页
The growing number of renewable energy replacing conventional generators results in a loss of the reserve for frequency control in power systems,while many industrial power grids often have excess energy supply due to... The growing number of renewable energy replacing conventional generators results in a loss of the reserve for frequency control in power systems,while many industrial power grids often have excess energy supply due to abundant wind and solar energy resources.This paper proposes a secondary frequency control(SFC)strategy that allows industrial power grids to provide emergency high-voltage direct current(HVDC)power support(EDCPS)for emergency to a system requiring power support through a voltage source converter(VSC)HVDC link.An architecture including multiple model predictive control(MPC)controllers with periodic communication is designed to simultaneously obtain optimized EDCPS capacity and minimize adverse effects on the providing power support(PPS)system.Moreover,a model of a virtual power plant(VPP)containing aluminum smelter loads(ASLs)and a high penetration of wind power is established for the PPS system.The flexibility and controllability of the VPP are improved by the demand response of the ASLs.The uncertainty associated with wind power is considered by chance constraints.The effectiveness of the proposed strategy is verified by simulation results using the data of an actual industrial power grid in Inner Mongolia,China.The DC voltage of the VSCs and the DC in the potlines of the ASLs are also investigated in the simulation. 展开更多
关键词 Secondary frequency control power support voltage source converter(VSC) high-voltage direct current(HVDC) model predictive control(MPC) virtual power plant(VPP) demand response
原文传递
Optimal Offering Strategy of Virtual Power Plant with Hybrid Renewable Ocean Energy Portfolio
17
作者 Siyuan Guo Bin Zhou +4 位作者 Ka Wing Chan Siqi Bu Canbing Li Nian Liu Cong Zhang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第6期2040-2051,共12页
This paper proposes a hybrid ocean energy sys-tem to form a virtual power plant(VPP)for participating in electricity markets in order to promote the renewable ocean energy utilization and accommodation.In the proposed... This paper proposes a hybrid ocean energy sys-tem to form a virtual power plant(VPP)for participating in electricity markets in order to promote the renewable ocean energy utilization and accommodation.In the proposed system,solar thermal energy is integrated with the closed-cycle ocean thermal energy conversion(OTEC)to boost the temperature differences between the surface and deep seawater for efficiency and flexibility improvements,and the thermodynamic effects of seawater mass flow rates on the output of solar-boosted OTEC(SOTEC)are exploited for deploying SOTEC as a renewable dispatchable unit.An optimal tidal-storage operation model is also developed to make use of subsea pumped storage(SPS)with hydrostatic pressures at ocean depths for mitigating the intermittent tidal range energy in order to make the arbitrage in the electricity market.Furthermore,a two-stage coordinated scheduling strategy is presented to optimally control seawater mass flow rates of SOTEC and hydraulic reversible pump-turbines of SPS for enhancing the daily VPP profit.Comparative studies have been investigated to confirm the superiority of the developed methodology in various renewable ocean energy and electricity market price scenarios. 展开更多
关键词 Ocean thermal energy conversion rolling optimization subsea pumped storage system tidal power generation virtual power plant
原文传递
Evaluation of greenhouse gas emission reduction potential of a demand–response solution:a carbon handprint case study of a virtual power plant
18
作者 J.Sillman L.Lakanen +3 位作者 S.Annala K.Gronman M.Luoranen R.Soukka 《Clean Energy》 EI CSCD 2023年第4期755-766,共12页
The transition towards zero-carbon energy production is necessary to limit global warming.Smart energy systems have facilitated the control of demand-side resources to maintain the stability of the power grid and to p... The transition towards zero-carbon energy production is necessary to limit global warming.Smart energy systems have facilitated the control of demand-side resources to maintain the stability of the power grid and to provide balancing power for increasing renewable energy production.Virtual power plants are examples of demand–response solutions,which may also enable greenhouse gas(GHG)emission reductions due to the lower need for fossil-based balancing energy in the grid and the increased share of renewables.The aim of this study is to show how potential GHG emission reductions can be assessed through the carbon handprint approach for a virtual power plant(VPP)in a grid balancing market in Finland.According to our results,VPP can reduce the hourly based GHG emissions in the studied Finnish grid systems compared with the balancing power without the VPP.Typical energy sources used for the balance power are hydropower and fossil fuels.The reduction potential of GHG emissions varies from 68%to 98%depending on the share of the used energy source for the power balancing,thus VPPs have the potential to significantly reduce GHG emissions of electricity production and hence help mitigate climate change. 展开更多
关键词 virtual power plant demand–response carbon handprint greenhouse gas emissions electric grid
原文传递
Bidding Strategy of a Virtual Power Plant Considering Carbon-electricity Trading 被引量:19
19
作者 Dechang Yang Shaowen He +2 位作者 Qiuyue Chen Dingqian Li Hrvoje Pandzic 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第3期306-314,共9页
Virtual power plant(VPP)aggregates large amounts of distributed energy and controllable loads.The comprehensive consideration of carbon emissions and electricity transactions has great significance in improving the VP... Virtual power plant(VPP)aggregates large amounts of distributed energy and controllable loads.The comprehensive consideration of carbon emissions and electricity transactions has great significance in improving the VPP operation’s economic efficiency.In this paper,the bidding strategy of the VPP by considering the carbon-electricity integration trading in an auxiliary service(AS)market is studied.First of all,the basic structure and operating features of the VPP are briefly introduced.Then,the bidding strategy model of carbon-electricity integration trading in an auxiliary service market is proposed and the corresponding objective function and the constraint conditions are also analyzed.Furthermore,the GAMS solver is utilized to give the optimal solution of the bidding strategy model.Finally,the effectiveness of the bidding strategy of a VPP based on the consideration of carbon-electricity integration trading is verified through simulation cases. 展开更多
关键词 Bidding strategy carbon-electricity distribution energy resource integration trading virtual power plant
原文传递
Economic Dispatch of Power Systems with Virtual Power Plant Based Interval Optimization Method 被引量:21
20
作者 Chongxin Huang Dong Yue +2 位作者 Jun Xie Yaping Li Ke Wang 《CSEE Journal of Power and Energy Systems》 SCIE 2016年第1期74-80,共7页
Load prediction and power prediction uncertainties are inevitable aspects of a virtual power plant(VPP).In power system economic dispatch(ED)modeling,the interval is used to describe prediction uncertainties.An ED mod... Load prediction and power prediction uncertainties are inevitable aspects of a virtual power plant(VPP).In power system economic dispatch(ED)modeling,the interval is used to describe prediction uncertainties.An ED model with interval uncertainty is established in this paper.The probability degree definition is adopted to convert the interval-based economic dispatch model into a deterministic model for the purposes of solving the modeling problem.Simulation tests are performed on a 10-machine system using professional optimization software(LINGO).The simulation results verify the validity of the proposed interval-based scheme for the economic dispatch of a power system with VPP. 展开更多
关键词 Economic dispatch interval optimization method UNCERTAINTY virtual power plant
原文传递
上一页 1 2 49 下一页 到第
使用帮助 返回顶部