Electric vertical take-off and landing(eVTOL)aircraft with multiple lifting rotors or prop-rotors have received significant attention in recent years due to their great potential for next-generation urban air mobility...Electric vertical take-off and landing(eVTOL)aircraft with multiple lifting rotors or prop-rotors have received significant attention in recent years due to their great potential for next-generation urban air mobility(UAM).Numerical models have been developed and validated as predictive tools to analyze rotor aerodynamics and wake dynamics.Among various numerical approaches,the vortex method is one of the most suitable because it can provide accurate solutions with an affordable computational cost and can represent vorticity fields downstream without numerical dissipation error.This paper presents a brief review of the progress of vortex methods,along with their principles,advantages,and shortcomings.Applications of the vortex methods for modeling the rotor aerodynamics and wake dynamics are also described.However,the vortex methods suffer from the problem that it cannot deal with the nonlinear aerodynamic characteristics associated with the viscous effects and the flow behaviors in the post-stall regime.To overcome the intrinsic drawbacks of the vortex methods,recent progress in a numerical method proposed by the authors is introduced,and model validation against experimental data is discussed in detail.The validation works show that nonlinear vortex lattice method(NVLM)coupled with vortex particle method(VPM)can predict the unsteady aerodynamic forces and complex evolution of the rotor wake.展开更多
Flight dynamics modeling for the Mars helicopter faces great challenges.Aerodynamic modeling of coaxial rotor with high confidence and high computational efficiency is a major difficulty for the field.This paper build...Flight dynamics modeling for the Mars helicopter faces great challenges.Aerodynamic modeling of coaxial rotor with high confidence and high computational efficiency is a major difficulty for the field.This paper builds an aerodynamic model of coaxial rotor in the extremely thin Martian atmosphere using the viscous vortex particle method.The aerodynamic forces and flow characteristics of rigid coaxial rotor are computed and analyzed.Meanwhile,a high fidelity aerodynamic surrogate model is built to improve the computational efficiency of the flight dynamics model.Results in this paper reveal that rigid coaxial rotor can bring the Mars helicopter sufficient controllability but result in obvious instability and control couplings in forward flight.This highlights the great differences in flight dynamics characteristics compared with conventional helicopters on Earth.展开更多
基金The National Research Foundation of Korea(NRF-2017-R1A5A1015311 and 2021R1C1C1010198),South Korea.Author information。
文摘Electric vertical take-off and landing(eVTOL)aircraft with multiple lifting rotors or prop-rotors have received significant attention in recent years due to their great potential for next-generation urban air mobility(UAM).Numerical models have been developed and validated as predictive tools to analyze rotor aerodynamics and wake dynamics.Among various numerical approaches,the vortex method is one of the most suitable because it can provide accurate solutions with an affordable computational cost and can represent vorticity fields downstream without numerical dissipation error.This paper presents a brief review of the progress of vortex methods,along with their principles,advantages,and shortcomings.Applications of the vortex methods for modeling the rotor aerodynamics and wake dynamics are also described.However,the vortex methods suffer from the problem that it cannot deal with the nonlinear aerodynamic characteristics associated with the viscous effects and the flow behaviors in the post-stall regime.To overcome the intrinsic drawbacks of the vortex methods,recent progress in a numerical method proposed by the authors is introduced,and model validation against experimental data is discussed in detail.The validation works show that nonlinear vortex lattice method(NVLM)coupled with vortex particle method(VPM)can predict the unsteady aerodynamic forces and complex evolution of the rotor wake.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘Flight dynamics modeling for the Mars helicopter faces great challenges.Aerodynamic modeling of coaxial rotor with high confidence and high computational efficiency is a major difficulty for the field.This paper builds an aerodynamic model of coaxial rotor in the extremely thin Martian atmosphere using the viscous vortex particle method.The aerodynamic forces and flow characteristics of rigid coaxial rotor are computed and analyzed.Meanwhile,a high fidelity aerodynamic surrogate model is built to improve the computational efficiency of the flight dynamics model.Results in this paper reveal that rigid coaxial rotor can bring the Mars helicopter sufficient controllability but result in obvious instability and control couplings in forward flight.This highlights the great differences in flight dynamics characteristics compared with conventional helicopters on Earth.