We revisited the vortex states of 2H-NbSe_(2) towards zero fields by a low-temperature scanning tunneling microscope.Fine structures of the anisotropic vortex states were distinguished, one is a spatially non-splittin...We revisited the vortex states of 2H-NbSe_(2) towards zero fields by a low-temperature scanning tunneling microscope.Fine structures of the anisotropic vortex states were distinguished, one is a spatially non-splitting zero bias peak, and the other is an in-gap conductance anomaly resembling evolved crossing features around the center of the three nearest vortices.Both of them distribute solely along the next nearest neighboring direction of the vortex lattice and become unresolved in much higher magnetic fields, implying an important role played by the vortex–vortex interactions. To clarify these issues,we have studied the intrinsic vortex states of the isolated trapped vortex in zero fields at 0.45 K. It is concluded that the anisotropic zero bias peak is attributed to the superconducting gap anisotropy, and the spatially evolved crossing features are related to the vortex–vortex interaction. The vortex core size under the zero-field limit is determined. These results provide a paradigm for studying the inherent vortex states of type-II superconductors especially based on an isolated vortex.展开更多
A scheme is proposed for preparing a quantum vortex state with a coupled waveguide, in which a single-mode odd cat state with weak intensity and a single-mode coherent state are inserted in the input ports, respective...A scheme is proposed for preparing a quantum vortex state with a coupled waveguide, in which a single-mode odd cat state with weak intensity and a single-mode coherent state are inserted in the input ports, respectively. The analytical wavefunction of the resulting state in the quadrature space is derived, and the vortex structure of the output state is analyzed. It is found that the obtained states, which may carry a vortex with topological charge index one, are entangled and nonclassical, depending only on the scaled propagation time and the weak intensity of the input odd cat state instead of the displacement parameter of the input coherent state. The phase distribution, however, in the quadrature space, depends on the displacement parameter of the input coherent state展开更多
Since the 1990s, the progress of nanofabrication technologies has resulted in increasing interests in the study of superconducting properties of mesoscopic samples. A mesoscopic sample has a size comparable to the coh...Since the 1990s, the progress of nanofabrication technologies has resulted in increasing interests in the study of superconducting properties of mesoscopic samples. A mesoscopic sample has a size comparable to the coherence length ξ and penetration depth λ. Properties of mesoscopic systems are considerably influenced by confinement effects. Therefore, the vortex state depends on the size and geometry of the sample.展开更多
A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner functio...A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner function of the quantum vortex state is derived and exhibits negativity which is an indication of nonclassicality. It is also found that a quantized vortex state is always in entanglement. And a scheme for generating such quantized vortex states is proposed.展开更多
We have theoretically studied the nucleation of superconductivity in doubly connected superconductors in the form of long superconducting cylinders. The giant vortex states are investigated with the nonlinear Ginzburg...We have theoretically studied the nucleation of superconductivity in doubly connected superconductors in the form of long superconducting cylinders. The giant vortex states are investigated with the nonlinear Ginzburg-Landau theory. The solutions of Ginzburg-Landau equations are solved numerically with relaxation method. The quantum size effect is clearly shown through the calculation of free energy.展开更多
The evolution of a system state is derived based on the nonresonant interaction of a three-level "Λ" type atom with two cavity modes at a pair coherent state and two classic fields,and a cavity field state is analy...The evolution of a system state is derived based on the nonresonant interaction of a three-level "Λ" type atom with two cavity modes at a pair coherent state and two classic fields,and a cavity field state is analyzed in detail under conditional detecting.It is found that the quantized modified Bessel-Gaussian states as well as the superposition states consisting of the quantized vortex states with different weighted coefficients may be prepared through carefully preparing an initial atomic state and appropriately adjusting the interaction time.The scheme provides an additional choice to realize the two-mode quantized vortex state within the context of cavity quantum electrodynamics(QED).展开更多
A theoretical study on discrete vortex bound states is carried out near a vortex core in the presence of a van Hove singularity(VHS) near the Fermi level by solving Bogoliubov–de Gennes(Bd G) equations. When the VHS ...A theoretical study on discrete vortex bound states is carried out near a vortex core in the presence of a van Hove singularity(VHS) near the Fermi level by solving Bogoliubov–de Gennes(Bd G) equations. When the VHS lies exactly at the Fermi level and also at the middle of the band, a zero-energy state and other higher-energy states whose energy ratios follow integer numbers emerge. These discrete vortex bound state peaks undergo a splitting behavior when the VHS or Fermi level moves away from the middle of the band. Such splitting behavior will eventually lead to a new arrangement of quantized vortex core states whose energy ratios follow half-odd-integer numbers.展开更多
To understand the vortex-ring state and to develop an approach for predicting its boundary, a series of model rotor tests of vertical descent and oblique descent have been conducted on a newly-built test apparatus - t...To understand the vortex-ring state and to develop an approach for predicting its boundary, a series of model rotor tests of vertical descent and oblique descent have been conducted on a newly-built test apparatus - the Whirling Beam. The test results showed some unsteady aerodynamic behavior of the model rotor operating in the vortex-ring state. A very irregular variation of the rotortorque at low rate-of-descent was observed here for the first time. We considered it to be the start of the 'power settling' and determined the critical descent velocity according to this observation. A previous criterion for the vortex-ring state was modified to give a semi-empirical method for predicting the entire vortex-ring state boundary. The computed boundary shows a good correlation with the model test results and the flight experiences.展开更多
By use of 1948-2007 NCEP/NCAR reanalysis monthly geopotential data, a set of circulation indices are defined to characterize the polar vortex at 10 hPa in the Southern Hemisphere, including area-(S), intensity-(P)...By use of 1948-2007 NCEP/NCAR reanalysis monthly geopotential data, a set of circulation indices are defined to characterize the polar vortex at 10 hPa in the Southern Hemisphere, including area-(S), intensity-(P) and centre position-(λc , φc) indices. Sea-sonal variation, interannual anomalies and their possible causes of 10 hPa polar vortex in the Southern Hemisphere are analyzed by using these indices, the relationship between 10 hPa polar vortex strength and the Antarctic Oscillation are analyzed as well. The results show that: (1) the polar region at 10 hPa in the Southern Hemisphere is controlled by anticyclone (cyclone) from Dec. to Jan. (from Mar. to Oct.), Feb. and Nov. are circulation transition seasons. (2) Intensity index (P) and area index (S) of anticy-clone (cyclone) in Jan. (Jul.) show a significant spike in the late 1970s, the anticyclone (cyclone) enhances (weakens) from ex-tremely weak (strong) oscillation to near the climatic mean before a spike, anticyclone tends to the mean state from very strong oscillation and cyclone oscillates in the weaker state after the spike. (3) There is significant interdecadal change for the anticyclone center in Jan., while markedly interannual variation for cyclone center in July. (4) The ozone anomalies can cause the interannual anomaly of the polar anticyclone at 10 hPa in the Southern Hemisphere in Jan. (positive correlation between them), but it is not related to the polar cyclone anomalies. (5) There is notable negative correlation between the polar vortex intensity index P and the Antarctic Oscillation index (AAOI), thus AAOI can be represented by P.展开更多
A vortex ring impinging on a three-dimensional bump is studied using large eddy simulation for a Reynolds number Re = 4 × 104 based on the initial translation speed and diameter of the vortex ring. The effects of...A vortex ring impinging on a three-dimensional bump is studied using large eddy simulation for a Reynolds number Re = 4 × 104 based on the initial translation speed and diameter of the vortex ring. The effects of bump height on the vortical flow phenomena and the underlying physical mechanisms are inves- tigated. Based on the analysis of the evolution of vortical structures, two typical kinds of vortical structures, i.e., the wrapping vortices and the hair-pin vortices, are identified and play an important role in the flow state evolution. The circu- lation of the primary vortex ring reasonably elucidates some typical phases of flow evolution. Furthermore, the mechanism of flow transition from laminar to turbulent state has been revealed based on analysis of turbulent kinetic energy.展开更多
The nonlinear dynamics of supported pipes conveying fluid subjected to vortex-induced vibration is evaluated using the method of multiple scales. Frequency response portraits for different internal fluid velocities un...The nonlinear dynamics of supported pipes conveying fluid subjected to vortex-induced vibration is evaluated using the method of multiple scales. Frequency response portraits for different internal fluid velocities under lock-in conditions are obtained and the stability of steady-state responses is discussed. Results show that the internal fluid velocity has a prominent effect on the oscillation amplitude and that the steady-state responses incorporating unstable solutions in the lock-in region are also obtained. In addition, the effects of two kinds of fluctuating lift coefficients on the steady-state responses are compared with each other.展开更多
The bound states around a vortex in anisotropic superconductors is a longstanding yet important issue.In this work,we develop a variational theory on the basis of the Andreev approximation to obtain the energy levels ...The bound states around a vortex in anisotropic superconductors is a longstanding yet important issue.In this work,we develop a variational theory on the basis of the Andreev approximation to obtain the energy levels and wave functions of the low-energy quantized bound states in superconductors with anisotropic pairing on arbitrary Fermi surface.In the case of circular Fermi surface,the effective Schr¨odinger equation yielding the bound state energies gets back to the theory proposed by Volovik and Kopnin many years ago.Our generalization here enables us to prove the equidistant energy spectrum inside a vortex in a broader class of superconductors.More importantly,we are now able to obtain the wave functions of these bound states by projecting the quasiclassical wave function on the eigenmodes of the effective Schr¨odinger equation,going beyond the quasiclassical Eilenberger results,which,as we find,are sensitive to the scattering rate.For the case of isotropic Fermi surface,the spatial profile of the low-energy local density of states is dominated near the vortex center and elongates along the gap antinode directions,in addition to the ubiquitous Friedel oscillation arising from the quantum inteference neglected in the Eilenberger theory.Moreover,as a consequence of the pairing anisotropy,the quantized wave functions develop a peculiar distribution of winding number,which reduces stepwise towards the vortex center.Our work provides a flexible way to study the vortex bound states in the future.展开更多
基金Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403203)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302802)+3 种基金the National Natural Science Foundation of China (Grant Nos. 12074002, 12374133, and 11804379)the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No. ZR2021ZD01)the supports of the National Natural Science Foundation of China (Grant No. 12274001)the Natural Science Foundation of Anhui Province (Grant No. 2208085MA09)。
文摘We revisited the vortex states of 2H-NbSe_(2) towards zero fields by a low-temperature scanning tunneling microscope.Fine structures of the anisotropic vortex states were distinguished, one is a spatially non-splitting zero bias peak, and the other is an in-gap conductance anomaly resembling evolved crossing features around the center of the three nearest vortices.Both of them distribute solely along the next nearest neighboring direction of the vortex lattice and become unresolved in much higher magnetic fields, implying an important role played by the vortex–vortex interactions. To clarify these issues,we have studied the intrinsic vortex states of the isolated trapped vortex in zero fields at 0.45 K. It is concluded that the anisotropic zero bias peak is attributed to the superconducting gap anisotropy, and the spatially evolved crossing features are related to the vortex–vortex interaction. The vortex core size under the zero-field limit is determined. These results provide a paradigm for studying the inherent vortex states of type-II superconductors especially based on an isolated vortex.
文摘A scheme is proposed for preparing a quantum vortex state with a coupled waveguide, in which a single-mode odd cat state with weak intensity and a single-mode coherent state are inserted in the input ports, respectively. The analytical wavefunction of the resulting state in the quadrature space is derived, and the vortex structure of the output state is analyzed. It is found that the obtained states, which may carry a vortex with topological charge index one, are entangled and nonclassical, depending only on the scaled propagation time and the weak intensity of the input odd cat state instead of the displacement parameter of the input coherent state. The phase distribution, however, in the quadrature space, depends on the displacement parameter of the input coherent state
文摘Since the 1990s, the progress of nanofabrication technologies has resulted in increasing interests in the study of superconducting properties of mesoscopic samples. A mesoscopic sample has a size comparable to the coherence length ξ and penetration depth λ. Properties of mesoscopic systems are considerably influenced by confinement effects. Therefore, the vortex state depends on the size and geometry of the sample.
文摘A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner function of the quantum vortex state is derived and exhibits negativity which is an indication of nonclassicality. It is also found that a quantized vortex state is always in entanglement. And a scheme for generating such quantized vortex states is proposed.
基金The project supported by Natural Science Foundation from Beijing Normal University.Acknowledgments H. Zhao wishes to thank Profs. Fang-Lin Peng, Jue- Lian Shen, and Jia-Cai Nie for helpful discussions
文摘We have theoretically studied the nucleation of superconductivity in doubly connected superconductors in the form of long superconducting cylinders. The giant vortex states are investigated with the nonlinear Ginzburg-Landau theory. The solutions of Ginzburg-Landau equations are solved numerically with relaxation method. The quantum size effect is clearly shown through the calculation of free energy.
文摘The evolution of a system state is derived based on the nonresonant interaction of a three-level "Λ" type atom with two cavity modes at a pair coherent state and two classic fields,and a cavity field state is analyzed in detail under conditional detecting.It is found that the quantized modified Bessel-Gaussian states as well as the superposition states consisting of the quantized vortex states with different weighted coefficients may be prepared through carefully preparing an initial atomic state and appropriately adjusting the interaction time.The scheme provides an additional choice to realize the two-mode quantized vortex state within the context of cavity quantum electrodynamics(QED).
基金the National Natural Science Foundation of China (Grant No. 11804154)the Scientific Research Foundation of NJIT (Grant Nos. YKJ201853 and CKJA201807)。
文摘A theoretical study on discrete vortex bound states is carried out near a vortex core in the presence of a van Hove singularity(VHS) near the Fermi level by solving Bogoliubov–de Gennes(Bd G) equations. When the VHS lies exactly at the Fermi level and also at the middle of the band, a zero-energy state and other higher-energy states whose energy ratios follow integer numbers emerge. These discrete vortex bound state peaks undergo a splitting behavior when the VHS or Fermi level moves away from the middle of the band. Such splitting behavior will eventually lead to a new arrangement of quantized vortex core states whose energy ratios follow half-odd-integer numbers.
文摘To understand the vortex-ring state and to develop an approach for predicting its boundary, a series of model rotor tests of vertical descent and oblique descent have been conducted on a newly-built test apparatus - the Whirling Beam. The test results showed some unsteady aerodynamic behavior of the model rotor operating in the vortex-ring state. A very irregular variation of the rotortorque at low rate-of-descent was observed here for the first time. We considered it to be the start of the 'power settling' and determined the critical descent velocity according to this observation. A previous criterion for the vortex-ring state was modified to give a semi-empirical method for predicting the entire vortex-ring state boundary. The computed boundary shows a good correlation with the model test results and the flight experiences.
基金supported by National Key Technology R&D Program (Grant No. 2007BAC29B02)National Natural Science Foundation Director Fund (Grant No. 40940008)
文摘By use of 1948-2007 NCEP/NCAR reanalysis monthly geopotential data, a set of circulation indices are defined to characterize the polar vortex at 10 hPa in the Southern Hemisphere, including area-(S), intensity-(P) and centre position-(λc , φc) indices. Sea-sonal variation, interannual anomalies and their possible causes of 10 hPa polar vortex in the Southern Hemisphere are analyzed by using these indices, the relationship between 10 hPa polar vortex strength and the Antarctic Oscillation are analyzed as well. The results show that: (1) the polar region at 10 hPa in the Southern Hemisphere is controlled by anticyclone (cyclone) from Dec. to Jan. (from Mar. to Oct.), Feb. and Nov. are circulation transition seasons. (2) Intensity index (P) and area index (S) of anticy-clone (cyclone) in Jan. (Jul.) show a significant spike in the late 1970s, the anticyclone (cyclone) enhances (weakens) from ex-tremely weak (strong) oscillation to near the climatic mean before a spike, anticyclone tends to the mean state from very strong oscillation and cyclone oscillates in the weaker state after the spike. (3) There is significant interdecadal change for the anticyclone center in Jan., while markedly interannual variation for cyclone center in July. (4) The ozone anomalies can cause the interannual anomaly of the polar anticyclone at 10 hPa in the Southern Hemisphere in Jan. (positive correlation between them), but it is not related to the polar cyclone anomalies. (5) There is notable negative correlation between the polar vortex intensity index P and the Antarctic Oscillation index (AAOI), thus AAOI can be represented by P.
基金supported by the National Natural Science Foundation of China(11202100)the Natural Science Fund in Jiangsu Province(BK2011723)
文摘A vortex ring impinging on a three-dimensional bump is studied using large eddy simulation for a Reynolds number Re = 4 × 104 based on the initial translation speed and diameter of the vortex ring. The effects of bump height on the vortical flow phenomena and the underlying physical mechanisms are inves- tigated. Based on the analysis of the evolution of vortical structures, two typical kinds of vortical structures, i.e., the wrapping vortices and the hair-pin vortices, are identified and play an important role in the flow state evolution. The circu- lation of the primary vortex ring reasonably elucidates some typical phases of flow evolution. Furthermore, the mechanism of flow transition from laminar to turbulent state has been revealed based on analysis of turbulent kinetic energy.
基金supported by the National Natural Science Foundation of China (11172107)the Program for New Century Excellent Talents in University(NCET-11-0183)
文摘The nonlinear dynamics of supported pipes conveying fluid subjected to vortex-induced vibration is evaluated using the method of multiple scales. Frequency response portraits for different internal fluid velocities under lock-in conditions are obtained and the stability of steady-state responses is discussed. Results show that the internal fluid velocity has a prominent effect on the oscillation amplitude and that the steady-state responses incorporating unstable solutions in the lock-in region are also obtained. In addition, the effects of two kinds of fluctuating lift coefficients on the steady-state responses are compared with each other.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1403201)the National Natural Science Foundation of China(Grant Nos.12274205,12374147,92365203,and 11874205)。
文摘The bound states around a vortex in anisotropic superconductors is a longstanding yet important issue.In this work,we develop a variational theory on the basis of the Andreev approximation to obtain the energy levels and wave functions of the low-energy quantized bound states in superconductors with anisotropic pairing on arbitrary Fermi surface.In the case of circular Fermi surface,the effective Schr¨odinger equation yielding the bound state energies gets back to the theory proposed by Volovik and Kopnin many years ago.Our generalization here enables us to prove the equidistant energy spectrum inside a vortex in a broader class of superconductors.More importantly,we are now able to obtain the wave functions of these bound states by projecting the quasiclassical wave function on the eigenmodes of the effective Schr¨odinger equation,going beyond the quasiclassical Eilenberger results,which,as we find,are sensitive to the scattering rate.For the case of isotropic Fermi surface,the spatial profile of the low-energy local density of states is dominated near the vortex center and elongates along the gap antinode directions,in addition to the ubiquitous Friedel oscillation arising from the quantum inteference neglected in the Eilenberger theory.Moreover,as a consequence of the pairing anisotropy,the quantized wave functions develop a peculiar distribution of winding number,which reduces stepwise towards the vortex center.Our work provides a flexible way to study the vortex bound states in the future.