期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A Novel Wake Oscillator Model for Vortex-Induced Vibrations Prediction of A Cylinder Considering the Influence of Reynolds Number 被引量:2
1
作者 GAO Xi-feng XIE Wu-de +2 位作者 XU Wan-hai BAI Yu-chuan ZHU Hai-tao 《China Ocean Engineering》 SCIE EI CSCD 2018年第2期132-143,共12页
It is well known that the Reynolds number has a significant effect on the vortex-induced vibrations(VIV) of cylinders. In this paper, a novel in-line(IL) and cross-flow(CF) coupling VIV prediction model for circular c... It is well known that the Reynolds number has a significant effect on the vortex-induced vibrations(VIV) of cylinders. In this paper, a novel in-line(IL) and cross-flow(CF) coupling VIV prediction model for circular cylinders has been proposed, in which the influence of the Reynolds number was comprehensively considered. The Strouhal number linked with the vortex shedding frequency was calculated through a function of the Reynolds number. The coefficient of the mean drag force was fitted as a new piecewise function of the Reynolds number, and its amplification resulted from the CF VIV was also taken into account. The oscillating drag and lift forces were modelled with classical van der Pol wake oscillators and their empirical parameters were determined based on the lock-in boundaries and the peak-amplitude formulas. A new peak-amplitude formula for the IL VIV was developed under the resonance condition with respect to the mass-damping ratio and the Reynolds number. When compared with the results from the experiments and some other prediction models, the present model could give good estimations on the vibration amplitudes and frequencies of the VIV both for elastically-mounted rigid and long flexible cylinders. The present model considering the influence of the Reynolds number could generally provide better results than that neglecting the effect of the Reynolds number. 展开更多
关键词 vortex-induced vibrations Reynolds number wake oscillator model CYLINDER
下载PDF
A NEW WAKE OSCILLATOR MODEL FOR PREDICTING VORTEX INDUCED VIBRATION OF A CIRCULAR CYLINDER 被引量:20
2
作者 XU Wan-hai WU Ying-xiang, +2 位作者 ZENG Xiao-hui ZHONG Xing-fu YU Jian-xing 《Journal of Hydrodynamics》 SCIE EI CSCD 2010年第3期381-386,共6页
This article proposes a new wake oscillator model for vortex induced vibrations of an elastically supported rigid circular cylinder in a uniform current. The near wake dynamics related with the fluctuating nature of v... This article proposes a new wake oscillator model for vortex induced vibrations of an elastically supported rigid circular cylinder in a uniform current. The near wake dynamics related with the fluctuating nature of vortex shedding is modeled based on the classical van der Pol equation, combined with the equation for the oscillatory motion of the body. An appropriate approach is developed to estimate the empirical parameters in the wake oscillator model. The present predicted results are compared to the experimental data and previous wake oscillator model results. Good agreement with experimental results is found. 展开更多
关键词 vortex induced vibration wake oscillator model circular cylinder van der Pol equation
原文传递
Nonlinear Coupled in-Line and Cross-Flow Vortex-Induced Vibration Analysis of Top Tensioned Riser 被引量:4
3
作者 李效民 郭海燕 孟凡顺 《China Ocean Engineering》 SCIE EI 2010年第4期749-758,共10页
The fluctuating furces of the fluid exerted on the top terrsioned riser ('FIR) in the in-line and cross-flow directions are both modeled by van del Pol wake oscillator model and the nonlinear coupled dynamics of th... The fluctuating furces of the fluid exerted on the top terrsioned riser ('FIR) in the in-line and cross-flow directions are both modeled by van del Pol wake oscillator model and the nonlinear coupled dynamics of the in-line and cross-flow vortex-induced vibrations (VIV) of the riser are analyzed in time domain in this papar. The numencal shnulation results of the riser's in-line and cross-flow displacements and curvatures are compared with experimental measurements and the comparison shows the validity of this method in modeling some main features of the riser's VIV. Finally, the effects of the riser's top tensions and internal flow velocities on the coupled vibrations of the riser are investigated. 展开更多
关键词 top tensioned riser (TFR) vortex-induced vibration (VIV) wake oscillator model in-line and cross-flowvibration
下载PDF
Prediction of Streamwise Flow-Induced Vibration of A Circular Cylinder in the First Instability Range 被引量:2
4
作者 徐万海 余建星 +2 位作者 杜杰 成安康 康昊 《China Ocean Engineering》 SCIE EI 2012年第4期555-564,共10页
The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated, and a wake oscillator model for the dynamic response prediction is proposed. ... The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated, and a wake oscillator model for the dynamic response prediction is proposed. An approach is applied to calibrate the empirical parameters in the present model; the numerical and experimental results are compared to validate the proposed model. It can be found that the present prediction model is accurate and sufficiently simple to be easily applied in practice. 展开更多
关键词 streamwise flow-induced vibrations circular cylinder wake oscillator model first instability range
下载PDF
Nonlinear Analysis of Bidirectional Vortex-Induced Vibration of A Deepwater Steep Wave Riser Subjected to Oblique Currents
5
作者 CHENG Yong TANG Lian-yang JI Chun-yan 《China Ocean Engineering》 SCIE EI CSCD 2021年第6期852-865,共14页
An improved three-dimensional(3D)time-domain couple model is established in this paper to simulate the bidirectional vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to oblique currents.In th... An improved three-dimensional(3D)time-domain couple model is established in this paper to simulate the bidirectional vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to oblique currents.In this model,the nonlinear motion equations of the riser are established in the global coordinate system based on the slender rod theory with the finite element method.Van der Pol equations are used to describe the lift forces induced by the x-and y-direction current components,respectively.The coupled equations at each time step are solved by a Newmark-βiterative scheme for the SWR VIV.The present model is verified by comparison with the published experimental results for a top-tension riser.Then,a series of simulations are executed to determine the influences of the oblique angle/velocity of the current,different top-end positions and the length of the buoyancy segment on the VIV displacement,oscillating frequency as well as hydrodynamic coefficients of the SWR.The results demonstrate that there exists a coupled resonant VIV corresponding to x-direction and y-direction,respectively.However,the effective frequency is almost identical between the vibrations at the hang-off segment along x and y directions.The addition of the buoyancy modules in the middle of the SWR has a beneficial impact on the lift force of three segments and simultaneously limits the VIV response,especially at the decline segment and the hang-off segments.Additionally,the incident current direction significantly affects the motion trajectory of the SWR which mainly includes the fusiform and rectangle shapes. 展开更多
关键词 steep wave riser(SWR) bidirectional vortex-induced vibration wake oscillator model time-domain finite element method(TDFEM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部