Freshwater scarcity is a global issue of environmental concern that threatens agricultural production and human health.In this study,we established freshwater stress indices(WSIs) for the nine water basins of Tanzania...Freshwater scarcity is a global issue of environmental concern that threatens agricultural production and human health.In this study,we established freshwater stress indices(WSIs) for the nine water basins of Tanzania by using the quantity of freshwater available and various water uses.The relationship between water availability and different water uses,including environmental water requirements,was analyzed,with uncertainty and sensitivity analysis performed by a Monte Carlo simulation technique.Extreme WSI values close to 1.00 were obtained in the Rufiji,Pangani,and Wami-ruvu basins,Internal drainage,and Lake Rukwa,while low and moderate WSI values ranging from 0.03 to 0.84 were found in Lake Victoria and the Ruvuma,Tanganyika,and Nyasa basins.This study adds further knowledge on the level of freshwater scarcity,relationships between water availability and different water uses,and suggests policy options to reduce freshwater scarcity at the basin level for sustainable water supply.展开更多
Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic...Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic compositions of modern precipitation. Oxygen and hydrogen isotopes, with averages of-7.8‰ and -53.0‰ for δ^18O and δD, respectively, are depleted in winter and rich in spring, and gradually decrease in summer and fall, illustrating that the seasonal effect is considerable. They also show that the isotopic difference between south portion and north portion of the Ordos Basin are not obvious, and the isotope in the middle portion is normally depleted. The isotope compositions of 32 samples collected from shallow groundwater (less than a depth of 150 m) in desert plateau range from -10.6‰ to -6.0‰ with an average of-8.4‰ for δ^18O and from -85‰ to -46‰ with an average of-63‰ for δD. Most of them are identical with modern precipitation. The isotope compositions of 22 middle and deep groundwaters (greater than a depth of 275 m) fall in ranges from -11.6‰ to -8.8‰ with an average of -10.2‰ for δ^18O and from -89‰ to -63‰ with an average of -76‰ for δD. The average values are significantly less than those of modern precipitation, illustrating that the middle and deep groundwaters were recharged at comparatively lower air temperatures. Primary analysis of ^14C shows that the recharge of the middle and deep groundwaters started at late Pleistocene. The isotopes of 13 lake water samples collected from eight lakes define a local evaporation trend, with a relatively flat slope of 3.77, and show that the lake waters were mainly fed by modern precipitation and shallow groundwater.展开更多
It will show the feasibility of a Wireless Sensor Network (WSN) devoted to monitoring water basin, river, lake, and sea both on the surface and in depth. The swarm of floating probes can be programmed to periodically ...It will show the feasibility of a Wireless Sensor Network (WSN) devoted to monitoring water basin, river, lake, and sea both on the surface and in depth. The swarm of floating probes can be programmed to periodically sink some tens of meters below the surface, collecting data, characterizing water properties and then coming to the surface again. The life span of the probes may be assured by an on-board power supply or through batteries recharged by solar cells. The basic idea of the WSN is reported together with a detailed analysis of the operational constraints, the energy requirements, and the electronic and mechanical discussion.展开更多
Hydrological models are very useful tools for evaluating water resources, and the hydroclimatic hazards associated with the water cycle. However, their calibration and validation require the use of performance criteri...Hydrological models are very useful tools for evaluating water resources, and the hydroclimatic hazards associated with the water cycle. However, their calibration and validation require the use of performance criteria which choice is not straightforward. This paper aims to evaluate the influence of the performance criteria on water balance components and water extremes using two global rainfall-runoff models (HBV and GR4J) over the Ouémé watershed at the Bonou and Savè outlets. Three (3) Efficacy criteria (Nash, coefficient of determination, and KGE) were considered for calibration and validation. The results show that the Nash criterion provides a good assessment of the simulation of the different parts of the hydrograph. KGE is better for simulating peak flows and water balance elements than other efficiency criteria. This study could serve as a basis for the choice of performance criteria in hydrological modelling.展开更多
Having studied the biomarker composition and maturity of dissolved hydrocarbons from Ordovician formation waters, the authors presented molecular geochemical evidence for the controversial origin of natural gases in c...Having studied the biomarker composition and maturity of dissolved hydrocarbons from Ordovician formation waters, the authors presented molecular geochemical evidence for the controversial origin of natural gases in central Ordos Basin.The dissolved hydrocarbons in Well Shan 12 and Well Shan 78 are relatively high in abundance of tricylic terpane, pregnane series and dibenzothiophene series and low in Pr/Ph and hopane/sterane ratios, indicating the source input of marine carbonates. In contrast, the dissolved hydrocarbons in Well Shan 81 are free from tricyclic terpane and pregnane series, with trace dibenzothiophene series and high Pr/Ph and higher hopane/sterane ratios, which are the typical features of terrestrial organic matter. Furthermore, Well Shan 37 and Well Shan 34 are between the two situations, having a mixed source of marine carbonate and terrestrial organic matter. The maturity of biomarkers also supports the above suggestions. These results are consistent with the geological background and source rock distribution in this region.展开更多
The study aims to identify a suitable site for open and bore well in a farmhouseusing ground magnetic survey in south India.It also aims to define depth to granitoid and structural elements which traverse the selected...The study aims to identify a suitable site for open and bore well in a farmhouseusing ground magnetic survey in south India.It also aims to define depth to granitoid and structural elements which traverse the selected area.Magnetic data(n=84)measured,processed and interpreted as qualitative and quantitatively.The results of total magnetic intensities indicate that the area is composed of linear magnetic lows trending NE-SW direction and circular to semi-circular causative bodies.The magnetic values ranged from-137 nT to 2345 nT with a mean of 465 nT.Reduction to equator shows significant shifting of causative bodies in the southern and northern directions.Analytical signal map shows exact boundary of granitic bodies.Cosine directional filter has brought out structural element trending NE-SW direction.Results of individual profile brought to light structurally weak zone between 90 m and 100 m in all the profile lines.Sudden decrease of magnetic values from 2042 nT to 126 nT noticed in profile line 6 between 20 m and 30 m indicates fault occurrence.Magnetic breaks obtained from these maps were visualized,interpreted and identified two suitable sites for open and bore well.Radially averaged power spectrum estimates depth of shallow and deep sources in 5 m and 50 m,respectively.Euler method has also been applied to estimate depth of granitoid and structural elements using structural indexes 0,1,2,and 3 and found depth ranges from<10 m to>90 m.Study indicates magnetic method is one of the geophysical methods suitable for groundwater exploration and site selection for open and borewells.展开更多
The warming of the Arctic Intermediate Water (AIW) is studied based on the analyses of hydro- graphic observations in the Canada Basin of the Arctic Ocean during 1985-2006. It is shown that how the anomalously warm ...The warming of the Arctic Intermediate Water (AIW) is studied based on the analyses of hydro- graphic observations in the Canada Basin of the Arctic Ocean during 1985-2006. It is shown that how the anomalously warm AIW spreads in the Canada Basin during the observation time through the analysis of the AIW temperature spatial distribution in different periods. The results indicate that by 2006, the entire Canada Basin has almost been covered by the warming AIW. In order to study interannual variability of the AIW in the Canada Basin, the Canada Basin is divided into five regions according to the bottom topography. From the interannual variation of AIW temperature in each region, it is shown that a cooling period follows after the warming event in upstream regions. At the Chukchi Abyssal Plain and Chukchi Plateau, upstream of the Arctic Circumpolar Boundary Current (ACBC) in the Canada Basin, the AIW temperature reached maximum and then started to fall respectively in 2000 and 2002. However, the AIW in the Canada Abyssal Plain and Beaufort Sea continues to warm monotonically until the year 2006. Furthermore, it is revealed that there is convergence of the AIW depth in the five different regions of the Canada Basin when the AIW warming occurs during observation time. The difference of AIW depth between the five regions of the Canada Basin is getting smaller and smaller, all approaching 410 m in recent years. The results show that depth convergence is related to the variation of AIW potential density in the Canada Basin.展开更多
A combination of 5180 and salinity data was employed to explore the freshwater balance in the Canada Basin in summer 2008. The Arctic river water and Pacific river water were quantitatively distinguished by using diff...A combination of 5180 and salinity data was employed to explore the freshwater balance in the Canada Basin in summer 2008. The Arctic river water and Pacific river water were quantitatively distinguished by using different saline end-members. The fractions of total river water, including the Arctic and Pacific river water, were high in the upper 50 m and decreased with depth as well as increasing latitude. In contrast, the fraction of Pacific river water increased gradually with depth but decreased toward north. The inventory of total river water in the Canada Basin was higher than other arctic seas, indicating that Canada Basin was a main storage region for river water in the Arctic Ocean. The fraction of Arctic river water was higher than Pacific river water in the upper 50 m while the opposite was true below 50 m. As a result, the inventories of Pacific river water were higher than those of Arctic river water, demonstrating that the Pacific inflow through the Bering Strait is the main source of freshwater in the Canada Basin. Both the river water and sea-ice melted water in the permanent ice zone were more abundant than those in the region with sea-ice just melted. The fractions of total river water, Arctic river water, Pacific river water increased northward to the north of 82°N, indicating an additional source of river water in the permanent ice zone of the northern Canada Basin. A possible reason for the extra river water in the permanent ice zone is the lateral advection of shelf waters by the Trans-Polar Drift. The penetration depth of sea-ice melted waters was less than 30 m in the southern Canada Basin, while it extended to 125 m in the northern Canada Basin. The inventory of sea- ice melted water suggested that sea-ice melted waters were also accumulated in the permanent ice zone, attributing to the trap of earlier melted waters in the permanent ice zone via the Beaufort Gyre.展开更多
The Sugan Lake Basin is located in the inland arid region of northwestern China,in which groundwater is of great significance to human and ecology.Therefore,it is necessary to understand the chemical characteristics a...The Sugan Lake Basin is located in the inland arid region of northwestern China,in which groundwater is of great significance to human and ecology.Therefore,it is necessary to understand the chemical characteristics and quality of groundwater in the basin.Based on samples collected from 35 groundwater wells in Sugan Lake Basin,the spatial distribution characteristics of groundwater chemistry,main hydrogeochemical processes and groundwater quality have been discussed in this paper by using the multivariate statistics and hydrochemistry analysis methods.The results showed that the groundwater is weakly alkaline,and its total dissolved solid(TDS)and total hardness(TH) are high,with the average values of 1244.03 mg/L and 492.10 mg/L,respectively.The types of groundwater are mainly HCO_3^--SO_4^(2-)-Ca^(2+)type in the runoff area and Cl^--SO_4^(2-)-Na^+type in the catchment area.Rock weathering and ion exchange are the main controlling factors of regional groundwater chemistry,followed by evaporative crystallization,and human activities have less impact on groundwater.The spatial difference of groundwater quality is obvious,the water quality of the catchment area is not suitable for drinking,and the suitability for plant growth is also poor.The groundwater in the runoff area can be used for drinking,but the hardness is slightly higher,which is more suitable for ecological purpose.展开更多
The fractions of river runoff and sea-ice melted water in the Canada Basin in summer 2003 were determined by the salinity-δ18O system. The fraction of river runoff (fR) was high in the upper 50 m of the water colum...The fractions of river runoff and sea-ice melted water in the Canada Basin in summer 2003 were determined by the salinity-δ18O system. The fraction of river runoff (fR) was high in the upper 50 m of the water column and decreased with depth and latitude. The signals of the river runoffwere confined to water depths above 200 m. The total amount of river runoff in the Canada Basin was higher than that in other arctic seas, indicating that the Canada Basin is a main storage region for river runoff. The penetration depth of the sea-ice melted water was less than 50 m to the south of 78°N, while it was about 150 m to the north of 78°N. The total amount of sea-ice melted water was much higher to the north of 78°N than to the south of 78°N, indicating the sea-ice melted waters accumulated on the ice edge. The abundant sea-ice melted water on the ice edge was attributed to the earlier melted water in the southern Canada Basin and transported by the Beaufort Gyre or the reinforced melting of sea ice by solar radiation in the polynya.展开更多
The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage var...The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage variations in the Poyang Lake Basin are recovered from the GRACE gravity data from January 2003 to March 2014 and compared with the Global Land Data Assimilation System(GLDAS) hydrological models and satellite altimetry. Furthermore, the impact of soil moisture content from GLDAS and rainfall from the Tropical Rainfall Measuring Mission(TRMM) on TWS variations are investigated. Our results indicate that the TWS variations from GRACE, GLDAS and satellite altimetry have a general consistency. The TWS trends in the Poyang Lake Basin determined from GRACE, GLDAS and satellite altimetry are increasing at 0.0141 km^3/a, 0.0328 km^3/a and 0.0238 km^3/a,respectively during the investigated time period. The TWS is governed mainly by the soil moisture content and dominated primarily by the precipitation but also modulated by the flood season of the Yangtze River as well as the lake and river exchange water.展开更多
In order to elucidate the origin and migration of basinal brines in the Bachu Bulge, Tarim Basin, we have carried out analyses on chemical composition, and boron, hydrogen and oxygen isotopes of formation waters toget...In order to elucidate the origin and migration of basinal brines in the Bachu Bulge, Tarim Basin, we have carried out analyses on chemical composition, and boron, hydrogen and oxygen isotopes of formation waters together with the XRD of clay minerals from the Paleozoic strata. The waters show Ca, B, Li and Sr enrichment and SO4 depletion in the Carboniferous and Ordovician and K enrichment in part of the Ordovician relative to seawater. The relationship between δD and δ^18O shows that all the data of the waters decline towards the Global Meteoric Water Line with the intersection of them close to the present-day local meteoric water, suggesting that modern meteoric water has mixed with evaporated seawater. The ^87Sr/^86Sr ratios range from 0.7090 to 0.7011, significantly higher than those of the contemporary seawater. The δ^11B values range from +19.7 to +32.3‰, showing a decrease with the depth and B concentrations. The results suggest that isotopically distinct B and Sr were derived from external sources. However, since the percentages of illite are shown to increase with depth among clay minerals in the study area, i.e., illite is due to precipitation rather than leaching during deeper burial, it is unlikely for illite to have contributed a significant amount of B to the waters. Thus, B with low δ^11B values is interpreted to have been added mainly from thermal degradation of kerogen or the basalts in the Cambrian and Lower Ordovician.展开更多
The general trend of three elements (precipitation, runoff and evaporation) of the water balance of the Changjiang River Basin is discussed from the regional distribution of the mean annual values of view, i.e. isogra...The general trend of three elements (precipitation, runoff and evaporation) of the water balance of the Changjiang River Basin is discussed from the regional distribution of the mean annual values of view, i.e. isogram. The distribution of precipitation is non-uniform. The distribution of runoff mainly supplied from precipitation is more uniform than that of precipitation. The distribution of the evaporation from land is much more uniform than that of precipitation and runoff. Time distribution of these three elements shows the characteristics of comparatively distinct yearly variation and few variation between years. The relationship between precipitation and runoff, and between precipitation and evaporation in the humid region in the Changjiang River is analyzed. The slopes of their straight line correlation are nearly equal. The internal relationship between variables should be paid attention to, otherwise, a pseudo correlation may be resulted in. The paper provides the method of quantitative展开更多
The Senegal River Basin (SRB) is a shared watershed in West Africa which includes regions (the upper basin, valley, and delta), characterized by distinct environmental conditions. An important feature of the Seneg...The Senegal River Basin (SRB) is a shared watershed in West Africa which includes regions (the upper basin, valley, and delta), characterized by distinct environmental conditions. An important feature of the Senegal River flow volume historically was its in- ter-annual irregularity, which caused a major water resource constrain. This situation has been accentuated during the long-term drought (1969-1984) in the Sahel zone which highlights the vulnerability of food-producing systems to climate change and variability. SRB is undergoing fundamental environmental, hydrologic, and socioeconomic traxisitions and represents a good illustration of sensi- tivity to climatic variations and opportunities for adaptation. This paper aims to study water resources systems under stress from cfi- mate variability and change in the Senegal River Basin. The results show (1) through the compilation of available data, information and knowledge (sedimentological, climatical, geological, environmental, archeological, etc.), the chronological consequences of cli- mate change during the past millennium in West Africa, and also (2) an analysis of the recent impacts and vulnerability to climate change in the SRB and finally (3) the adaptation strategies in the SRB in order to identify and resolve problems associated with this water scarcity and to address the potential for guaranteed agricultural production in this narrow geographic area.展开更多
Time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to study terrestrial water storage (TWS) changes over the Pearl River Basin (PRB) for the period 200...Time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to study terrestrial water storage (TWS) changes over the Pearl River Basin (PRB) for the period 2003-Nov. 2014. TWS estimates from GRACE generally show good agreement with those from two hydrological models GLDAS and WGHM. But they show different capability of detecting significant TWS changes over the PRB. Among them, WGHM is likely to underestimate the seasonal variability of TWS, while GRACE detects long- term water depletions over the upper PRB as was done by hydrological models, and observes significant water increases around the Longtan Reservoir (LTR) due to water impoundment. The heavy drought in 2011 caused by the persistent precipitation deficit has resulted in extreme low surface runoff and water level of the LTR. Moreover, large variability of summer and autumn precipitation may easily trigger floods and droughts in the rainy season in the PRB, especially for summer, as a high correlation of 0.89 was found between precipitation and surface runoff. Generally, the PRB TWS was negatively correlated with El Nifio-Southern Oscillation (ENSO) events. However, the modulation of the Pacific Decadal Oscillation (PDO) may impact this relationship, and the significant TWS anomaly was likely to occur in the peak of PDO phase as they agree well in both of the magnitude and timing of peaks. This indicates that GRACE-based TWS could be a valuable parameter for studying climatic in- fluences in the PRB.展开更多
The paper emphasized the relationship between environment and water taking ecological demand water (EWD) in the Qaidam Basin─an inner basin in northwestern China, as a key issue to discuss based on landscape umpping....The paper emphasized the relationship between environment and water taking ecological demand water (EWD) in the Qaidam Basin─an inner basin in northwestern China, as a key issue to discuss based on landscape umpping. First of all. the spatial heterogeneity of ecosystem can be reflected well by landscape pattern; secondly, landscape patterns adjust closely with environmental changes; finally, water condition is the key ecological factor for landscape pattern in the arid region.The landsat TM image of 1:100,000 on September 22, 1996 were calibrated with topographical map of the same scale, and then landscape patterns were interpreted and mapped. As a result the Qaidam Basin could be divided into 14 main types, including 67 subtypes. Concerning the characteristics of the EWD of each sub-type, the EWD in the whole basin could be estimated according to the following formula:V= (E - P ) * S = r (KEo - P ) * S Where, V is the ecological demand for Water (m3), E is the evaporation potential on terrestrial surface (m). P is the precipitation in landscape unit (m), S is the area of landscape unit (m2), Eo is the evaporation potential on water surface (m), K is the evaporation coefficient, and r is the coverage.According to the results, the ecological demand for water of desert vegetation is about 9,65×108m3, while it is about 24.48×108m3 for the lake in the inner basin. Therefore, the total EWD occupies approximately 65.7% of the total water resources in the basin. In conclusion, the quantitative method based on landscape ecological mapping is feasible, which attentively transfers the 'point'information to the 'area'. However, the preliminary results are expccted to improve by further field delta.展开更多
Turpan Basin is a unique geographic region in China. The topography of the Basin is closed and the climate is extremely dry. The shortage of water resource has been restricting the existence and development of the oas...Turpan Basin is a unique geographic region in China. The topography of the Basin is closed and the climate is extremely dry. The shortage of water resource has been restricting the existence and development of the oasis in Turpan Basin. This paper briefly analyzes the characteristics of the basin's water resources, and expounds the processes of their utilization and regional development. It points out that the exploration of water resource is close to the limit and the utilization of water resource is unreasonable. So it is nonrealistic to follow the traditional exploration pattern. According to the transforming pattern between runoff and groundwater in the basin, an overall planning of the utilization of the water resource is advanced. Based on the relation between the maintenance of Aydingkol Lake and the existence of the oasis, the amount of water resource used must be controlled in order to guarantee the existence of the lake. The orientation of the utilization of water resource is to improve the management level of water resource, and to apply advanced water saving technology. Building up an economic system which can effectively use water resource is the orientation of the oasis sustainable economic development.展开更多
The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to m...The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to meet the demands from industries and natural ecosystems. Policies which integrate the supply and demand are needed to address the water stress issues. An object-oriented system dynamics model was developed to capture the interrelationships between water availability and increasing water demands from the growth of industries, agri- cultural production and the population through modeling the decision-making process of the water exploration ex- plicitly, in which water stress is used as a major indicator. The model is composed of four sectors: 1 ) natural surface and groundwater resources; 2) water demand; 3) the water exploitation process, including the decision to build reservoirs, canals and pumps; 4) water stress to which political and social systems respond through increasing the supply, limiting the growth or improving the water use efficiency. The model was calibrated using data from 1949 to 2009 for population growth, irrigated land area, industry output, perceived water stress, groundwater resources availability and the drying-out process of Manas River; and simulations were carried out from 2010 to 2050 on an annual time step. The comparison of results from calibration and observation showed that the model corresponds to observed behavior, and the simulated values fit the observed data and trends accurately. Sensitivity analysis showed that the model is robust to changes in model parameters related to population growth, land reclamation, pumping capacity and capital contribution to industry development capacity. Six scenarios were designed to inves- tigate the effectiveness of policy options in the area of reservoir relocation, urban water recycling, water demand control and groundwater pumping control. The simulation runs demonstrated that the technical solutions for im- proving water availability and water use efficiency are not sustainable. Acknowledging the carrying capacity of water resources and eliminating a growth-orientated value system are crucial for the sustainability of the Manas River Basin.展开更多
The purpose of this paper is to present a brief concept of the ecological and environmental water demand of lake. The present situation and affecting factors of lake ecological system in the Haihe\|Luanhe Basin of Nor...The purpose of this paper is to present a brief concept of the ecological and environmental water demand of lake. The present situation and affecting factors of lake ecological system in the Haihe\|Luanhe Basin of North China was analyzed. The calculating method of the ecological and environmental water demand of the lake basis on the water body and the calculating method of the ecological and environmental water demand of the lake basis on the aquatic ecosystem, wetland and vegetation were compared and discussed. As the examples of Baiyangdian Lake and Beidagang Lake in Haihe\|Luanhe river basin, the ecological and environmental water demand of the two lakes was calculated to be 27×10\+8m\+3. It is 6.75 times to the water demand according to the calculating method of the ecological and environmental water demand of the lake basis on the water body. The research result indicated: (1) The calculating methods of the ecological and environmental water demand of the lake basis on the aquatic ecosystem should be better than only basis on the water body of lake. (2) The data, such as area of the vegetation kind around and in the lake, the vegetation coefficient, the evaporating amount of the vegetation and the vegetation water demand itself around and in the lake are lack and urgent need. Some suggestions for controlling and regulating the water resource of the lake in North China were proposed.展开更多
This study assesses the potential impacts of climate change on water resources and the effect of statistical bias correction on the projected climate change signal in hydrological variables over the Upper Senegal Basi...This study assesses the potential impacts of climate change on water resources and the effect of statistical bias correction on the projected climate change signal in hydrological variables over the Upper Senegal Basin (West Africa). Original and bias corrected climate data from the regional climate model REMO were used as input for the Max Planck Institute for Meteorology-Hydrology Model (MPI-HM) to simulate river discharge, runoff, soil moisture and evapotranspiration. The results during the historical period (1971-2000) show that using the bias corrected input yields a better representation of the mean river flow regimes and the 10th and 90th percentiles of river flow at the outlet of the Upper Senegal Basin (USB). The Nash-Sutcliffe efficiency coefficient is 0.92 using the bias corrected input, which demonstrates the ability of the model in simulating river flow. The percent bias of 3.88% indicates a slight overestimation of the river flow by the model using the corrected input. The evaluation demonstrates the ability of the bias correction and its necessity for the simulation of historical river regimes. As for the potential changes of hydrological variables by the end of 21st century (2071-2100), a general decrease of river discharge, runoff, actual evapotranspiration, soil moisture is found under two Representative Concentration Pathways (RCP4.5 and RCP8.5) in all simulations. The decrease is higher under RCP8.5 with uncorrected data in the northern basin. However, there are some localized increases in some parts of the basin (e.g. Guinean Highlands). The projected climate change signal of these above variables has the same spatial pattern and tendency for the uncorrected and bias corrected data although the magnitude of the corrected signal is somewhat lower than that uncorrected. Furthermore, the available water resources are projected to substantially decrease by more than -50% in the majority of the basin (especially in driest and hottest northern basin with RCP8.5 scenario) for all data, except the Guinean highlands where no change is projected. The comparison of simulations driven with uncorrected and bias corrected input reveals that the bias correction does not substantially change the signal of future changes of hydrological variables for both scenarios over the USB even though there are differences in magnitude and deviations in some parts of the basin.展开更多
基金supported by the Key Laboratory of Industrial Ecology and Environmental Engineering,China Ministry of Educationthe Faculty of Science and Technology,Mzumbe University,Tanzania
文摘Freshwater scarcity is a global issue of environmental concern that threatens agricultural production and human health.In this study,we established freshwater stress indices(WSIs) for the nine water basins of Tanzania by using the quantity of freshwater available and various water uses.The relationship between water availability and different water uses,including environmental water requirements,was analyzed,with uncertainty and sensitivity analysis performed by a Monte Carlo simulation technique.Extreme WSI values close to 1.00 were obtained in the Rufiji,Pangani,and Wami-ruvu basins,Internal drainage,and Lake Rukwa,while low and moderate WSI values ranging from 0.03 to 0.84 were found in Lake Victoria and the Ruvuma,Tanganyika,and Nyasa basins.This study adds further knowledge on the level of freshwater scarcity,relationships between water availability and different water uses,and suggests policy options to reduce freshwater scarcity at the basin level for sustainable water supply.
基金supported by the China Geological Survey and International Atomic Energy Agency.
文摘Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic compositions of modern precipitation. Oxygen and hydrogen isotopes, with averages of-7.8‰ and -53.0‰ for δ^18O and δD, respectively, are depleted in winter and rich in spring, and gradually decrease in summer and fall, illustrating that the seasonal effect is considerable. They also show that the isotopic difference between south portion and north portion of the Ordos Basin are not obvious, and the isotope in the middle portion is normally depleted. The isotope compositions of 32 samples collected from shallow groundwater (less than a depth of 150 m) in desert plateau range from -10.6‰ to -6.0‰ with an average of-8.4‰ for δ^18O and from -85‰ to -46‰ with an average of-63‰ for δD. Most of them are identical with modern precipitation. The isotope compositions of 22 middle and deep groundwaters (greater than a depth of 275 m) fall in ranges from -11.6‰ to -8.8‰ with an average of -10.2‰ for δ^18O and from -89‰ to -63‰ with an average of -76‰ for δD. The average values are significantly less than those of modern precipitation, illustrating that the middle and deep groundwaters were recharged at comparatively lower air temperatures. Primary analysis of ^14C shows that the recharge of the middle and deep groundwaters started at late Pleistocene. The isotopes of 13 lake water samples collected from eight lakes define a local evaporation trend, with a relatively flat slope of 3.77, and show that the lake waters were mainly fed by modern precipitation and shallow groundwater.
文摘It will show the feasibility of a Wireless Sensor Network (WSN) devoted to monitoring water basin, river, lake, and sea both on the surface and in depth. The swarm of floating probes can be programmed to periodically sink some tens of meters below the surface, collecting data, characterizing water properties and then coming to the surface again. The life span of the probes may be assured by an on-board power supply or through batteries recharged by solar cells. The basic idea of the WSN is reported together with a detailed analysis of the operational constraints, the energy requirements, and the electronic and mechanical discussion.
文摘Hydrological models are very useful tools for evaluating water resources, and the hydroclimatic hazards associated with the water cycle. However, their calibration and validation require the use of performance criteria which choice is not straightforward. This paper aims to evaluate the influence of the performance criteria on water balance components and water extremes using two global rainfall-runoff models (HBV and GR4J) over the Ouémé watershed at the Bonou and Savè outlets. Three (3) Efficacy criteria (Nash, coefficient of determination, and KGE) were considered for calibration and validation. The results show that the Nash criterion provides a good assessment of the simulation of the different parts of the hydrograph. KGE is better for simulating peak flows and water balance elements than other efficiency criteria. This study could serve as a basis for the choice of performance criteria in hydrological modelling.
文摘Having studied the biomarker composition and maturity of dissolved hydrocarbons from Ordovician formation waters, the authors presented molecular geochemical evidence for the controversial origin of natural gases in central Ordos Basin.The dissolved hydrocarbons in Well Shan 12 and Well Shan 78 are relatively high in abundance of tricylic terpane, pregnane series and dibenzothiophene series and low in Pr/Ph and hopane/sterane ratios, indicating the source input of marine carbonates. In contrast, the dissolved hydrocarbons in Well Shan 81 are free from tricyclic terpane and pregnane series, with trace dibenzothiophene series and high Pr/Ph and higher hopane/sterane ratios, which are the typical features of terrestrial organic matter. Furthermore, Well Shan 37 and Well Shan 34 are between the two situations, having a mixed source of marine carbonate and terrestrial organic matter. The maturity of biomarkers also supports the above suggestions. These results are consistent with the geological background and source rock distribution in this region.
基金“Hydrological geological survey in the Huangshui River basin”(No.DD20190331D)。
文摘The study aims to identify a suitable site for open and bore well in a farmhouseusing ground magnetic survey in south India.It also aims to define depth to granitoid and structural elements which traverse the selected area.Magnetic data(n=84)measured,processed and interpreted as qualitative and quantitatively.The results of total magnetic intensities indicate that the area is composed of linear magnetic lows trending NE-SW direction and circular to semi-circular causative bodies.The magnetic values ranged from-137 nT to 2345 nT with a mean of 465 nT.Reduction to equator shows significant shifting of causative bodies in the southern and northern directions.Analytical signal map shows exact boundary of granitic bodies.Cosine directional filter has brought out structural element trending NE-SW direction.Results of individual profile brought to light structurally weak zone between 90 m and 100 m in all the profile lines.Sudden decrease of magnetic values from 2042 nT to 126 nT noticed in profile line 6 between 20 m and 30 m indicates fault occurrence.Magnetic breaks obtained from these maps were visualized,interpreted and identified two suitable sites for open and bore well.Radially averaged power spectrum estimates depth of shallow and deep sources in 5 m and 50 m,respectively.Euler method has also been applied to estimate depth of granitoid and structural elements using structural indexes 0,1,2,and 3 and found depth ranges from<10 m to>90 m.Study indicates magnetic method is one of the geophysical methods suitable for groundwater exploration and site selection for open and borewells.
基金The National Natural Science Foundation of China under contract Nos 40631006 and 40876003the Polar Science Youth Innovational Foundation of China under contract No. 20080221the National Key Basic Research Program "973" of China under contract No. 2010CB950301
文摘The warming of the Arctic Intermediate Water (AIW) is studied based on the analyses of hydro- graphic observations in the Canada Basin of the Arctic Ocean during 1985-2006. It is shown that how the anomalously warm AIW spreads in the Canada Basin during the observation time through the analysis of the AIW temperature spatial distribution in different periods. The results indicate that by 2006, the entire Canada Basin has almost been covered by the warming AIW. In order to study interannual variability of the AIW in the Canada Basin, the Canada Basin is divided into five regions according to the bottom topography. From the interannual variation of AIW temperature in each region, it is shown that a cooling period follows after the warming event in upstream regions. At the Chukchi Abyssal Plain and Chukchi Plateau, upstream of the Arctic Circumpolar Boundary Current (ACBC) in the Canada Basin, the AIW temperature reached maximum and then started to fall respectively in 2000 and 2002. However, the AIW in the Canada Abyssal Plain and Beaufort Sea continues to warm monotonically until the year 2006. Furthermore, it is revealed that there is convergence of the AIW depth in the five different regions of the Canada Basin when the AIW warming occurs during observation time. The difference of AIW depth between the five regions of the Canada Basin is getting smaller and smaller, all approaching 410 m in recent years. The results show that depth convergence is related to the variation of AIW potential density in the Canada Basin.
基金The Chinese Polar Environment Comprehensive Investigation&Assessment Program under contract Nos CHINARE2017-03-04-03 and CHINARE2017-04-03-05the Natural Science Foundation of China under contract No.41125020
文摘A combination of 5180 and salinity data was employed to explore the freshwater balance in the Canada Basin in summer 2008. The Arctic river water and Pacific river water were quantitatively distinguished by using different saline end-members. The fractions of total river water, including the Arctic and Pacific river water, were high in the upper 50 m and decreased with depth as well as increasing latitude. In contrast, the fraction of Pacific river water increased gradually with depth but decreased toward north. The inventory of total river water in the Canada Basin was higher than other arctic seas, indicating that Canada Basin was a main storage region for river water in the Arctic Ocean. The fraction of Arctic river water was higher than Pacific river water in the upper 50 m while the opposite was true below 50 m. As a result, the inventories of Pacific river water were higher than those of Arctic river water, demonstrating that the Pacific inflow through the Bering Strait is the main source of freshwater in the Canada Basin. Both the river water and sea-ice melted water in the permanent ice zone were more abundant than those in the region with sea-ice just melted. The fractions of total river water, Arctic river water, Pacific river water increased northward to the north of 82°N, indicating an additional source of river water in the permanent ice zone of the northern Canada Basin. A possible reason for the extra river water in the permanent ice zone is the lateral advection of shelf waters by the Trans-Polar Drift. The penetration depth of sea-ice melted waters was less than 30 m in the southern Canada Basin, while it extended to 125 m in the northern Canada Basin. The inventory of sea- ice melted water suggested that sea-ice melted waters were also accumulated in the permanent ice zone, attributing to the trap of earlier melted waters in the permanent ice zone via the Beaufort Gyre.
基金financially supported by National Natural Science Foundation of China(41761047,41661005,41661084,41861009 and 41261104)National Natural Science Foundation innovation research group science foundation of China(41421061)Autonomous project of State Key Laboratory of Cryosphere Sciences(SKLCS-ZZ-2017)
文摘The Sugan Lake Basin is located in the inland arid region of northwestern China,in which groundwater is of great significance to human and ecology.Therefore,it is necessary to understand the chemical characteristics and quality of groundwater in the basin.Based on samples collected from 35 groundwater wells in Sugan Lake Basin,the spatial distribution characteristics of groundwater chemistry,main hydrogeochemical processes and groundwater quality have been discussed in this paper by using the multivariate statistics and hydrochemistry analysis methods.The results showed that the groundwater is weakly alkaline,and its total dissolved solid(TDS)and total hardness(TH) are high,with the average values of 1244.03 mg/L and 492.10 mg/L,respectively.The types of groundwater are mainly HCO_3^--SO_4^(2-)-Ca^(2+)type in the runoff area and Cl^--SO_4^(2-)-Na^+type in the catchment area.Rock weathering and ion exchange are the main controlling factors of regional groundwater chemistry,followed by evaporative crystallization,and human activities have less impact on groundwater.The spatial difference of groundwater quality is obvious,the water quality of the catchment area is not suitable for drinking,and the suitability for plant growth is also poor.The groundwater in the runoff area can be used for drinking,but the hardness is slightly higher,which is more suitable for ecological purpose.
基金The Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract No.CHINARE2014-03-04-03the National Natural Science Foundation of China under contract No.41125020+1 种基金a special scientific research project for public welfare supported by the State Oceanic Administration under contract No.201105022-4the 4th Chinese Arctic Research Program
文摘The fractions of river runoff and sea-ice melted water in the Canada Basin in summer 2003 were determined by the salinity-δ18O system. The fraction of river runoff (fR) was high in the upper 50 m of the water column and decreased with depth and latitude. The signals of the river runoffwere confined to water depths above 200 m. The total amount of river runoff in the Canada Basin was higher than that in other arctic seas, indicating that the Canada Basin is a main storage region for river runoff. The penetration depth of the sea-ice melted water was less than 50 m to the south of 78°N, while it was about 150 m to the north of 78°N. The total amount of sea-ice melted water was much higher to the north of 78°N than to the south of 78°N, indicating the sea-ice melted waters accumulated on the ice edge. The abundant sea-ice melted water on the ice edge was attributed to the earlier melted water in the southern Canada Basin and transported by the Beaufort Gyre or the reinforced melting of sea ice by solar radiation in the polynya.
基金supported by the National Natural Science Foundation of China(NSFC)Projects(11173050 and 11373059)
文摘The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage variations in the Poyang Lake Basin are recovered from the GRACE gravity data from January 2003 to March 2014 and compared with the Global Land Data Assimilation System(GLDAS) hydrological models and satellite altimetry. Furthermore, the impact of soil moisture content from GLDAS and rainfall from the Tropical Rainfall Measuring Mission(TRMM) on TWS variations are investigated. Our results indicate that the TWS variations from GRACE, GLDAS and satellite altimetry have a general consistency. The TWS trends in the Poyang Lake Basin determined from GRACE, GLDAS and satellite altimetry are increasing at 0.0141 km^3/a, 0.0328 km^3/a and 0.0238 km^3/a,respectively during the investigated time period. The TWS is governed mainly by the soil moisture content and dominated primarily by the precipitation but also modulated by the flood season of the Yangtze River as well as the lake and river exchange water.
基金supported by the National Natural Science Foundation of China(Grant Nos.40573034 and 40173023)China National Major Basic Development Program"973"(2003CB214605).
文摘In order to elucidate the origin and migration of basinal brines in the Bachu Bulge, Tarim Basin, we have carried out analyses on chemical composition, and boron, hydrogen and oxygen isotopes of formation waters together with the XRD of clay minerals from the Paleozoic strata. The waters show Ca, B, Li and Sr enrichment and SO4 depletion in the Carboniferous and Ordovician and K enrichment in part of the Ordovician relative to seawater. The relationship between δD and δ^18O shows that all the data of the waters decline towards the Global Meteoric Water Line with the intersection of them close to the present-day local meteoric water, suggesting that modern meteoric water has mixed with evaporated seawater. The ^87Sr/^86Sr ratios range from 0.7090 to 0.7011, significantly higher than those of the contemporary seawater. The δ^11B values range from +19.7 to +32.3‰, showing a decrease with the depth and B concentrations. The results suggest that isotopically distinct B and Sr were derived from external sources. However, since the percentages of illite are shown to increase with depth among clay minerals in the study area, i.e., illite is due to precipitation rather than leaching during deeper burial, it is unlikely for illite to have contributed a significant amount of B to the waters. Thus, B with low δ^11B values is interpreted to have been added mainly from thermal degradation of kerogen or the basalts in the Cambrian and Lower Ordovician.
文摘The general trend of three elements (precipitation, runoff and evaporation) of the water balance of the Changjiang River Basin is discussed from the regional distribution of the mean annual values of view, i.e. isogram. The distribution of precipitation is non-uniform. The distribution of runoff mainly supplied from precipitation is more uniform than that of precipitation. The distribution of the evaporation from land is much more uniform than that of precipitation and runoff. Time distribution of these three elements shows the characteristics of comparatively distinct yearly variation and few variation between years. The relationship between precipitation and runoff, and between precipitation and evaporation in the humid region in the Changjiang River is analyzed. The slopes of their straight line correlation are nearly equal. The internal relationship between variables should be paid attention to, otherwise, a pseudo correlation may be resulted in. The paper provides the method of quantitative
文摘The Senegal River Basin (SRB) is a shared watershed in West Africa which includes regions (the upper basin, valley, and delta), characterized by distinct environmental conditions. An important feature of the Senegal River flow volume historically was its in- ter-annual irregularity, which caused a major water resource constrain. This situation has been accentuated during the long-term drought (1969-1984) in the Sahel zone which highlights the vulnerability of food-producing systems to climate change and variability. SRB is undergoing fundamental environmental, hydrologic, and socioeconomic traxisitions and represents a good illustration of sensi- tivity to climatic variations and opportunities for adaptation. This paper aims to study water resources systems under stress from cfi- mate variability and change in the Senegal River Basin. The results show (1) through the compilation of available data, information and knowledge (sedimentological, climatical, geological, environmental, archeological, etc.), the chronological consequences of cli- mate change during the past millennium in West Africa, and also (2) an analysis of the recent impacts and vulnerability to climate change in the SRB and finally (3) the adaptation strategies in the SRB in order to identify and resolve problems associated with this water scarcity and to address the potential for guaranteed agricultural production in this narrow geographic area.
基金supported by the National Natural Science Foundation of China (41174020, 41131067)the Fundamental Research Funds for the Central Universities (2014214020203)+1 种基金the open fund of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education (14-02-011)the open fund of Guangxi Key Laboratory of Spatial Information and Geomatics (14-045-24-17)
文摘Time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to study terrestrial water storage (TWS) changes over the Pearl River Basin (PRB) for the period 2003-Nov. 2014. TWS estimates from GRACE generally show good agreement with those from two hydrological models GLDAS and WGHM. But they show different capability of detecting significant TWS changes over the PRB. Among them, WGHM is likely to underestimate the seasonal variability of TWS, while GRACE detects long- term water depletions over the upper PRB as was done by hydrological models, and observes significant water increases around the Longtan Reservoir (LTR) due to water impoundment. The heavy drought in 2011 caused by the persistent precipitation deficit has resulted in extreme low surface runoff and water level of the LTR. Moreover, large variability of summer and autumn precipitation may easily trigger floods and droughts in the rainy season in the PRB, especially for summer, as a high correlation of 0.89 was found between precipitation and surface runoff. Generally, the PRB TWS was negatively correlated with El Nifio-Southern Oscillation (ENSO) events. However, the modulation of the Pacific Decadal Oscillation (PDO) may impact this relationship, and the significant TWS anomaly was likely to occur in the peak of PDO phase as they agree well in both of the magnitude and timing of peaks. This indicates that GRACE-based TWS could be a valuable parameter for studying climatic in- fluences in the PRB.
文摘The paper emphasized the relationship between environment and water taking ecological demand water (EWD) in the Qaidam Basin─an inner basin in northwestern China, as a key issue to discuss based on landscape umpping. First of all. the spatial heterogeneity of ecosystem can be reflected well by landscape pattern; secondly, landscape patterns adjust closely with environmental changes; finally, water condition is the key ecological factor for landscape pattern in the arid region.The landsat TM image of 1:100,000 on September 22, 1996 were calibrated with topographical map of the same scale, and then landscape patterns were interpreted and mapped. As a result the Qaidam Basin could be divided into 14 main types, including 67 subtypes. Concerning the characteristics of the EWD of each sub-type, the EWD in the whole basin could be estimated according to the following formula:V= (E - P ) * S = r (KEo - P ) * S Where, V is the ecological demand for Water (m3), E is the evaporation potential on terrestrial surface (m). P is the precipitation in landscape unit (m), S is the area of landscape unit (m2), Eo is the evaporation potential on water surface (m), K is the evaporation coefficient, and r is the coverage.According to the results, the ecological demand for water of desert vegetation is about 9,65×108m3, while it is about 24.48×108m3 for the lake in the inner basin. Therefore, the total EWD occupies approximately 65.7% of the total water resources in the basin. In conclusion, the quantitative method based on landscape ecological mapping is feasible, which attentively transfers the 'point'information to the 'area'. However, the preliminary results are expccted to improve by further field delta.
文摘Turpan Basin is a unique geographic region in China. The topography of the Basin is closed and the climate is extremely dry. The shortage of water resource has been restricting the existence and development of the oasis in Turpan Basin. This paper briefly analyzes the characteristics of the basin's water resources, and expounds the processes of their utilization and regional development. It points out that the exploration of water resource is close to the limit and the utilization of water resource is unreasonable. So it is nonrealistic to follow the traditional exploration pattern. According to the transforming pattern between runoff and groundwater in the basin, an overall planning of the utilization of the water resource is advanced. Based on the relation between the maintenance of Aydingkol Lake and the existence of the oasis, the amount of water resource used must be controlled in order to guarantee the existence of the lake. The orientation of the utilization of water resource is to improve the management level of water resource, and to apply advanced water saving technology. Building up an economic system which can effectively use water resource is the orientation of the oasis sustainable economic development.
基金supported by the National Basic Research Program of China (2010CB951004)a project of Xinjiang Key Lab of Water Cycle and Utilization in Arid Zone,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences (XJYS0907-2009-02)
文摘The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to meet the demands from industries and natural ecosystems. Policies which integrate the supply and demand are needed to address the water stress issues. An object-oriented system dynamics model was developed to capture the interrelationships between water availability and increasing water demands from the growth of industries, agri- cultural production and the population through modeling the decision-making process of the water exploration ex- plicitly, in which water stress is used as a major indicator. The model is composed of four sectors: 1 ) natural surface and groundwater resources; 2) water demand; 3) the water exploitation process, including the decision to build reservoirs, canals and pumps; 4) water stress to which political and social systems respond through increasing the supply, limiting the growth or improving the water use efficiency. The model was calibrated using data from 1949 to 2009 for population growth, irrigated land area, industry output, perceived water stress, groundwater resources availability and the drying-out process of Manas River; and simulations were carried out from 2010 to 2050 on an annual time step. The comparison of results from calibration and observation showed that the model corresponds to observed behavior, and the simulated values fit the observed data and trends accurately. Sensitivity analysis showed that the model is robust to changes in model parameters related to population growth, land reclamation, pumping capacity and capital contribution to industry development capacity. Six scenarios were designed to inves- tigate the effectiveness of policy options in the area of reservoir relocation, urban water recycling, water demand control and groundwater pumping control. The simulation runs demonstrated that the technical solutions for im- proving water availability and water use efficiency are not sustainable. Acknowledging the carrying capacity of water resources and eliminating a growth-orientated value system are crucial for the sustainability of the Manas River Basin.
文摘The purpose of this paper is to present a brief concept of the ecological and environmental water demand of lake. The present situation and affecting factors of lake ecological system in the Haihe\|Luanhe Basin of North China was analyzed. The calculating method of the ecological and environmental water demand of the lake basis on the water body and the calculating method of the ecological and environmental water demand of the lake basis on the aquatic ecosystem, wetland and vegetation were compared and discussed. As the examples of Baiyangdian Lake and Beidagang Lake in Haihe\|Luanhe river basin, the ecological and environmental water demand of the two lakes was calculated to be 27×10\+8m\+3. It is 6.75 times to the water demand according to the calculating method of the ecological and environmental water demand of the lake basis on the water body. The research result indicated: (1) The calculating methods of the ecological and environmental water demand of the lake basis on the aquatic ecosystem should be better than only basis on the water body of lake. (2) The data, such as area of the vegetation kind around and in the lake, the vegetation coefficient, the evaporating amount of the vegetation and the vegetation water demand itself around and in the lake are lack and urgent need. Some suggestions for controlling and regulating the water resource of the lake in North China were proposed.
文摘This study assesses the potential impacts of climate change on water resources and the effect of statistical bias correction on the projected climate change signal in hydrological variables over the Upper Senegal Basin (West Africa). Original and bias corrected climate data from the regional climate model REMO were used as input for the Max Planck Institute for Meteorology-Hydrology Model (MPI-HM) to simulate river discharge, runoff, soil moisture and evapotranspiration. The results during the historical period (1971-2000) show that using the bias corrected input yields a better representation of the mean river flow regimes and the 10th and 90th percentiles of river flow at the outlet of the Upper Senegal Basin (USB). The Nash-Sutcliffe efficiency coefficient is 0.92 using the bias corrected input, which demonstrates the ability of the model in simulating river flow. The percent bias of 3.88% indicates a slight overestimation of the river flow by the model using the corrected input. The evaluation demonstrates the ability of the bias correction and its necessity for the simulation of historical river regimes. As for the potential changes of hydrological variables by the end of 21st century (2071-2100), a general decrease of river discharge, runoff, actual evapotranspiration, soil moisture is found under two Representative Concentration Pathways (RCP4.5 and RCP8.5) in all simulations. The decrease is higher under RCP8.5 with uncorrected data in the northern basin. However, there are some localized increases in some parts of the basin (e.g. Guinean Highlands). The projected climate change signal of these above variables has the same spatial pattern and tendency for the uncorrected and bias corrected data although the magnitude of the corrected signal is somewhat lower than that uncorrected. Furthermore, the available water resources are projected to substantially decrease by more than -50% in the majority of the basin (especially in driest and hottest northern basin with RCP8.5 scenario) for all data, except the Guinean highlands where no change is projected. The comparison of simulations driven with uncorrected and bias corrected input reveals that the bias correction does not substantially change the signal of future changes of hydrological variables for both scenarios over the USB even though there are differences in magnitude and deviations in some parts of the basin.