The seasonal development of the phytoplankton, phytobenthos, zooplankton, and microbenthos in a high eutrophised intravilan water reservoir was studied. Finally, 25 genera with 44 species of Cyanobacteria/Cyanophytes ...The seasonal development of the phytoplankton, phytobenthos, zooplankton, and microbenthos in a high eutrophised intravilan water reservoir was studied. Finally, 25 genera with 44 species of Cyanobacteria/Cyanophytes and 67 genera with 102 species as well as infraspecific taxa of different groups of microscopic algae were identified. The phytoplankton in most parts of the water basin was strongly dominated by green colonial alga Golenkiniopsis longispina. From October until December a cyanophyte species Aphanocapsa delicatissima with typical cell dimensions of picoplankton/ was found in large amounts/predominated. As early as spring, a plankton bloom in all its components was observed. At that time, also a high concentration of total phosphorus was recorded, which in the second half of April dropped rapidly. The concentration of chlorophyll-a increased from 162.7 μg/L in March to 2322 μg/L in September. Massive occurrence of benthic protozoa in the plankton, as a consequence of anoxia, has been observed. Further, the detritivore and omnivore ciliate species Coleps hirtus dominated in the microbenthos. Altogether 74 of ciliate taxa were detected. Their abundance and biomass reached peak in April, but these steadily decreased from May until the end of the year. Extreme values of zooplankton density (54,016 ind/L) were recorded in spring followed by a sudden fall in summer and autumn. The contribution of rotifers (Brachionus spp., Filinia longiseta) in the total zooplankton density and biomass was 98%. Relatively a low species richness of crustaceans (4 Cladocera and 3 Copepoda) was observed.展开更多
A hypothesis was formulated to explain the possible cause of water bloom occurring inLake Qiandaohu in 1998 and 1999. We tested this hypothesis with a 3-year in situ fieldstudy. The results showed that the reconstruct...A hypothesis was formulated to explain the possible cause of water bloom occurring inLake Qiandaohu in 1998 and 1999. We tested this hypothesis with a 3-year in situ fieldstudy. The results showed that the reconstruction of the silver carp and bighead carppopulations, without other measures of nutrient control, could prevent the recurrence ofalgal bloom in the lake successfully. This result could serve as an evidence to thesuggested hypothesis for water blooming: The drastic decline of the filter feedingsilver carp and bighead carp in the lake, rather than the nutrients overloading, wasmainly responsible for the algal bloom. According to this study, we suggest a generalhypothesis to the ecological mechanism of algal blooming: The insufficient grazing fromthe phytoplanktivores (top-down control) to the algal reproduction from nutrientsavailable (bottom-up effect) is the radical cause of water blooming, while conventionally,it is primarily attributed to the enrichment of nutrients. Besides, this study showedthat stocking silver carp and bighead carp in lakes could improve water quality, whichis also contrary to the conventional opinion. Finally, this study provided a cost-effective and practicable approach to control water bloom for the large-sized reservoirs,especially when water blooming occurred locally. A net-enclosed aquaculture zone (NEAZ)can be established in the nutrients-exposure area of the waters and stocked with the twocarps, water bloom could be controlled and prevented.展开更多
Siminghu Reservoir already transformed into " the algae muddy" type,and had nonclassical bio-manipulation practice using Hypophthalmichthys molitix and Aristichthys nobilis to feed the plankton,control water bloom a...Siminghu Reservoir already transformed into " the algae muddy" type,and had nonclassical bio-manipulation practice using Hypophthalmichthys molitix and Aristichthys nobilis to feed the plankton,control water bloom and transform the organic matters into fish product. Through the analysis of the limited data,we think that water bloom of Siminghu Reservoir can be prevented to some extent by breeding H. molitix and A. nobilis,and it can slow down eutrophication of reservoir but cannot control the eutrophication tendency. We must take a variety of comprehensive management measures to control eutrophication from the angle of basin control,and guarantee safety of drinking water resources.展开更多
[Objective] The aim was to study the antialgal activities of allelochemical extracts from three terrestrial plant species.[Method] The allelochemicals were extracted from the leaves of Magnolia grandiflora,Sophora jap...[Objective] The aim was to study the antialgal activities of allelochemical extracts from three terrestrial plant species.[Method] The allelochemicals were extracted from the leaves of Magnolia grandiflora,Sophora japonica f.pendula and Buxus sinica (Rehd.et Wils.) Cheng by alcohol extraction,n-hexane,ethyl acetate and n-utanol phase.Furthermore antialgal activities of all components were determined.[Result] The active substances of M.grandiflora mainly existed in n-hexane and n-butanol phases.The active substances of S.japonica mainly existed in n-hexane phase,while the active substances of B.sinica mainly existed in ethyl acetate and aqueous phase.All the active substances showed significant antialgal activity (50% inhibition) after culture for 1 d except aqueous phase of B.sinica.In addition,inhibition rates of the tested phases increased with the increasing of culture duration and testing concentrations.The inhibition rates were over 90% against the growth of M.aeruginosa after culture for 7 d.The n-hexane and n-butanol phases of M.grandiflora exhibited the best antialgal activity,over 96% inhibition rate at the concentration of 25 μg/ml,which was significantly higher than those of the other components,furthermore it could cause shrinkage and obvious surface inanition of Microcystis aeruginosa.[Conclusion] The n-hexane and n-butanol phases of M.grandiflora have the best inhibition activities on the growth of Microcystis aeruginosa,so they are worthy of further study.展开更多
Water blooms have become a worldwide environmental problem. Recently, algicidal bacteria have attracted wide attention as possible agents for inhibiting algal water blooms. In this study, one strain of algicidal bacte...Water blooms have become a worldwide environmental problem. Recently, algicidal bacteria have attracted wide attention as possible agents for inhibiting algal water blooms. In this study, one strain of algicidal bacterium B5 was isolated from activated sludge. On the basis of analysis of its physiological characteristics and 16S rDNA gene sequence, it was identified as Bacillusfusiformis. Its algaelysing characteristics on Microcystis aeruginosa, Chlorella and Scenedesmus were tested. The results showed that: (1) the algicidal bacterium B5 is a Gram-negative bacterium. The 16S rDNA nucleotide sequence homology of strain B5 with 2 strains of B. fusiformis reached 99.86%, so B5 was identified as B. fusiformis; (2) the algal-lysing effects of the algicidal bacterium B5 on M. aeruginosa, Chlorella and Scenedesrnus were pronounced. The initial bacterial and algal cell densities strongly influence the removal rates of chlorophyll-a. The greater the initial bacterial cell density, the faster the degradation of chlorophyll-a. The greater the initial algal cell density, the slower the degradation of chlorophyll-a. When the bacterial cell density was 3.6 × 10^7 cells/ml, nearly 90% of chlorophyll-a was removed. When the chlorophyll-a concentration was less than 550 μg/L, about 70% was removed; (3) the strain B5 lysed algae by secreting metabolites and these metabolites could bear heat treatment.展开更多
Algal blooms caused by eutrophication in fresh water are one of the major environmental problems in the world. Using biological methods to control algal growth, especially based on allelopathic inhibitory effects of a...Algal blooms caused by eutrophication in fresh water are one of the major environmental problems in the world. Using biological methods to control algal growth, especially based on allelopathic inhibitory effects of aquatic macrophytes on phytoplankton growth, have been received world-wide attention. In this study, the allelopathic activity of the invasive macrophyte, Eichhornia crassipes (water hyacinth), on blue-green algae, Microcystis aeruginosa (PCC7806) was investigated using coexistence assay. Our results showed that water hyacinth had disparate effects on the growth ofM~ aeruginosa (PCC7806) under different initial algal densities. Under lower initial algal density (OD650 = 0.10 and OD650 = 0.05), the algal growth was significantly inhibited by water hyacinth (inhibition ratio was 95.6% and 97.3%, respectively). While it was stimulated at higher initial algal densities (OD650 = 0.20). Water hyacinth inhibited the growth of algae mainly through its root system. Culture water from water hyacinth and aqueous methanol extracts from dry roots samples also showed inhibition effects on algal growth. The inhibition effects increased as the increase of crude extract concentration, suggest that water hyacinth may excrete inhibitory substances from root system and show allelopathic inhibitory potential to the growth ofM. aeruginosa.展开更多
Tega-numa (Lake Tega) is one of the eutrophic lakes in Japan. For the improvement of water quality in Lake Tega, the North- chiba Water Conveyance Channel was constructed in 2000, which transfer water from Tone Rive...Tega-numa (Lake Tega) is one of the eutrophic lakes in Japan. For the improvement of water quality in Lake Tega, the North- chiba Water Conveyance Channel was constructed in 2000, which transfer water from Tone River into the lake. After 2000, the dominant species of diatoms, mainly Cyclotella sp., have been replacing blue-green algae, mainly Microcystis aeruginosa in Lake Tega. This transition of dominant species would be due to the dilution, but the detail mechanism has not been understood yet. This study examined the relationship between phosphorus fluctuation caused by river water dilution to Lake Tega and dominance of algal species, M. aeruginosa or Cyclotella sp. based on the single-species and the mixed-species culture experiments. The single-species culture experiment showed that the half-saturation constant and uptake rate of phosphorus were one order lower and seven times higher for M. aeruginosa than those for Cyclotella sp. These findings implied that M. aeruginosa would possess a potential for the growth and survival over Cyclotella sp. in the phosphorus limited condition. The superiority of M. aeruginosa was reflected in the outcome of the mixed-species culture experiment, i.e., dominance of M. aeruginosa, even phosphorus concentration was lowered to 0.01 mg-P/L. Therefore, it could be concluded that the decrease in phosphorus concentration due to the river water dilution to Lake Tega would be interpreted as a minor factor for the transition of dominant species from M. aeruginosa to Cyclotella sp.展开更多
The effect of cyanobacterial bloom decay on water quality and the complete degradation of cyanobacterial blooms in a short period were examined by an enclosure experiment in Gonghu Bay of Lake Taihu,China.Water qualit...The effect of cyanobacterial bloom decay on water quality and the complete degradation of cyanobacterial blooms in a short period were examined by an enclosure experiment in Gonghu Bay of Lake Taihu,China.Water quality parameters as well as taste and odor compounds during the breakdown of cyanobacterial blooms were measured.Results showed that the decay of cyanobacterial blooms caused anoxic water conditions,decreased pH,and increased nutrient loading to the lake water.The highest concentrations of dimethyl sulfide (DMS),dimethyl trisulfide (DMTS),and β-cyclocitral were observed in the anoxic water,at 62331.8,12413.3,and 1374.9 ng/L,respectively.2-Methylisoborneol was dominant during the live growth phase of cyanobacterial blooms,whereas DMS and DMTS were dominant during the decomposition phase.Dissolved oxygen,pH,and chlorophyll a were negatively correlated with DMS,DMTS,and β-cyclocitral,whereas total phosphorus,total nitrogen,and ammonium (NH4+-N) were positively correlated with DMS,DMTS,β-cyclocitral,and β-ionone.The experimental results suggested that preventing the anaerobic decomposition of cyanobacterial blooms is an important strategy against the recurrence of a malodor crisis in Lake Taihu.展开更多
Three treatments, sediment plus lake water (S+W), sterilized sediment plus lake water (SS+W), and sediment plus filtered lake water (S+FW), were recruited to investigate the growth characteristics of algae du...Three treatments, sediment plus lake water (S+W), sterilized sediment plus lake water (SS+W), and sediment plus filtered lake water (S+FW), were recruited to investigate the growth characteristics of algae during pre-bloom and the importance of algal inocula in the water column and sediment. The results showed that in the water column, biomass of all algae increased in all treatments when recruitment was initiated, whereas this tendency differed among treatments with further increment of temperature. The process of algal growth consisted of two stages: Stage I, the onset of recruitment and Stage II, the subsequent growth of algae. Compared with S+W, in Stage I, SS+W significantly increased the biomass of cyanophytes by 178.70%, and decreased the biomass of non-cyanophytes by 43.40%; In Stage II, SS+W notably stimulated the growth of all algae, thus incurring the occurrence of phytoplankton bloom. Further analyses revealed that both metabolic activity and photochemical activity of algae were enhanced in SS+W, which resulted from the releasing of nutrients from sediment. These results suggest that algal growth in Stage II and algal inocula in the water column can be important factors for the formation of phytoplankton bloom. In addition, possible mechanisms promoting algal recruitment and subsequent growth of algae were explored.展开更多
Dear Editor,In aquatic environments,cyanobacteria usually proliferate faster than other phytoplankton assemblages during warm seasons,particularly in eutrophic waters(Ma et al.,2015).Microcystis,a common cyanobacteria...Dear Editor,In aquatic environments,cyanobacteria usually proliferate faster than other phytoplankton assemblages during warm seasons,particularly in eutrophic waters(Ma et al.,2015).Microcystis,a common cyanobacterial genus that potentially produces microcystins(MCs)and nontoxic strains,dominates in eutrophic freshwater bodies,and its biomass increases quickly during the warm period;these changes result in increased water turbidity and changes in light quality and quantity in the water column(Li and Li,2012).Additionally,展开更多
基金supported by APVV,project No.0566-07,VEGA projects No.1/0600/11 and 2/0113/13Comenius University in Bratislava Science Park supported by the Research and Development Operational Programme funded by the ERDF Grant number:ITMS 26240220086supported by the project ITMS:26240220049.
文摘The seasonal development of the phytoplankton, phytobenthos, zooplankton, and microbenthos in a high eutrophised intravilan water reservoir was studied. Finally, 25 genera with 44 species of Cyanobacteria/Cyanophytes and 67 genera with 102 species as well as infraspecific taxa of different groups of microscopic algae were identified. The phytoplankton in most parts of the water basin was strongly dominated by green colonial alga Golenkiniopsis longispina. From October until December a cyanophyte species Aphanocapsa delicatissima with typical cell dimensions of picoplankton/ was found in large amounts/predominated. As early as spring, a plankton bloom in all its components was observed. At that time, also a high concentration of total phosphorus was recorded, which in the second half of April dropped rapidly. The concentration of chlorophyll-a increased from 162.7 μg/L in March to 2322 μg/L in September. Massive occurrence of benthic protozoa in the plankton, as a consequence of anoxia, has been observed. Further, the detritivore and omnivore ciliate species Coleps hirtus dominated in the microbenthos. Altogether 74 of ciliate taxa were detected. Their abundance and biomass reached peak in April, but these steadily decreased from May until the end of the year. Extreme values of zooplankton density (54,016 ind/L) were recorded in spring followed by a sudden fall in summer and autumn. The contribution of rotifers (Brachionus spp., Filinia longiseta) in the total zooplankton density and biomass was 98%. Relatively a low species richness of crustaceans (4 Cladocera and 3 Copepoda) was observed.
基金supported by the Nationa1 Natural Science Foundation of China(30028018).
文摘A hypothesis was formulated to explain the possible cause of water bloom occurring inLake Qiandaohu in 1998 and 1999. We tested this hypothesis with a 3-year in situ fieldstudy. The results showed that the reconstruction of the silver carp and bighead carppopulations, without other measures of nutrient control, could prevent the recurrence ofalgal bloom in the lake successfully. This result could serve as an evidence to thesuggested hypothesis for water blooming: The drastic decline of the filter feedingsilver carp and bighead carp in the lake, rather than the nutrients overloading, wasmainly responsible for the algal bloom. According to this study, we suggest a generalhypothesis to the ecological mechanism of algal blooming: The insufficient grazing fromthe phytoplanktivores (top-down control) to the algal reproduction from nutrientsavailable (bottom-up effect) is the radical cause of water blooming, while conventionally,it is primarily attributed to the enrichment of nutrients. Besides, this study showedthat stocking silver carp and bighead carp in lakes could improve water quality, whichis also contrary to the conventional opinion. Finally, this study provided a cost-effective and practicable approach to control water bloom for the large-sized reservoirs,especially when water blooming occurred locally. A net-enclosed aquaculture zone (NEAZ)can be established in the nutrients-exposure area of the waters and stocked with the twocarps, water bloom could be controlled and prevented.
基金Supported by Science and Technology Plan Project of Zhejiang Province,China(2013C33033)
文摘Siminghu Reservoir already transformed into " the algae muddy" type,and had nonclassical bio-manipulation practice using Hypophthalmichthys molitix and Aristichthys nobilis to feed the plankton,control water bloom and transform the organic matters into fish product. Through the analysis of the limited data,we think that water bloom of Siminghu Reservoir can be prevented to some extent by breeding H. molitix and A. nobilis,and it can slow down eutrophication of reservoir but cannot control the eutrophication tendency. We must take a variety of comprehensive management measures to control eutrophication from the angle of basin control,and guarantee safety of drinking water resources.
基金Supported by National Natural Science Foundation of China(30671240, 30871588)~~
文摘[Objective] The aim was to study the antialgal activities of allelochemical extracts from three terrestrial plant species.[Method] The allelochemicals were extracted from the leaves of Magnolia grandiflora,Sophora japonica f.pendula and Buxus sinica (Rehd.et Wils.) Cheng by alcohol extraction,n-hexane,ethyl acetate and n-utanol phase.Furthermore antialgal activities of all components were determined.[Result] The active substances of M.grandiflora mainly existed in n-hexane and n-butanol phases.The active substances of S.japonica mainly existed in n-hexane phase,while the active substances of B.sinica mainly existed in ethyl acetate and aqueous phase.All the active substances showed significant antialgal activity (50% inhibition) after culture for 1 d except aqueous phase of B.sinica.In addition,inhibition rates of the tested phases increased with the increasing of culture duration and testing concentrations.The inhibition rates were over 90% against the growth of M.aeruginosa after culture for 7 d.The n-hexane and n-butanol phases of M.grandiflora exhibited the best antialgal activity,over 96% inhibition rate at the concentration of 25 μg/ml,which was significantly higher than those of the other components,furthermore it could cause shrinkage and obvious surface inanition of Microcystis aeruginosa.[Conclusion] The n-hexane and n-butanol phases of M.grandiflora have the best inhibition activities on the growth of Microcystis aeruginosa,so they are worthy of further study.
基金Project supported by the Special Funds for Doctor's Station of University(No.20060246024)Young Fund of Fudan University,and the Shanghai Tongji Gao Tingyao Environmental Science and Technology Developmem Fundation
文摘Water blooms have become a worldwide environmental problem. Recently, algicidal bacteria have attracted wide attention as possible agents for inhibiting algal water blooms. In this study, one strain of algicidal bacterium B5 was isolated from activated sludge. On the basis of analysis of its physiological characteristics and 16S rDNA gene sequence, it was identified as Bacillusfusiformis. Its algaelysing characteristics on Microcystis aeruginosa, Chlorella and Scenedesmus were tested. The results showed that: (1) the algicidal bacterium B5 is a Gram-negative bacterium. The 16S rDNA nucleotide sequence homology of strain B5 with 2 strains of B. fusiformis reached 99.86%, so B5 was identified as B. fusiformis; (2) the algal-lysing effects of the algicidal bacterium B5 on M. aeruginosa, Chlorella and Scenedesrnus were pronounced. The initial bacterial and algal cell densities strongly influence the removal rates of chlorophyll-a. The greater the initial bacterial cell density, the faster the degradation of chlorophyll-a. The greater the initial algal cell density, the slower the degradation of chlorophyll-a. When the bacterial cell density was 3.6 × 10^7 cells/ml, nearly 90% of chlorophyll-a was removed. When the chlorophyll-a concentration was less than 550 μg/L, about 70% was removed; (3) the strain B5 lysed algae by secreting metabolites and these metabolites could bear heat treatment.
文摘Algal blooms caused by eutrophication in fresh water are one of the major environmental problems in the world. Using biological methods to control algal growth, especially based on allelopathic inhibitory effects of aquatic macrophytes on phytoplankton growth, have been received world-wide attention. In this study, the allelopathic activity of the invasive macrophyte, Eichhornia crassipes (water hyacinth), on blue-green algae, Microcystis aeruginosa (PCC7806) was investigated using coexistence assay. Our results showed that water hyacinth had disparate effects on the growth ofM~ aeruginosa (PCC7806) under different initial algal densities. Under lower initial algal density (OD650 = 0.10 and OD650 = 0.05), the algal growth was significantly inhibited by water hyacinth (inhibition ratio was 95.6% and 97.3%, respectively). While it was stimulated at higher initial algal densities (OD650 = 0.20). Water hyacinth inhibited the growth of algae mainly through its root system. Culture water from water hyacinth and aqueous methanol extracts from dry roots samples also showed inhibition effects on algal growth. The inhibition effects increased as the increase of crude extract concentration, suggest that water hyacinth may excrete inhibitory substances from root system and show allelopathic inhibitory potential to the growth ofM. aeruginosa.
文摘Tega-numa (Lake Tega) is one of the eutrophic lakes in Japan. For the improvement of water quality in Lake Tega, the North- chiba Water Conveyance Channel was constructed in 2000, which transfer water from Tone River into the lake. After 2000, the dominant species of diatoms, mainly Cyclotella sp., have been replacing blue-green algae, mainly Microcystis aeruginosa in Lake Tega. This transition of dominant species would be due to the dilution, but the detail mechanism has not been understood yet. This study examined the relationship between phosphorus fluctuation caused by river water dilution to Lake Tega and dominance of algal species, M. aeruginosa or Cyclotella sp. based on the single-species and the mixed-species culture experiments. The single-species culture experiment showed that the half-saturation constant and uptake rate of phosphorus were one order lower and seven times higher for M. aeruginosa than those for Cyclotella sp. These findings implied that M. aeruginosa would possess a potential for the growth and survival over Cyclotella sp. in the phosphorus limited condition. The superiority of M. aeruginosa was reflected in the outcome of the mixed-species culture experiment, i.e., dominance of M. aeruginosa, even phosphorus concentration was lowered to 0.01 mg-P/L. Therefore, it could be concluded that the decrease in phosphorus concentration due to the river water dilution to Lake Tega would be interpreted as a minor factor for the transition of dominant species from M. aeruginosa to Cyclotella sp.
基金supported by the National Water Pollution Control and Management Technology Major Project(No.2012ZX07101-010)the State Key Laboratory of Freshwater Ecology and Biotechnology(No.2011FBZ07)
文摘The effect of cyanobacterial bloom decay on water quality and the complete degradation of cyanobacterial blooms in a short period were examined by an enclosure experiment in Gonghu Bay of Lake Taihu,China.Water quality parameters as well as taste and odor compounds during the breakdown of cyanobacterial blooms were measured.Results showed that the decay of cyanobacterial blooms caused anoxic water conditions,decreased pH,and increased nutrient loading to the lake water.The highest concentrations of dimethyl sulfide (DMS),dimethyl trisulfide (DMTS),and β-cyclocitral were observed in the anoxic water,at 62331.8,12413.3,and 1374.9 ng/L,respectively.2-Methylisoborneol was dominant during the live growth phase of cyanobacterial blooms,whereas DMS and DMTS were dominant during the decomposition phase.Dissolved oxygen,pH,and chlorophyll a were negatively correlated with DMS,DMTS,and β-cyclocitral,whereas total phosphorus,total nitrogen,and ammonium (NH4+-N) were positively correlated with DMS,DMTS,β-cyclocitral,and β-ionone.The experimental results suggested that preventing the anaerobic decomposition of cyanobacterial blooms is an important strategy against the recurrence of a malodor crisis in Lake Taihu.
基金Financial support from Major Science and Technology Program for Water Pollution Control and Treatment (No.2008ZX07103-005)the National Key Technology Research and Development Program of China(No.2007BAC26B01)
文摘Three treatments, sediment plus lake water (S+W), sterilized sediment plus lake water (SS+W), and sediment plus filtered lake water (S+FW), were recruited to investigate the growth characteristics of algae during pre-bloom and the importance of algal inocula in the water column and sediment. The results showed that in the water column, biomass of all algae increased in all treatments when recruitment was initiated, whereas this tendency differed among treatments with further increment of temperature. The process of algal growth consisted of two stages: Stage I, the onset of recruitment and Stage II, the subsequent growth of algae. Compared with S+W, in Stage I, SS+W significantly increased the biomass of cyanophytes by 178.70%, and decreased the biomass of non-cyanophytes by 43.40%; In Stage II, SS+W notably stimulated the growth of all algae, thus incurring the occurrence of phytoplankton bloom. Further analyses revealed that both metabolic activity and photochemical activity of algae were enhanced in SS+W, which resulted from the releasing of nutrients from sediment. These results suggest that algal growth in Stage II and algal inocula in the water column can be important factors for the formation of phytoplankton bloom. In addition, possible mechanisms promoting algal recruitment and subsequent growth of algae were explored.
基金supported by the Henan Province Science Projects for Colleges and Universities (15A610011)the City Science and Technology Project (20140659)+1 种基金the Fund Project for Doctor (D2014009)the Henan Institute of Engineering Innovation Team Building Program (CXTD2014005)
文摘Dear Editor,In aquatic environments,cyanobacteria usually proliferate faster than other phytoplankton assemblages during warm seasons,particularly in eutrophic waters(Ma et al.,2015).Microcystis,a common cyanobacterial genus that potentially produces microcystins(MCs)and nontoxic strains,dominates in eutrophic freshwater bodies,and its biomass increases quickly during the warm period;these changes result in increased water turbidity and changes in light quality and quantity in the water column(Li and Li,2012).Additionally,