A new type of liquid desiccant water chiller for applications on air-conditioning and refrigeration is introduced.The system can be driven by low-grade heat sources with temperatures of 60 to 80 ℃,which can be easily...A new type of liquid desiccant water chiller for applications on air-conditioning and refrigeration is introduced.The system can be driven by low-grade heat sources with temperatures of 60 to 80 ℃,which can be easily obtained by a flat plat solar collector,waste heat,etc.A numerical model is developed to study the system performance.The effects of different parameters on performance are discussed,including evaporating temperature,regenerating temperature,ambient condition,and mass flow rates of closed moist air and regenerating air.The results show that an acceptable performance of a cooling capacity of 2.5 kW and a coefficient of performance of 0.37 can be achieved in a reference case.The regenerating temperature and the humidity ratios of ambient air are two main factors affecting system performance,while the temperature of ambient air functions less.In addition,the mass flow rate of regenerating air and closed moist air should be carefully determined for economical operation.展开更多
Gas turbine (GT) power plants operating in arid climates suffer a decrease in output power during the hot summer months because of the high specific volume of air drawn by the compressor. Cooling the air intake to the...Gas turbine (GT) power plants operating in arid climates suffer a decrease in output power during the hot summer months because of the high specific volume of air drawn by the compressor. Cooling the air intake to the compressor has been widely used to mitigate this shortcoming. Energy and exergy analysis of a GT Brayton cycle coupled to a refrigeration air cooling unit shows a promise for increasing the output power with a little decrease in thermal efficiency. A thermo-economics algorithm is developed to estimate the economic feasibility of the cooling system. The analysis is applied to an open cycle, HITACHI-FS7001B GT plant at the industrial city of Yanbu (Latitude 24o 05” N and longitude 38o E) by the Red Sea in the Kingdom of Saudi Arabia. Result show that the enhancement in output power depends on the degree of chilling the air intake to the compressor (a 12 - 22 K decrease is achieved). For this case study, maximum power gain ratio (PGR) is 15.46% (average of 12.25%), at an insignificant decrease in thermal efficiency. The second law analysis show that the exergetic power gain ratio drops to an average 8.5%. The cost of adding the air cooling system is also investigated and a cost function is derived that incorporates time-dependent meteorological data, operation characteristics of the GT and the air intake cooling system and other relevant parameters such as interest rate, lifetime, and operation and maintenance costs. The profit of adding the air cooling system is calculated for different electricity tariff.展开更多
Chiller model is a key factor to building energy simulation and chiller performance prediction.With spread of new types of electric water chillers that have higher performance and wider operating range,new challenges ...Chiller model is a key factor to building energy simulation and chiller performance prediction.With spread of new types of electric water chillers that have higher performance and wider operating range,new challenges have been faced by building energy simulation tools and their chiller models.This work takes a new type of electric water chiller as a case study and reevaluates eight typical empirically based models for predicting the energy performance of electric water chiller to verify whether they are suitable for the new type of chiller,using both laboratory test data from chiller manufacturer and online monitoring data from on-site operation of a central cooling plant with chillers of the same type.The prediction ability of the chiller models(including model prediction accuracy and generation ability)in laboratory test and on-site operation situations are examined.The results show that the existing models can well describe the chiller performance in the laboratory test situation but perform poorly in the on-site operation situation.As the best two models in the laboratory dataset,the overall prediction errors of DOE-2 and GN model increase more than 250%and 75%respectively in the field dataset.The big discrepancy of model prediction accuracy in the two situations is mainly due to the differences of evaporator and condenser water flow rates between the laboratory and on-site operation datasets,which indicates the limitations of the empirical chiller models and implies further research in future in order to improve the suitability and reliability of chiller model.展开更多
A single stage ammonia-water absorption chiller with complete condensation is designed, built and tested. The apparatus is designed for a cooling capacity of 2814 W, which is obtained using electric heater as heating ...A single stage ammonia-water absorption chiller with complete condensation is designed, built and tested. The apparatus is designed for a cooling capacity of 2814 W, which is obtained using electric heater as heating source. The thermodynamic models have been derived using the First and Second Laws. Calculated results are compared with experimental data. The results show that the cooling capacity of experimental apparatus is found between 1900 and 2200 W with the actual coefficient of performance (COP) between 0.32 and 0.36. The contribution of the components to internal entropy production is analyzed. It shows that the larger irreversibility is caused by spanning the largest temperature and dissipated thermal energy by heat transfer losses at the generator and evaporator. In the experimentation, the low pressure is lower than the designed value. This is a consequence of a large capacity in the falling film absorber which performs as expected. This decreases the evaporation pressure, and the evaporating temperature could be reduced to the designed value.展开更多
Large amounts of waste heat below 100oC from the industrial sector are re-leased into the atmosphere. It has been suggested that energy system efficiency can be increased with adsorption chillers. However, the cooling...Large amounts of waste heat below 100oC from the industrial sector are re-leased into the atmosphere. It has been suggested that energy system efficiency can be increased with adsorption chillers. However, the cooling power and coefficient of performance (COP) of conventional adsorption chillers significantly decrease with the desorption temperature. In this paper, we proposed a mechanical booster pump (MBP)-assisted adsorption chiller cycle, and evaluated its performances. In the cycle, a MBP was incorporated into a zeolite-water-type adsorption chiller for facilitating water vapor transportation between an adsorber and an evaporator/condenser. We have experimentally studied the effect of the input electrical power of MBP on the performances of adsorption chiller cycle. It has been demonstrated that the heat input achieved by using MBP at the desorption temperature of 50oC was 1.6 times higher than that of without MBP at the desorption temperature of 60oC. And the increase of pump power was found to be effective in increasing the heat input. Therefore, it was confirmed that the operation range of desorption temperature, which can be generated by using the waste heat, was extended and the cooling power was increased directly by using MBP.展开更多
基金The National Natural Science Foundation of China(No.50976021)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2007BA000875)
文摘A new type of liquid desiccant water chiller for applications on air-conditioning and refrigeration is introduced.The system can be driven by low-grade heat sources with temperatures of 60 to 80 ℃,which can be easily obtained by a flat plat solar collector,waste heat,etc.A numerical model is developed to study the system performance.The effects of different parameters on performance are discussed,including evaporating temperature,regenerating temperature,ambient condition,and mass flow rates of closed moist air and regenerating air.The results show that an acceptable performance of a cooling capacity of 2.5 kW and a coefficient of performance of 0.37 can be achieved in a reference case.The regenerating temperature and the humidity ratios of ambient air are two main factors affecting system performance,while the temperature of ambient air functions less.In addition,the mass flow rate of regenerating air and closed moist air should be carefully determined for economical operation.
文摘Gas turbine (GT) power plants operating in arid climates suffer a decrease in output power during the hot summer months because of the high specific volume of air drawn by the compressor. Cooling the air intake to the compressor has been widely used to mitigate this shortcoming. Energy and exergy analysis of a GT Brayton cycle coupled to a refrigeration air cooling unit shows a promise for increasing the output power with a little decrease in thermal efficiency. A thermo-economics algorithm is developed to estimate the economic feasibility of the cooling system. The analysis is applied to an open cycle, HITACHI-FS7001B GT plant at the industrial city of Yanbu (Latitude 24o 05” N and longitude 38o E) by the Red Sea in the Kingdom of Saudi Arabia. Result show that the enhancement in output power depends on the degree of chilling the air intake to the compressor (a 12 - 22 K decrease is achieved). For this case study, maximum power gain ratio (PGR) is 15.46% (average of 12.25%), at an insignificant decrease in thermal efficiency. The second law analysis show that the exergetic power gain ratio drops to an average 8.5%. The cost of adding the air cooling system is also investigated and a cost function is derived that incorporates time-dependent meteorological data, operation characteristics of the GT and the air intake cooling system and other relevant parameters such as interest rate, lifetime, and operation and maintenance costs. The profit of adding the air cooling system is calculated for different electricity tariff.
基金supported by the State Key Laboratory of Air-Conditioning Equipment and System Energy Conservation(No.ACSKL2019KT13)National Natural Science Foundation of China(No.51608297 and No.51678024)+2 种基金Scientific Research Project of Beijing Municipal Education Commission(No.KM201910016009 and No.KZ202110016022)Beijing Advanced Innovation Center for Future Urban Design(No.UDC2019011121)Fundamental Research Funds for Beijing University of Civil Engineering and Architecture(No.XI8301).
文摘Chiller model is a key factor to building energy simulation and chiller performance prediction.With spread of new types of electric water chillers that have higher performance and wider operating range,new challenges have been faced by building energy simulation tools and their chiller models.This work takes a new type of electric water chiller as a case study and reevaluates eight typical empirically based models for predicting the energy performance of electric water chiller to verify whether they are suitable for the new type of chiller,using both laboratory test data from chiller manufacturer and online monitoring data from on-site operation of a central cooling plant with chillers of the same type.The prediction ability of the chiller models(including model prediction accuracy and generation ability)in laboratory test and on-site operation situations are examined.The results show that the existing models can well describe the chiller performance in the laboratory test situation but perform poorly in the on-site operation situation.As the best two models in the laboratory dataset,the overall prediction errors of DOE-2 and GN model increase more than 250%and 75%respectively in the field dataset.The big discrepancy of model prediction accuracy in the two situations is mainly due to the differences of evaporator and condenser water flow rates between the laboratory and on-site operation datasets,which indicates the limitations of the empirical chiller models and implies further research in future in order to improve the suitability and reliability of chiller model.
文摘A single stage ammonia-water absorption chiller with complete condensation is designed, built and tested. The apparatus is designed for a cooling capacity of 2814 W, which is obtained using electric heater as heating source. The thermodynamic models have been derived using the First and Second Laws. Calculated results are compared with experimental data. The results show that the cooling capacity of experimental apparatus is found between 1900 and 2200 W with the actual coefficient of performance (COP) between 0.32 and 0.36. The contribution of the components to internal entropy production is analyzed. It shows that the larger irreversibility is caused by spanning the largest temperature and dissipated thermal energy by heat transfer losses at the generator and evaporator. In the experimentation, the low pressure is lower than the designed value. This is a consequence of a large capacity in the falling film absorber which performs as expected. This decreases the evaporation pressure, and the evaporating temperature could be reduced to the designed value.
文摘Large amounts of waste heat below 100oC from the industrial sector are re-leased into the atmosphere. It has been suggested that energy system efficiency can be increased with adsorption chillers. However, the cooling power and coefficient of performance (COP) of conventional adsorption chillers significantly decrease with the desorption temperature. In this paper, we proposed a mechanical booster pump (MBP)-assisted adsorption chiller cycle, and evaluated its performances. In the cycle, a MBP was incorporated into a zeolite-water-type adsorption chiller for facilitating water vapor transportation between an adsorber and an evaporator/condenser. We have experimentally studied the effect of the input electrical power of MBP on the performances of adsorption chiller cycle. It has been demonstrated that the heat input achieved by using MBP at the desorption temperature of 50oC was 1.6 times higher than that of without MBP at the desorption temperature of 60oC. And the increase of pump power was found to be effective in increasing the heat input. Therefore, it was confirmed that the operation range of desorption temperature, which can be generated by using the waste heat, was extended and the cooling power was increased directly by using MBP.