期刊文献+
共找到3,414篇文章
< 1 2 171 >
每页显示 20 50 100
Application of Argo Data in the Analysis of Water Masses in the Northwest Pacific Ocean 被引量:2
1
作者 孙朝辉 许建平 +2 位作者 刘增宏 童明荣 朱伯康 《Marine Science Bulletin》 CAS 2008年第2期1-13,共13页
The temperature and salinity distributions, and the water mass structures in Northwest Pacific Ocean are studied using the temperature and salinity data obtained by Argo profiling floats. The T-S relation in this regi... The temperature and salinity distributions, and the water mass structures in Northwest Pacific Ocean are studied using the temperature and salinity data obtained by Argo profiling floats. The T-S relation in this region indicates there exist 8 water masses, they are the North Pacific Tropical Surface Water (NPTSW), North P, acific Subsurface Water (NPSSW), North Pacific Intermediate Water (NPIW), North Pacific Subtropical Water (NPSTW), North Pacific Deep Water (NPDW) and Equatorial Surface Water (ESW), and the South Pacific Subsurface Water (SPSSW) and South Pacific Intermediate Water (SPIW). 展开更多
关键词 Argo profiling float T-S relation water mass analysis the Northwest Pacific Ocean
下载PDF
Seasonal evolution of the Northern Yellow Sea cold water mass 被引量:2
2
作者 李希彬 孙晓燕 +2 位作者 张秋丰 牛福新 姚志刚 《Marine Science Bulletin》 CAS 2013年第2期15-25,共11页
With the in-situ temperature and salinity observations taken seasonally in the Northern Yellow Sea area during the National 908 Water Investigation and Research Project from 2006 to 2007, the characteristics of the No... With the in-situ temperature and salinity observations taken seasonally in the Northern Yellow Sea area during the National 908 Water Investigation and Research Project from 2006 to 2007, the characteristics of the Northern Yellow Sea cold water mass (NYSCWM) were studied, including both its spatial pattern over the whole bottom and historically typical section from Dalian to Chengshantou. Seasonal evolution as well as its spatial distribution was analyzed to further understand the NYSCWM, as a result, some new features about the NYSCWM had been found. Compared to the previous studies, the center of colder water mass in summer moved eastward, but sharing the similar peak values for both temperature and salinity with historical data. In spring, the axis of 32.8 psu saltier moves westward approximately 75 km and the high salinity areas beyond 123.5° E were largely impaired comparing to that in winter. In winter, the NYSCWM almost disappeared due to the reinforced wind-induced mixing and the Yellow Sea Warm Currents (YSWC) moved northward and controlled most of the Northern Yellow Sea region. In autumn, two cold centers with the peak value of 9℃ were found inside the attenuated NYSCWM. 展开更多
关键词 the Northern Yellow Sea cold water mass seasonal evolution temperatureand salinity distribution Yellow Sea warm current
下载PDF
Development and Application of the GIS-Based Water Mass Analysis Integrated System
3
作者 张月霞 苗振清 严世强 《Marine Science Bulletin》 CAS 2008年第2期26-35,共10页
The research on water masses is always one important facet of Oceanography. I adopt the method of Fuzzy Density Clustering to analyse water masses. Meanwhile, I use Visual Basic 6.0 as developing platform and utilize ... The research on water masses is always one important facet of Oceanography. I adopt the method of Fuzzy Density Clustering to analyse water masses. Meanwhile, I use Visual Basic 6.0 as developing platform and utilize the MapX components to develop the platform of GIS. By integrating the Water Masses Model compiled by FORTRAN language, and GIS using Tight Coupling, I develop an Integrated System. That makes all phases are finished in one condition, including the gain of computing grid, the pick-up and analysis of data, the choice of parameters and resetting, the computing of model, and the result's visualization. It improves the efficiency of the data analysis and decision-making Finally, this system is applied in the Zhoushan fishing ground and adjacent region. The results are satisfying. 展开更多
关键词 water mass GIS Model integration the Zhoushan fishing ground
下载PDF
Water mass of the northward throughflow in the Bering Strait in the summer of 2003 被引量:10
4
作者 ZHAO Jinping SHI Jiuxin +2 位作者 GAO Guoping JIAO Yutian ZHANG Hongxin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2006年第2期25-32,共8页
The temperature and salinity data obtained by the Chinese national arctic research expedition (CHINARE2003) are used to study the water structure in the Bering Strait and ambient regions. Four water masses appeared ... The temperature and salinity data obtained by the Chinese national arctic research expedition (CHINARE2003) are used to study the water structure in the Bering Strait and ambient regions. Four water masses appeared in the research region: the intermediate Bering Sea water mass (IBWM), the Alaska coastal water (ACW), the Anadyr water (AW) and the Bering shelf water (BSW). The AW originates from the IBWM, but the upper layer water has been greatly altered. In the cruise on 28/29 July 2003, there were only the BSW and ACW in a section across the Bering Strait (BS section), but in the September 12/13 cruise, the AW, BSW and ACW flowed parallelly into the Bering Strait. The upper waters of these water masses were all altered due to ice melting, runoff, solar radiation, and wind mixing. The waters in the central and northern parts of Bering Strait stratified by two uniform layers,were expressed as the typical feature of the water masses originating from the pacific. A two-layer structure also dominated the vertical stratification in most part of the Chukchi Sea. An obvious subseasonal variation was observed in the BS section, which caused varying transportation of fresh water, heat, and substance, and produced a long-term and extensive impact on the Arctic Ocean. 展开更多
关键词 Bering Strait water mass Pacific water Arctic Ocean CHINARE2003
下载PDF
Chemicohydrographic characteristics of the Yellow Sea Cold Water Mass 被引量:12
5
作者 XIN Ming MA Deyi WANG Baodong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第6期5-11,共7页
Based on the field data obtained during summer cruises in 2006, the overall perspective of chemical and hydrographic characteristics of the Yellow Sea Cold Water Mass (YSCWM) are discussed through the cross- YSCWM t... Based on the field data obtained during summer cruises in 2006, the overall perspective of chemical and hydrographic characteristics of the Yellow Sea Cold Water Mass (YSCWM) are discussed through the cross- YSCWM transect profiles and horizontal distributions of hydrological and chemical variables, with emphasis on the differences between the northern Yellow Sea Cold Water Mass (NYSCWM) and the southern Yellow Sea Cold Water Mass (SYSCWM). The results show that YSCWM is characterized by low temperature (〈10℃) and dissolved oxygen (DO) concentration, high salinity (〉32.0) and nutrient concentrations. Compared to the SYSCWM, the NYSCWM possesses lower values of temperature, salinity and nutrient concentrations but higher values of DO. Also its smaller variation ranges of variables (except for temperature) demonstrate that NYSCWM is more uniform than that of SYSCWM. In addition, thermocline is more intensive in the SYSCWM than that of NYSCWM. Furthermore, DO and Chl a maxima appear at the depth of 30 m in the SYSCWM, while these phenomena are not obvious in the NYSCWM. 展开更多
关键词 Yellow Sea Cold water mass (YSCWM) horizontal distribution vertical profile chemicohydrographic characteristics
下载PDF
Analysis of seasonal variation of water masses in East China Sea 被引量:13
6
作者 齐继峰 尹宝树 +2 位作者 张启龙 杨德周 徐振华 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2014年第4期958-971,共14页
Seasonal variations of water masses in the East China Sea(ECS) and adjacent areas are investigated, based on historical data of temperature and salinity( T-S). Dynamic and thermodynamic mechanisms that affect seasonal... Seasonal variations of water masses in the East China Sea(ECS) and adjacent areas are investigated, based on historical data of temperature and salinity( T-S). Dynamic and thermodynamic mechanisms that affect seasonal variations of some dominant water masses are discussed, with reference to meteorological data. In the ECS above depth 600 m, there are eight water masses in summer but only five in winter. Among these, Kuroshio Surface Water(KSW), Kuroshio Intermediate Water(KIW), ECS Surface Water(ECSSW), Continental Coastal Water(CCW), and Yellow Sea Surface Water(YSSW) exist throughout the year. Kuroshio Subsurface Water(KSSW), ECS Deep Water(ECSDW), and Yellow Sea Bottom Water(YSBW) are all seasonal water masses, occurring from May through October. The CCW, ECSSW and KSW all have significant seasonal variations, both in their horizontal and vertical extents and their T-S properties. Wind stress, the Kuroshio and its branch currents, and coastal currents are dynamic factors for seasonal variation in spatial extent of the CCW, KSW, and ECSSW, whereas sea surface heat and freshwater fl uxes are thermodynamic factors for seasonal variations of T-S properties and thickness of these water masses. In addition, the CCW is affected by river runoff and ECSSW by the CCW and KSW. 展开更多
关键词 water masses seasonal variations KUROSHIO East China Sea
下载PDF
The temporal and spatial variability of the Yellow Sea Cold Water Mass in the southeastern Yellow Sea, 2009–2011 被引量:9
7
作者 OH Kyung-Hee LEE Seok +2 位作者 SONG Kyu-Min LIE Heung-Jae KIM Young-Taeg 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第9期1-10,共10页
The Yellow Sea Cold Water Mass (YSCWM) is one of the important water mass in the Yellow Sea (YS). It is distributed in the lower layer in the Yellow Sea central trough with the temperature less than 10℃ and the s... The Yellow Sea Cold Water Mass (YSCWM) is one of the important water mass in the Yellow Sea (YS). It is distributed in the lower layer in the Yellow Sea central trough with the temperature less than 10℃ and the salinity lower than 33.0. To understand the variability of the YSCWM, the hydrographic data obtained in April and August during 2009-2011 are analyzed in the southeastern Yellow Sea. In August 2011, relatively warm and saline water compared with that in 2009 and 2010 was detected in the lower layer in the Yellow Sea central area. Although the typhoon passed before the cruise, the salinity in the Yellow Sea central trough is much higher than the previous season. It means that the saline event cannot be explained by the typhoon but only by the intrusion of saline water during the previous winter. In April 2011, actually, warm and saline water (T 〉 10~C, S 〉34) was observed in the deepest water depth of the southeastern area of the Yellow Sea. The wind data show that the northerly wind in 2011 winter is stronger than in 2009 and 2010 winter season. The strong northerly wind can trigger the intrusion of warm and saline Yellow Sea Warm Current. Therefore, it is proposed that the strong northerly wind in winter season leads to the intrusion of the Yellow Sea Warm Current into the Yellow Sea central trough and influenced a variability of the YSCWM in summer. 展开更多
关键词 Yellow Sea Cold water mass interannual variation saline event atmosphere variability Yellow Sea
下载PDF
Seasonal variability of the zooplankton community in the southwest of the Huanghai Sea (Yellow Sea) Cold Water Mass 被引量:8
8
作者 LIU Ping SONG Hongjun +3 位作者 WANG Xiao WANG Zongling PU Xinming ZHU Mingyuan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第4期127-139,共13页
Samples were collected with a plankton net in the four seasonal cruises during 2006-2007 to study the seasonal variability of the zooplankton community in the southwest part of Huanghai Sea Cold Water Mass (HSCWM, Ye... Samples were collected with a plankton net in the four seasonal cruises during 2006-2007 to study the seasonal variability of the zooplankton community in the southwest part of Huanghai Sea Cold Water Mass (HSCWM, Yellow Sea Cold Water Mass). The spatial and temporal variations of zooplankton species composition, biomass, abundance and biodiversity were examined. A total of 122 zooplankton species and 30 pelagic larvae were identified in the four cruises. Calanus sinicus and Aidanosagitta crassa were the most dominant species, and Themisto gaudichaudi and Euphau- sia pacifica were widely distributed in the HSCWM area. The spatial patterns of non-gelatinous zooplankton (removing the high water content groups) were similar to those of the total zooplank- ton biomass in autumn, but different significantly in the other three seasons. The seasonal means of zooplankton biomass in spring and summer were much higher than that in autumn and win- ter. The total zooplankton abundance averaged 283.5 ind./m3 in spring (highest), 192.5 ind./m3 in summer, 165.5 ind./m3 in autumn and 65.9 ind./m3 in winter (lowest), and the non-gelatinous groups contributed the most total abundance. Correlation analysis suggests that the non-gelatinous zooplankton biomass and abundance had a significant positive correlation in the whole year, but the relationship was insignificant between the total zooplankton biomass and abundance in spring and summer. The diversity index HI of zooplankton community averaged 1.88 in this study, which was somewhat higher than historical results. Relatively low diversity in summer was related to the high dominance of Calanus sinicus, probably due to the strongest effect of the HSCWM in this season. 展开更多
关键词 ZOOPLANKTON Huanghai Sea Cold water mass (Yellow Sea Cold water mass seasonalvariability community structure southern Huanghai Sea (Yellow Sea)
下载PDF
Responses of the circulation and water mass in the Beibu Gulf to the seasonal forcing regimes 被引量:8
9
作者 GAO Jingsong SHI Maochong +2 位作者 CHEN Bo GUO Peifang ZHAO Dongliang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第7期1-11,共11页
In the past 20 a, the gulf-scale circulation in the Beibu Gulf has been commonly accepted to be driven by a wind stress or density gradient. However, using three sensitive experiments based on a three-dimensional baro... In the past 20 a, the gulf-scale circulation in the Beibu Gulf has been commonly accepted to be driven by a wind stress or density gradient. However, using three sensitive experiments based on a three-dimensional baroclinic model that was verified by observations, the formation mechanisms were revealed: the circula- tion in the northern Beibu Gulf was triggered by the monsoon wind throughout a year; whereas the southern gulf circulation was driven by the monsoon wind and South China Sea (SCS) circulation in winter and sum- mer, respectively. The force of heat flux and tidal harmonics had a strong effect on the circulation strength and range, as well as the local circulation structures, but these factors did not influence the major circulation structure in the Beibu Gulf. On the other hand, the Beibu Gulf Cold Water Mass (BGCWM) would disappear without the force of heat flux because the seasonal thermocline layer was generated by the input of heat so that the vertical mixing between the upper hot water and lower cold water was blocked. In addition, the wind-induced cyclonic gyre in the northern gulf was favorable to the existence of the BGCWM. However, the coverage area of the BGCWM was increased slightly without the force of the tidal harmonics. When the model was driven by the monthly averaged surface forcing, the circulation structure was changed to some extent, and the coverage area of the BGCWM almost extended outwards 100%, implying the circulation and water mass in the Beibu Gulf had strong responses to the temporal resolution of the surface forces. 展开更多
关键词 Princeton ocean model (POM) Beibu Gulf (Gulf of Tonkin) CIRCULATION cold water mass response
下载PDF
The study on seasonal characteristics of water masses in the western East China Sea shelf area 被引量:7
10
作者 ZHANG Qilong LIU Hongwei +2 位作者 QIN Sisi YANG Dezhou LIU Zhiliang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第11期64-74,共11页
On the basis of the CTD data and the modeling results in the winter and summer of 2009, the seasonal characteristics of the water masses in the western East China Sea shelf area were analyzed using a cluster analysis ... On the basis of the CTD data and the modeling results in the winter and summer of 2009, the seasonal characteristics of the water masses in the western East China Sea shelf area were analyzed using a cluster analysis method. The results show that the distributions and temperature-salinity characteristics of the water masses in the study area are of distinct seasonal difference. In the western East China Sea shelf area, there are three water masses during winter, i.e., continental coastal water(CCW), Taiwan Warm Current surface water(TWCSW) and Yellow Sea mixing water(YSMW), but four ones during summer, i.e., the CCW, the TWCSW, Taiwan Warm Current deep water(TWCDW) and the YSMW. Of all, the CCW, the TWCSW and the TWCDW are all dominant water masses. The CCW, primarily characterized by a low salinity, has lower temperature, higher salinity and smaller spatial extent in winter than in summer. The TWCSW is warmer, fresher and smaller in summer than in winter, and it originates mostly from the Kuroshio surface water(KSW) northeast of Taiwan, China and less from the Taiwan Strait water during winter, but it consists of the strait water and the KSW during summer. The TWCDW is characterized by a low temperature and a high salinity, and originates completely in the Kuroshio subsurface water northeast of Taiwan. 展开更多
关键词 East China Sea water mass seasonal characteristics Taiwan Warm Current water
下载PDF
Seasonal variations of phytoplankton phosphorus stress in the Yellow Sea Cold Water Mass 被引量:6
11
作者 WANG Dan HUANG Bangqin +2 位作者 LIU Xin LIU Guimei WANG Hui 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第10期124-135,共12页
The Yellow Sea is located between the China Mainland and the Korean Peninsula, representing a typical shallow epicontinental sea. The Yellow Sea Cold Water Mass(YSCWM) is one of the most important physical features ... The Yellow Sea is located between the China Mainland and the Korean Peninsula, representing a typical shallow epicontinental sea. The Yellow Sea Cold Water Mass(YSCWM) is one of the most important physical features in the Yellow Sea. The characteristics of vertical profiles and seasonal variations of biogenic elements in the YSCWM may lead the variations of nutrient availability(e.g., phosphorus) and phosphorus stress of phytoplankton. In this study, the authors surveyed the seasonal variations of phytoplankton phosphorus stress with emphasis on the effect of the YSCWM during the four cruises in April and October 2006, March and August 2007. Using both bulk and single-cell alkaline phosphatase activity(APA) assays, this study evaluated phosphorus status of phytoplankton community, succession of phytoplankton community and ecophysiological responses of phytoplankton to phosphorus in the typical region of the YSCWM. With the occurrence of the YSCWM, especially the variations of concentration of dissolved inorganic phosphorus(DIP), the results of bulk APA appeared corresponding seasonal variations. Along Transects A and B, the mean APA in August was the highest, and that in March was the lowest. According to the ELF-labeled assay's results, seasonal variations of the ELF-labeled percentages within dominant species indicated that diatoms were dominant in March, April and October, while dinoflagellates were dominant in August. During the four cruises, the ELF-labeled percentages of diatoms except Paralia sulcata showed that diatoms were not phosphorus deficient in April 2006 at all, but suffered from severe phosphorus stress in August 2007. In comparison, the ELF-labeled percentages of dinoflagellates were all above 50% during the four time series, which meant dinoflagellates such as Alexandrium and Scrippsiella, sustained perennial phosphorus stress. 展开更多
关键词 alkaline phosphatase phosphorus stress PHYTOPLANKTON Yellow Sea Cold water mass Yellow Sea
下载PDF
Seasonal Variations of Several Main Water Masses in the Southern Yellow Sea and East China Sea in 2011 被引量:7
12
作者 QUAN Qi MAO Xinyan +3 位作者 YANG Xiaodan HU Yingying ZHANG Haiyan JIANG Wensheng 《Journal of Ocean University of China》 SCIE CAS 2013年第4期524-536,共13页
The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises.There was something special in the ... The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises.There was something special in the observations for the Yellow Sea Warm Current (YSWC) ,the Yellow Sea Cold Water Mass (YSCWM) and the Changjiang Diluted Water (CDW) during that year.The YSWC was confirmed to be a seasonal current and its source was closely associated with the Kuroshio onshore intrusion and the northerly wind.It was also found that the YSCWM in the summer of 2011 occupied a more extensive area in comparison with the climatologically-mean case due to the abnormally powerful wind prevailing in the winter of 2010 and decaying gradually thereafter.Resulting from the reduced Changjiang River discharge,the CDW spreading toward the Cheju Island in the summer of 2011 was weaker than the long-term mean and was confined to flow southward in the other seasons.The other water masses seemed normal without noticeable anomalies in 2011.The Yellow Sea Coastal Current (YSCC) water,driven by the northerly wind,flowed southeastward as a whole except for its northeastward surface layer in summer.The Taiwan Warm Current (TWC) was the strongest in summer and the weakest in winter in its northward movement.The Kuroshio water with an enhanced onshore intrusion in autumn was stable in hydrographic features apart from the seasonal variation of its surface layer. 展开更多
关键词 water masses seasonal variations southern Yellow Sea East China Sea
下载PDF
The numerical investigation of seasonal variation of the cold water mass in the Beibu Gulf and its mechanisms 被引量:5
13
作者 CHEN Zhenhua QIAO Fangli +1 位作者 XIA Changshui WANG Gang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第1期44-54,共11页
A wave-tide-circulation coupled model based on the Princeton Ocean Model is established to explore the seasonal variation of the cold water mass in the Beibu Gulf and its mechanisms. The results show that the cold wat... A wave-tide-circulation coupled model based on the Princeton Ocean Model is established to explore the seasonal variation of the cold water mass in the Beibu Gulf and its mechanisms. The results show that the cold water mass starts forming in March, reaches the maximum strength during June and July, and fades away since October. Strong mixing in winter transports the cold water from sea surface to bottom. The cold water mass remains in the bottom layer as the thermocline strengthens during spring, except for the shallow water where the themocline is broken by strong tidal mixing, which gradually separate the cold water mass from its surrounding warm water. Further analysis on the ocean current and stream function confirms that the cold water mass in the Beibu Gulf is locally developed, with an anticlockwise circulation caused by a strong temperature gradient. Sensitivity experiments reveal that the cold water mass is controlled by the sea surface heat flux, while the terrain and tidal mixing also play important roles. 展开更多
关键词 Beibu Gulf cold water mass seasonal variation wave-tide-circulation coupled model
下载PDF
CHARACTERISTICS AND FORMATION CAUSES OF QINGDAO COLD WATER MASS 被引量:10
14
作者 张启龙 刘兴泉 +1 位作者 程明华 于新胜 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2002年第4期303-308,共6页
In this work, the main characteristics of the Qingdao Cold Water Mass were studied by using "the comparison analysis method" based on 1980 temperature,salinity and dissolved oxygen data on the western South ... In this work, the main characteristics of the Qingdao Cold Water Mass were studied by using "the comparison analysis method" based on 1980 temperature,salinity and dissolved oxygen data on the western South Yellow Sea. The formation cause of the water mass was analyzed based on February of 1959 temperature and salinity data for this area and on some other authors’ studies. The results showed that the Qingdao Cold Water Mass has growing and vanishing processes: appears in the last ten days of March; has stable pattern in April; is biggest in its area in May; becomes small in its area in June; vanishes in July. It comes from the northern Shandong Coastal Water and is characterized by low temperature and salinity and high dissolved oxygen. The mass is formed under the joint effects of anticyclonic circulation and solar radiation. 展开更多
关键词 Qingdao Cold water mass characteristics formation cause
下载PDF
Water Masses in the South China Sea and Water Exchange between the Pacific and the South China Sea 被引量:8
15
作者 LIFengqi LILei +1 位作者 WANGXiuqin LIUChangle 《Journal of Ocean University of Qingdao》 2002年第1期19-24,共6页
Water masses in the South China Sea (SCS) were identified and analyzed with the data collected in the summer and winter of 1998. The distributions of temperature and salinity near the Bashi Channel (the Luzon Strait) ... Water masses in the South China Sea (SCS) were identified and analyzed with the data collected in the summer and winter of 1998. The distributions of temperature and salinity near the Bashi Channel (the Luzon Strait) were analyzed by using the data obtained in July and December of 1997. Based on the results from the data collected in the winter of 1998, waters in the open sea areas of the SCS were divided into six water masses: the Surface Water Mass of the SCS (S), the Subsurface Water Mass of the SCS (U), the Subsurface-Intermediate Water Mass of the SCS (UI),the Intermediate Water Mass of the SCS (I), the Deep Water Mass of the SCS (D) and the Bottom Water Mass of the SCS(B). For the summer of 1998, the Kuroshio Surface Water Mass (KS) and the Kuroshio Subsurface Water Mass (KU) were also identified in the SCS. But no Kuroshio water was found to pass the 119.5°E meridian and enter the SCS in the time of winter observations. The Sulu Sea Water (SSW) intruded into the SCS through the Mindoro Channel between 50-75 m in the summer of 1998. However, the data obtained in the summer and winter of 1997 indicated that water from the Pacific had entered the SCS through the nor-thern part of the Luzon Strait in these seasons, but water from the SCS had entered the Pacific through the southern part of the Strait. These phenomena might correlate with the 1998 El-Nio event. 展开更多
关键词 the South China Sea water mass Luzon Strait (Bashi Channel) Mindoro Channel water exchange
下载PDF
Three new species of Genus Cryptonatica (Gastropoda,Naticidae) from Huanghai Sea Cold Water Mass 被引量:2
16
作者 ZHANG Suping WEI Peng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2010年第1期52-57,共6页
This report based on the results of investigations conducted in June 2007 and July 2008, respectively, on the benthic community structure and characteristic diversity of the Huanghai Sea (Yellow Sea) Cold Water Mass... This report based on the results of investigations conducted in June 2007 and July 2008, respectively, on the benthic community structure and characteristic diversity of the Huanghai Sea (Yellow Sea) Cold Water Mass, as well as that in July 1959 during the national oceanic survey. The Naticidae specimens collected from Cold Water Mass in middle and northern Huanghai Sea were studied through morphological classification and the internal anatomy on radula. Three new species of Naticidae, i.e., Cryptonatica purpurfunda sp. nov., Cryptonatica sphaera sp. nov., and Cryptonatica striatica sp. nov. were identified. The morphological characteristics of the new species are described, and the similarties and differences between the new species and similar species are compared and discussed. 展开更多
关键词 MOLLUSCA GASTROPODA Naticidae Cryptonatica new species Huanghai Sea Cold water mass
下载PDF
A Numerical Study on the Density Driven Circulation in the Yellow Sea Cold Water Mass 被引量:3
17
作者 ZHOU Chunyan DONG Ping LI Guangxue 《Journal of Ocean University of China》 SCIE CAS 2015年第3期457-463,共7页
The circulation of Yellow Sea Cold Water Mass (YSCWM) in the Southern Yellow Sea is investigated using a diagnostic 2D MITgcm model. The resolution of the computational grid is 900 m in the horizontal and 2 m in the... The circulation of Yellow Sea Cold Water Mass (YSCWM) in the Southern Yellow Sea is investigated using a diagnostic 2D MITgcm model. The resolution of the computational grid is 900 m in the horizontal and 2 m in the vertical where an initial tem- perature distribution corresponding to a typical measured Yellow Sea Cold Water Mass was applied. The existence of YSCWM that causes fluid density difference, is shown to produce counter-rotating cyclonic horizontal eddies in the surface layer: the inner one is anti-cyclonic (clockwise) and relatively weaker (8-10cms-1) while the outer one is cyclonic (anti-clockwise) and much stronger (15-20cms-~). This result is consistent with the surface pattern observed by Pang et al. (2004), who has shown that a mesoscale anti-cyclonic eddy (clockwise) exists in the upper layer of central southern Yellow Sea, and a basin-scale cyclonic (anticlockwise) gyre lies outside of the anti-cyclonic eddy, based on the trajectories and drifting velocities of 23 drifters. Below the thermocline, there is an anti-cyclonic (clockwise) circulation. This complex current eddy system is considered to be capable of trapping suspended sediments and depositing them near the front between YSCWM and the coastal waters off the Subei coast, providing an explanation on the sediment depth and size distribution of mud patches in the Southern Yellow Sea. Moreover, sensitive test scenarios indicate that variations of bottom friction do not substantially change the main features of the circulation structure, but will reduce the bottom current velocity, increase the surface current velocity and weaken the upwelling around the frontal area. 展开更多
关键词 Yellow Sea Cold water mass density driven circulation MITgcm bottom friction
下载PDF
Interannual salinity variability of the Northern Yellow Sea Cold Water Mass 被引量:3
18
作者 李昂 于非 刁新源 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2015年第3期779-789,共11页
This paper discusses the interannual variability of the Northern Yellow Sea Cold Water Mass(NYSCWM) and the factors that influence it,based on survey data from the 1976–2006 national standard section and the Korea Oc... This paper discusses the interannual variability of the Northern Yellow Sea Cold Water Mass(NYSCWM) and the factors that influence it,based on survey data from the 1976–2006 national standard section and the Korea Oceanographic Data Center,monthly E-P flux data from the European Centre for Medium-Range Weather Forecasts,and meridional wind speed data from the International Comprehensive Ocean-Atmosphere Data Set. The results show that:1) the mean salinity of the NYSCWM center has a slightly decreasing trend,which is not consistent with the high salinity center; 2) both the southern salinity front and the halocline of the NYSCWM display a weakening trend,which indicates that the difference between the NYSCWM and coastal water decreases; 3) the Yellow Sea Warm Current intrusion,the E-P flux of the northern Yellow Sea,and the strength of the winter monsoon will affect the NYSCWM salinity during the following summer. 展开更多
关键词 Northern Yellow Sea Cold water mass (NYSCWM) SALINITY interannual variability linear trend
下载PDF
North-south difference of water mass properties across the Lembeh Strait, North Sulawesi, Indonesia 被引量:2
19
作者 WANG Weibo PAN Aijun +2 位作者 EDI Kusmanto MUH Hasanudin DENY Sutisna 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第12期1-8,共8页
Two field observations were conducted around the Lembeh Strait in September 2015 and 2016, respectively.Evidences indicate that seawater around the Lembeh Strait is consisted of North Pacific Tropical Water(NPTW),Nort... Two field observations were conducted around the Lembeh Strait in September 2015 and 2016, respectively.Evidences indicate that seawater around the Lembeh Strait is consisted of North Pacific Tropical Water(NPTW),North Pacific Intermediate Water(NPIW), North Pacific Tropical Intermediate Water(NPTIW) and Antarctic Intermediate Water(AAIW). Around the Lembeh Strait, there exist some north-south differences in terms of water mass properties. NPTIW is only found in the southern Lembeh Strait. Water mass with the salinity of 34.6 is only detected at 200–240 m between NPTW and NPTIW in the southern Lembeh Strait, and results from the process of mixing between the saltier water transported from the South Pacific Ocean and the lighter water from the North Pacific Ocean and Sulawesi Sea. According to the analysis on mixing layer depth, it is indicated that there exists an onshore surface current in the northern Lembeh Strait and the surface current in the Lembeh Strait is southward.These dramatic differences of water masses demonstrate that the less water exchange has been occurred between the north and south of Lembeh Strait. In 2015, the positive wind stress curl covering the northern Lembeh Strait induces the shoaling of thermocline and deepening of NPIW, which show that the north-south difference of airsea system is possible of inducing north-south differences of seawater properties. 展开更多
关键词 water mass Lembeh Strait north-south difference
下载PDF
Annual variation in Calanus sinicus abundance and population structure in the northern boundary area of the Yellow Sea Cold Water Mass 被引量:2
20
作者 尹洁慧 张光涛 +2 位作者 赵增霞 王世伟 万艾勇 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2013年第6期1284-1294,共11页
The Yellow Sea Cold Water Mass (YSCWM) was suggested as an over-summering site of the dominant copepod species Calanus sinicus in coastal Chinese seas. Population abundance and structure were investigated by monthly... The Yellow Sea Cold Water Mass (YSCWM) was suggested as an over-summering site of the dominant copepod species Calanus sinicus in coastal Chinese seas. Population abundance and structure were investigated by monthly sampling along three transects across the northern boundary of the YSCWM during 2009-2010. Results show that thermal stratification existed from June to October and that the vertical thermal difference increased with depth. Generally, total abundance was lowest in October and highest in June, and the female/male sex ratio was highest in February and lowest in August. Evident spatial differences in abundance were observed during the existence of the YSCWM. In June, total abundance averaged 158.8 ind/m~ at well-stratified stations, and 532.1 ind/m3 at other stations. Similarly, high abundances of 322.0 and 324.4 ind/m3 were recorded from July to August inside the YSCWM, while the abundance decreased from 50.4 to 1.9 ind/m3 outside the water mass. C. sinicus distribution tended to even out over the study area in September when the YSCWM disappeared. We believe that the YSCWM may retard population recruitment in spring and preserve abundant cohorts in summer. The summer population was transported to neritic waters in autumn. In addition to low temperatures, stable vertical structure was also an essential condition for preservation of the summer population. C. sinicus can survive the summer in marginal areas in high abundance, but the population structure is completely different in terms of C5 proportion and sex ratio. 展开更多
关键词 Calanus sinicus Yellow Sea Cold water mass (YSCWM) over-summer strategy boundary area thermal stratification
下载PDF
上一页 1 2 171 下一页 到第
使用帮助 返回顶部