期刊文献+
共找到4,656篇文章
< 1 2 233 >
每页显示 20 50 100
Research progress on the water vapor channel within the Yarlung Zsangbo Grand Canyon, China 被引量:1
1
作者 Xuelong Chen Yajing Liu +9 位作者 Yaoming Ma Xiangde Xu Xin Xu Luhan Li Dianbin Cao Qiang Zhang Gaili Wang Maoshan Li Siqiong Luo Xin Wang 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期10-15,共6页
The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Pl... The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Plateau(TP).This paper summarizes the scientific achievements obtained from the data collected by the INVC observation network and highlights the progress in investigating the development of heavy rainfall events associated with water vapor changes.The rain gauge network of the INVC can represent the impacts of the Yarlung Zsangbo Grand Canyon(YGC)topography on precipitation at the hourly scale.The microphysical characteristics of the precipitation in the YGC are different than those in the lowland area.The GPM-IMERG(Integrated MultisatellitE Retrievals for Global Precipitation Measurement)satellite precipitation data for the YGC region should be calibrated before they are used.The meridional water vapor flux through the YGC is more important than the zonal flux for the precipitation over the southeastern TP.The decreased precipitation around the YGC region is partly due to the decreased meridional water vapor flux passing through the YGC.High-resolution numerical models can benefit precipitation forecasting in this region by using a combination of specific schemes that capture the valley wind and water vapor flux along the valley floor. 展开更多
关键词 water vapor channel Land-air interaction Mountian meteorology Extreme rainfall Observation network
下载PDF
Analysis of the effect of the 2021 Semeru eruption on water vapor content and atmospheric particles using GNSS and remote sensing
2
作者 Mokhamad Nur Cahyadi Arizal Bawasir +7 位作者 Syachrul Arief Amien Widodo Meifal Rusli Deni Kusumawardani Yessi Rahmawati Ana Martina Putra Maulida Hilda Lestiana 《Geodesy and Geodynamics》 EI CSCD 2024年第1期33-41,共9页
Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle ... Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle components in the atmosphere can be monitored using Global Navigation Satellite System(GNSS)technology and remote sensing satellites.GNSS signal propagation delay in Precise Point Positioning(PPP)processing can be used to determine Zenith Tropospheric Delay(ZTD)and Precipitable Water Vapor(PWV)variables so that atmospheric conditions can be generated.In addition,by using remote sensing satellite data,it is possible to obtain rainfall data with high temporal resolution as well as the dominant particle and gas content values during eruptions.During the eruption period,the high value of PWV was dominated by the high intensity of precipitation during the rainy season.High rainfall before the eruption caused activity inside the mountain to increase,which occurred in avalanche type eruption.Apart from that,the atmosphere around Semeru was also dominated by SO_(2)content,which spreaded for tens of kilometers.SO_(2)content began to be detected significantly by remote sensing sensors on December 7,2021.In this study,deformation and atmospheric monitoring were also carried out using low-cost GNSS at the Semeru Monitoring Station on September 9-15,2022.The results of the ZTD and ZWD values show the dominance of the wet component,which is directly proportional to rainfall activity in this period. 展开更多
关键词 Semeru GNSS water vapor RAINFALL SO_(2)
下载PDF
Linkage between precipitation isotopes and water vapor sources in the monsoon margin:Evidence from arid areas of Northwest China
3
作者 CHEN Fenli ZHANG Qiuyan +3 位作者 WANG Shengjie CHEN Jufan GAO Minyan Mohd Aadil BHAT 《Journal of Arid Land》 SCIE CSCD 2024年第3期355-372,共18页
The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is u... The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is usually sensitive to climate change.The water resource management in the monsoon margin should be better planned by understanding the composition of precipitation isotope and its influencing factors.In this study,the precipitation samples were collected at five sampling sites(Baiyin City,Kongtong District,Maqu County,Wudu District,and Yinchuan City)of the monsoon margin in the northwest of China in 2022 to analyze the characteristics of stable hydrogen(δD)and oxygen(δ18O)isotopes.We analyzed the impact of meteorological factors(temperature,precipitation,and relative humidity)on the composition of precipitation isotope at daily level by regression analysis,utilized the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)-based backward trajectory model to simulate the air mass trajectory of precipitation events,and adopted the potential source contribution function(PSCF)and concentration weighted trajectory(CWT)to analyze the water vapor sources.The results showed that compared with the global meteoric water line(GMWL),the slope of the local meteoric water line(LMWL;δD=7.34δ^(18)O-1.16)was lower,indicating the existence of strong regional evaporation in the study area.Temperature significantly contributed toδ18O value,while relative humidity had a significant negative effect onδ18O value.Through the backward trajectory analysis,we found eight primary locations that were responsible for the water vapor sources of precipitation in the study area,of which moisture from the Indian Ocean to South China Sea(ITSC)and the western continental(CW)had the greatest influence on precipitation in the study area.The hydrogen and oxygen isotopes in precipitation are significantly influenced by the sources and transportation paths of air mass.In addition,the results of PSCF and CWT analysis showed that the water vapor source areas were primarily distributed in the south and northwest direction of the study area. 展开更多
关键词 water vapor monsoon margin stable water isotope transport trajectory air mass d-excess Δ18O δD
下载PDF
Consistency of Tropospheric Water Vapor between Reanalyses and Himawari-8/AHI Measurements over East Asia
4
作者 Di DI Jun LI +3 位作者 Yunheng XUE Min MIN Bo LI Zhenglong LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期19-38,共20页
High spatiotemporal resolution radiances from the advanced imagers onboard the new generation of geostationary weather satellites provide a unique opportunity to evaluate the abilities of various reanalysis datasets t... High spatiotemporal resolution radiances from the advanced imagers onboard the new generation of geostationary weather satellites provide a unique opportunity to evaluate the abilities of various reanalysis datasets to depict multilayer tropospheric water vapor(WV),thereby enhancing our understanding of the deficiencies of WV in reanalysis datasets.Based on daily measurements from the Advanced Himawari Imager(AHI)onboard the Himawari-8 satellite in 2016,the bias features of multilayer WV from six reanalysis datasets over East Asia are thoroughly evaluated.The assessments show that wet biases exist in the upper troposphere in all six reanalysis datasets;in particular,these biases are much larger in summer.Overall,we find better depictions of WV in the middle troposphere than in the upper troposphere.The accuracy of WV in the ERA5 dataset is the highest,in terms of the bias magnitude,dispersion,and pattern similarity.The characteristics of the WV bias over the Tibetan Plateau are significantly different from those over other parts of East Asia.In addition,the reanalysis datasets all capture the shift of the subtropical high very well,with ERA5 performing better overall. 展开更多
关键词 AHI reanalysis dataset multilayer water vapor assessment radiative transfer model
下载PDF
Evaluation of surface temperature and pressure derived from MERRA-2 and ERA5 reanalysis datasets and their applications in hourly GNSS precipitable water vapor retrieval over China 被引量:2
5
作者 Liangke Huang Xiaoyang Fang +3 位作者 Tengxu Zhang Haoyu Wang Lei Cui Lilong Liu 《Geodesy and Geodynamics》 CSCD 2023年第2期111-120,共10页
Temperature and pressure play key roles in Global Navigation Satellite System(GNSS) precipitable water vapor(PWV) retrieval. The National Aeronautics and Space Administration(NASA) and European Center for Medium-Range... Temperature and pressure play key roles in Global Navigation Satellite System(GNSS) precipitable water vapor(PWV) retrieval. The National Aeronautics and Space Administration(NASA) and European Center for Medium-Range Weather Forecasts(ECMWF) have released their latest reanalysis product: the modern-era retrospective analysis for research and applications, version 2(MERRA-2) and the fifthgeneration ECMWF reanalysis(ERA5), respectively. Based on the reanalysis data, we evaluate and analyze the accuracy of the surface temperature and pressure products in China using the the measured temperature and pressure data from 609 ground meteorological stations in 2017 as reference values.Then the accuracy of the two datasets and their performances in estimating GNSS PWV are analyzed. The PWV derived from the pressure and temperature products of ERA5 and MERRA-2 has high accuracy. The annual average biases of pressure and temperature for ERA5 are-0.07 hPa and 0.45 K, with the root mean square error(RMSE) of 0.95 hPa and 2.04 K, respectively. The annual average biases of pressure and temperature for MERRA-2 are-0.01 hPa and 0.38 K, with the RMSE of 1.08 h Pa and 2.66 K, respectively.The accuracy of ERA5 is slightly higher than that of MERRA-2. The two reanalysis data show negative biases in most regions of China, with the highest to lowest accuracy in the following order: the south,north, northwest, and Tibet Plateau. Comparing the GNSS PWV calculated using MERRA-2(GNSS MERRA-2 PWV) and ERA5(GNSS ERA5 PWV) with the radiosonde-derived PWV from 48 co-located GNSS stations and the measured PWV of the co-location radiosonde stations, it is found that the accuracy of GNSS ERA5 PWV is better than that of GNSS MERRA-2 PWV. These results show the different applicability of surface temperature and pressure products from MERRA-2 and ERA5 data, indicating that both have important applications in meteorological research and GNSS water vapor monitoring in China. 展开更多
关键词 Temperature and pressure Global navigation satellite system Precipitable water vapor MERRA-2 ERA5
下载PDF
Decadal trends in precipitable water vapor over the Indus River Basin using ERA5 reanalysis data 被引量:1
6
作者 Seema RANI Jyotsna SINGH +2 位作者 Subhash SINGH Purushottam TIWARI Suraj MAL 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2928-2945,共18页
Precipitable Water Vapor(PWV)constitutes a pivotal parameter within the domains of atmospheric science,and remote sensing due to its profound influence on Earth’s climate dynamics and weather patterns.It exerts a sig... Precipitable Water Vapor(PWV)constitutes a pivotal parameter within the domains of atmospheric science,and remote sensing due to its profound influence on Earth’s climate dynamics and weather patterns.It exerts a significant impact on atmospheric stability absorption and emission of radiation,thus engendering alterations in the Earth’s radiative equilibrium.As such,precise quantification of PWV holds the potential to enhance weather prognostication and fortify preparedness against severe meteorological phenomena.This study aimed to elucidate the spatial and temporal changes in seasonal and annual PWV across the Indus River Basin and its sub-basins using ERA5 reanalysis datasets.The present study used ERA5 PWV(entire atmospheric column),air temperature at 2 m(t2m)and 500 hPa(T_500hPa),evapotranspiration,and total cloud cover data from 1960 to 2021.Theil Sen slope estimator and Mann-Kendall test were used for trend analysis.Correlation and multiple regression methods were used to understand the association of PWV with other factors.The findings have unveiled the highest increase in mean PWV during the monsoon(0.40 mm/decade),followed by premonsoon(0.37 mm/decade),post-monsoon(0.27 mm/decade),and winter(0.19 mm/decade)throughout the study period.Additionally,the mean PWV exhibited the most pronounced positive trend in the sub-basin Lower Indus(LI),followed by Panjnad(P),Kabul(K),and Upper Indus(UI)across all seasons,except winter.Annual PWV has also risen in the Indus basin and its sub-basins over the last six decades.PWV exhibits a consistent upward trend up to an elevation of 3500 m within the basin which is most pronounced during the monsoon season,followed by the pre-monsoon.The escalating PWV within the basin is reasonably ascribed to increasing air temperatures,augmented evapotranspiration,and heightened cloud cover.These findings hold potential utility for pertinent authorities engaged in water resource management and planning. 展开更多
关键词 HIMALAYA Precipitable water vapor Indus River Basin ATMOSPHERE Climate Change ERA5 Reanalysis data
下载PDF
Influence of water vapor on the separation of volatile organic compound/nitrogen mixture by polydimethylsiloxane membrane
7
作者 Yifan Liang Haibo Lei +2 位作者 Xinlei He Haoli Zhou Wanqin Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期26-36,共11页
In the industrial treatment of waste volatile organic compound(VOC)streams by membrane technology,a third impurity,generally,water vapor,coexists in the mixture of VOC and nitrogen or air,and can affect membrane perfo... In the industrial treatment of waste volatile organic compound(VOC)streams by membrane technology,a third impurity,generally,water vapor,coexists in the mixture of VOC and nitrogen or air,and can affect membrane performance and the design of the industrial process.This study focused on the investigation of the effect of water vapor on the separation performance of the separation of VOC/water/nitrogen mixtures by a polydimethylsiloxane(PDMS)membrane.Three types of VOCs:water-miscible ethanol,water-semi-miscible butanol,and water-immiscible cyclohexane,were selected for the study.Different operating parameters including,concentration of the feed VOC,feed temperature,and concentration of the feed water were compared for the separation of binary and ternary VOC/nitrogen mixtures.The interaction between the VOC and water was analyzed to explain the transportation mechanism after analyzing the difference in the membrane performance for the separation of binary and ternary mixtures.The results indicated that the interaction between the VOC(or nitrogen)and water is the key factor affecting membrane performance.Water can promote the permeation of hydrophilic VOC but prevent hydrophobic VOC through the membrane for the separation of ternary VOC/water/nitrogen mixtures.These results will provide fundamental insights for the design of the recovery application process for industrial membrane-based VOCs,and also guidance for the investigation of the separation mechanism in vapor permeation. 展开更多
关键词 water vapor Ternary mixtures POLYDIMETHYLSILOXANE Membranes PERMEABILITY SELECTIVITY
下载PDF
Rising trends of global precipitable water vapor and its correlation with flood frequency
8
作者 Dong Ren Yong Wang +1 位作者 Guocheng Wang Lintao Liu 《Geodesy and Geodynamics》 EI CSCD 2023年第4期355-367,共13页
Using 4 global reanalysis data sets, significant upward trends of precipitable water vapor(PWV) were found in the 3 time periods of 1958-2020, 1979-2020, and 2000-2020. During 1958-2020, the global PWV trends obtained... Using 4 global reanalysis data sets, significant upward trends of precipitable water vapor(PWV) were found in the 3 time periods of 1958-2020, 1979-2020, and 2000-2020. During 1958-2020, the global PWV trends obtained using the ERA5 and JRA55 data sets are 0.19 ± 0.01 mm per decade(1.15 ± 0.31%)and 0.23 ± 0.01 mm per decade(1.45 ± 0.32%), respectively. The PWV trends obtained using the ERA5,JRA55, NCEP-NCAR, and NCEP-DOE data sets are 0.22 ± 0.01 mm per decade(1.18 ± 0.54%),0.21 ± 0.00 mm per decade(1.76 ± 0.56%), 0.27 ± 0.01 mm per decade(2.20 ± 0.70%) and 0.28 ± 0.01 mm per decade(2.19 ± 0.70%) for the period 1979-2020. During 2000-2020, the PWV trends obtained using ERA5, JRA55, NCEP-DOE, and NCEP-NCAR data sets are 0.40 ± 0.25 mm per decade(2.66 ± 1.51%),0.37 ± 0.24 mm per decade(2.19 ± 1.54%), 0.40 ± 0.26 mm per decade(1.96 ± 1.53%) and 0.36 ± 0.25 mm per decade(2.47 ± 1.72%), respectively. Rising PWV has a positive impact on changes in precipitation,increasing the probability of extreme precipitation and then changing the frequency of flood disasters.Therefore, exploring the relationship between PWV(derived from ERA5 and JRA55) change and flood disaster frequency from 1958 to 2020 revealed a significant positive correlation between them, with correlation coefficients of 0.68 and 0.79, respectively, which explains the effect of climate change on the increase in flood disaster frequency to a certain extent. The study can provide a reference for assessing the evolution of flood disasters and predicting their frequency trends. 展开更多
关键词 Precipitable water vapor(PWV) Linear trend Correlation analysis Flood frequency
下载PDF
Emphysematous sloughed floating ball after prostate water vaporization Rezum:A case report
9
作者 Mansour Alnazari Abdulaziz Bakhsh Emad Sabri Rajih 《World Journal of Clinical Cases》 SCIE 2023年第23期5525-5529,共5页
BACKGROUND Rezūm™water vapor therapy is a new minimally invasive endoscopic technology for the management and treatment of benign prostatic hyperplasia.CASE SUMMARY A 63-year-old male presented to our department with... BACKGROUND Rezūm™water vapor therapy is a new minimally invasive endoscopic technology for the management and treatment of benign prostatic hyperplasia.CASE SUMMARY A 63-year-old male presented to our department with severe dysuria,frequency,urgency,and interrupted stream 2 mo after receiving Rezūm™therapy.The symptoms were caused by a retained floating emphysematous necrotic sloughed tissue.We also discovered a persistent bacterial infection that was resistant to parenteral antimicrobial therapy.The treatment of the patient included surgical removal of the necrotic tissue.CONCLUSION Despite the good safety profile and minimal adverse events related to Rezūm™therapy,major complications can still occur. 展开更多
关键词 Benign prostatic hyperplasia Rezum Lower urinary tract symptoms Minimally invasive therapy water vapor therapy Transurethral resection of the prostate Case report
下载PDF
Seasonal Difference of the Spatio-Temporal Variation of Precipitable Water Vapor in China
10
作者 Qixu Li Qianqian Song +1 位作者 Zhitong Qian Ying Huang 《Journal of Geoscience and Environment Protection》 2023年第5期159-173,共15页
This study analyzes the spatial and temporal distribution characteristics of seasonal precipitable water vapor (PWV) in China between 1979 and 2008. To achieve this, the observed temperature dew point difference and a... This study analyzes the spatial and temporal distribution characteristics of seasonal precipitable water vapor (PWV) in China between 1979 and 2008. To achieve this, the observed temperature dew point difference and atmospheric pressure at various altitudes of 102 radiosonde stations were utilized. The analysis involved calculating and examining the PWV variations across the different seasons in the study period. The results are illustrated as follows: 1) The annual mean and seasonal mean PWV over China is characterized by decreasing from southeast to northwest. The PWV has obvious seasonal features. It is the least in winter, which is mainly affected by latitude and altitude, and the most in summer, which is mainly affected by the monsoon. It is the medium in spring and autumn, with more in autumn than in spring. 2) The spatial distribution pattern of four seasonal PWV is approximately opposite to its variation coefficient distribution pattern, that is, the monsoon (non-monsoon) areas with more (less) PWV have a smaller (larger) variation amplitude. 3) The distribution pattern of four seasonal PWV shows a consistent distribution pattern in the whole region and the winter characteristics are the most significant. The abnormal variation of PWV shows consistent interdecadal oscillation, and it exhibits an obvious phase transition around 2002 when the PWV has an increasing shift in winter, spring, and summer, while it is more complicated in autumn. 展开更多
关键词 Precipitable water vapor Distribution Characteristics Four Seasons
下载PDF
Spatiotemporal Variation of Water Vapor Budget over the Tibetan Plateau and Its Regulation on Precipitation
11
作者 WANG Hui-mei ZHAO Ping 《Journal of Tropical Meteorology》 SCIE 2022年第2期194-206,共13页
The spatiotemporal variations of water vapor budget(Bt)and their relationships with local precipitation over the Tibetan Plateau(TP)are critical for understanding the characteristics of spatial distributions and evolu... The spatiotemporal variations of water vapor budget(Bt)and their relationships with local precipitation over the Tibetan Plateau(TP)are critical for understanding the characteristics of spatial distributions and evolutions of water resources over the TP.Based on a boundary of the TP,this paper explored the spatiotemporal characteristics of Bt over the TP using the European Centre for Medium-Range Weather Forecasts interim(ERA-Interim)reanalysis datasets.On the climatological mean,the TP is a water vapor sink throughout four seasons and the seasonal variation of Bt is closely associated with the water vapor budget at the southern boundary of the TP.The transient water vapor transport is quasimeridional in the mid-and high-latitude areas and plays a leading role in winter Bt but contributes little in other seasons.At the interannual timescale,the variation of Bt is mainly determined by anomalous water vapor transports at the western and southern boundaries.The Bay of Bengal,the North Arabian Sea,and mid-latitude West Asia are the main sources of excessive water vapor for a wetter TP.At the southern and western boundaries,the transient water vapor budget regulates one-third to four-fifths of Bt anomalies.Moreover,the variability of the TP Bt is closely associated with precipitation over the central-southern and southeastern parts of the TP in summer and winter,which is attributed to the combined effect of the stationary and transient water vapor budgets.Given the role of the transient water vapor transport,the linkage between the TP Bt and local precipitation is tighter. 展开更多
关键词 Tibetan Plateau water vapor budget transient water vapor transport stationary water vapor transport PRECIPITATION
下载PDF
Autonomous Changes in the Concentration of Water Vapor Drive Climate Change
12
作者 William A. Van Brunt 《Atmospheric and Climate Sciences》 2020年第4期443-508,共66页
When compared to the average annual global temperature record from 1880, no published climate model posited on the assumption that the increasing concentration of atmospheric carbon dioxide is the driver of climate ch... When compared to the average annual global temperature record from 1880, no published climate model posited on the assumption that the increasing concentration of atmospheric carbon dioxide is the driver of climate change can accurately replicate the significant variability in the annual temperature record. Therefore, new principles of atmospheric physics are developed for determining changes in the average annual global temperature based on changes in the average atmospheric concentration of water vapor. These new principles prove that: 1) Changes in average global temperature are not driven by changes in the concentration of carbon dioxide;2) Instead, autonomous changes in the concentration of water vapor, <span style="white-space:nowrap;">Δ</span>TPW, drive changes in water vapor heating, thus, the average global temperature, <span style="white-space:nowrap;">Δ</span>T<sub>Avg</sub>, in accordance with this principle, <span style="white-space:normal;"><span style="white-space:nowrap;">Δ</span>T</span><span style="white-space:normal;"><sub>Avg</sub>=0.4<span style="white-space:normal;"><span style="white-space:nowrap;">Δ</span>TPW </span></span>the average accuracy of which is ±0.14%, when compared to the variable annual, 1880-2019, temperature record;3) Changes in the concentration of water vapor and changes in water vapor heating are not a feedback response to changes in the concentration of CO<sub>2</sub>;4) Rather, increases in water vapor heating and increases in the concentration of water vapor drive each other in an autonomous positive feedback loop;5) This feedback loop can be brought to a halt if the average global rate of precipitation can be brought into balance with the average global rate of evaporation and maintained there;and, 6) The recent increases in average global temperature can be reversed, if average global precipitation can be increased sufficiently to slightly exceed the average rate of evaporation. 展开更多
关键词 Carbon Dioxide Climate Change water vapor Global Warming DRIVER Average Global Temperature Change in Concentration water vapor water vapor Heating
下载PDF
Erratum to “Autonomous Changes in the Concentration of Water Vapor Drive Climate Change” [Atmospheric and Climate Sciences 10 (2020) 443-508]
13
作者 William Van Brunt 《Atmospheric and Climate Sciences》 2021年第3期535-546,共12页
<p> A. <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Changes </span></span></span><... <p> A. <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Changes </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in</span></span></span><span><span><span style="font-family:" color:black;"=""><span style="font-family:Verdana;"> average global temperature are not driven by changes in the concentration of carbon dioxide;</span></span></span></span> </p> <p> <span style="font-family:Verdana;">B. </span><span style="font-family:Verdana;">Instead, autonomous changes in the concentration of water vapor, </span><span style="font-family:Verdana;">Δ</span><span style="font-family:Verdana;">TPW, </span><span color:black;"=""><span style="font-family:Verdana;">drive changes in water vapor heating, thus, </span><span style="background:#C00000;font-family:Verdana;">changes in</span><span style="font-family:Verdana;"> the average global temperature, </span></span><span style="font-family:Verdana;">Δ</span><span style="font-family:Verdana;"><i>T</i></span><span style="font-family:Verdana;"><sub>Avg</sub></span><span color:black;"=""><span style="font-family:Verdana;">, </span><span style="background:#C00000;font-family:Verdana;">in deg. Celsius are calculated</span><span style="font-family:Verdana;"> in accordance with this principle,</span></span> </p> <p style="text-align:center;margin-left:10pt;"> <span><span><span style="font-family:" color:black;"=""><span style="font-family:Verdana;"></span><img src="Edit_6e770969-a7c9-4192-a6ad-03de906a4d65.bmp" alt="" /><br /> </span></span></span> </p> <p align="center" style="margin-left:10.0pt;text-align:center;"> <span><span><span style="font-family:;" "=""><span></span></span></span><span><span><span style="font-family:" color:black;"=""></span></span></span></span> </p> <p> <span><span><span style="font-family:" color:black;background:#c00000;"=""><span style="font-family:Verdana;">measured in kg<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span></span>m</span><sup><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span>2</span></sup><span style="font-family:Verdana;">,</span></span></span></span><span><span><span style="font-family:" color:black;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the average accuracy of which is ±0.14%, when compared to the variable annual, 1880 </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:" color:black;"=""><span style="font-family:Verdana;"> 2019, </span><span style="background:#C00000;font-family:Verdana;">average global </span><span style="font-family:Verdana;">temperature record;</span></span></span></span> </p> 展开更多
关键词 Carbon Dioxide Climate Change water vapor Global Warming DRIVER Average Global Temperature Change in Concentration water vapor water vapor Heating
下载PDF
Meteorological applications of precipitable water vapor measurements retrieved by the national GNSS network of China 被引量:7
14
作者 Liang Hong Cao Yunchang +3 位作者 Wan Xiaomin Xu Zhifang Wang Haishen Hu Heng 《Geodesy and Geodynamics》 2015年第2期135-142,共8页
In this study, the Global Navigation Satellite System (GNSS) network of China is discussed, which can be used to monitor atmospheric precipitable water vapor (PWV). By the end of 2013, the network had 952 GNSS sit... In this study, the Global Navigation Satellite System (GNSS) network of China is discussed, which can be used to monitor atmospheric precipitable water vapor (PWV). By the end of 2013, the network had 952 GNSS sites, including 260 belonging to the Crustal Movement Observation Network of China (CMONOC) and 692 belonging to the China Meteorological Administration GNSS network (CMAGN). Additionally, GNSS observation collecting and data processing procedures are presented and PWV data quality control methods are investigated. PWV levels as determined by GNSS and radiosonde are compared. The results show that GNSS estimates are generally in good agreement with measurements of radio- sondes and water vapor radiometers (WVR). The PWV retrieved by the national GNSS network is used in weather forecasting, assimilation of data into numerical weather prediction models, the validation of PWV estimates by radiosonde, and plum rain monitoring. The network is also used to monitor the total ionospheric electron content. 展开更多
关键词 Precipitable water vapor (PWV) Global navigation satellite system(GNSS) Crustal Movement ObservationNetwork of China (CMONOC)China meteorological administra-tion GNSS network (CMAGN) water vapor radiometers (WVR) Quality control Meteorological application Assimilation
下载PDF
Relations of Water Vapor Transport from Indian Monsoon with That over East Asia and the Summer Rainfall in China 被引量:56
15
作者 张人禾 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第5期1005-1017,共13页
A diagnostic study is made to investigate the relationship between water vapor transport from Indian monsoon and that over East Asia in Northern summer. It is found that water vapor transport from Indian monsoon is in... A diagnostic study is made to investigate the relationship between water vapor transport from Indian monsoon and that over East Asia in Northern summer. It is found that water vapor transport from Indian monsoon is inverse to that over East Asia. More (less) Indian monsoon water vapor transport corresponds to less (more) water vapor transport over East Asia and less (more) rainfall in the middle and lower reaches of the Yangtze River valley. The Indian summer monsoon water vapor transport is closely related to the intensity of the western Pacific subtropical high in its southwestern part. The stronger (weaker) the Indian summer monsoon water vapor transport, the weaker (stronger) the western Pacific subtropical high in its southwestern part, which leads to less (more) water vapor transport to East Asia, and thus less (more) rainfall in the middle and lower reaches of the Yangtze River valley. Analysis of the out-going longwave radiation anomalies suggests that the convective heating anomalies over the Indian Ocean may have significant impact not only on the Indian monsoon, but also on the East Asian monsoon. 展开更多
关键词 water vapor transport Indian monsoon East Asian monsoon
下载PDF
The Recent Interdecadal and Interannual Variation of Water Vapor Transport over Eastern China 被引量:21
16
作者 孙博 祝亚丽 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第5期1039-1048,共10页
The climatological characteristics and interdecadal variability of the water vapor transport and budget over the Yellow River-Huaihe River valleys (YH1) and the Yangtze River-Huaihe River valleys (YH2) of East Chi... The climatological characteristics and interdecadal variability of the water vapor transport and budget over the Yellow River-Huaihe River valleys (YH1) and the Yangtze River-Huaihe River valleys (YH2) of East China were investigated in this study,using the NCEP/NCAR monthly mean reanalysis datasets from 1979 to 2009.Changes in the water vapor transport pattern occurred during the late 1990s over YH1 (YH2) that corresponded with the recent interdecadal changes in the eastern China summer precipitation pattern.The net moisture influx in the YH1 increased and the net moisture influx in the YH2 decreased during 2000-2009 in comparison to 1979-1999.Detailed features in the moisture flux and transport changes across the four boundaries were explored.The altered water vapor transport over the two domains can be principally attributed to the additive effects of the changes in the confluent southwesterly moisture flow by the Indian summer monsoon and East Asian summer monsoon (related with the eastward recession of the western Pacific subtropical high).The altered water vapor transport over YH1 was also partly caused by the weakened midlatitude westerlies. 展开更多
关键词 water vapor transport interdecadal variability summer monsoon midlatitude westerlies
下载PDF
Preliminary Results of 4-D Water Vapor Tomography in the Troposphere Using GPS 被引量:11
17
作者 毕研盟 毛节泰 李成才 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第4期551-560,共10页
Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System) satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was util... Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System) satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was utilized to retrieve the local horizontal and vertical structure of water vapor over a local GPS receiver network using SWV amounts as observables in the tomography. The method of obtaining SWV using ground-based GPS is described first, and then the theory of tomography using GPS is presented. A water vapor tomography experiment was made using a small GPS network in the Beijing region. The tomographic results were analyzed in two ways: (1) a pure GPS method, i.e., only using GPS observables as input to the tomography, (2) combining GPS observables with vertical constraints or a priori information, which come from average radiosonde measurements over three days. It is shown that the vertical structure of water vapor is well resolved with a priori information. Comparisons of profiles between radiosondes and GPS show that the RMS error of the tomography is about 1-2 mm. It is demonstrated that the tomography can monitor the evolution of tropospheric water vapor in space and time. The vertical resolution of the tomography is tested with layer thicknesses of 600 m, 800 m and 1000 m. Comparisons with radiosondes show that the result from a resolution of 800 m is slightly better than results from the other two resolutions in the experiment. Water vapor amounts recreated from the tomography field agree well with precipitable water vapor (PWV) calculated using GPS delays. Hourly tomographic results are also shown using the resolution of 800 m. Water vapor characteristics under the background of heavy rainfall development are analyzed using these tomographic results. The water vapor spatio-temporal structures derived from the GPS network show a great potential in the investigation of weather disasters. 展开更多
关键词 GPS slant path water vapor TOMOGRAPHY
下载PDF
The Water Vapor Transport Model at the Regional Boundaryduring the Meiyu Period 被引量:11
18
作者 徐祥德 苗秋菊 +1 位作者 王继志 张雪金 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第3期333-342,共10页
The water vapor transport model at the regional boundary in the Meiyu period is put forward through diagnostic analysis. The numerical simulation on the water vapor transport at the boundary of China in the heavy rain... The water vapor transport model at the regional boundary in the Meiyu period is put forward through diagnostic analysis. The numerical simulation on the water vapor transport at the boundary of China in the heavy rainfall period during June–July 1998 shows that the feature of water vapor transport in June is different from that in July. The main body of the water cycle that forms the torrential rain in the Yangtze River Valley is made up of water vapor transport at the western and southern boundaries of the China region in June, whereas the water vapor flow at the western boundary in middle Tibet turns out to be the main body of water vapor sources in July. The water vapor transport at the western boundary of the Tibetan Plateau and the southern boundary of China plays an important role in the torrential rain in the Yangtze River Valley. The temporal and spatial distribution characteristics of water vapor flow at the regional boundary and their theoretical model would provide the scientific proof for the heavy rain forecasts in the Yangtze River Valley. 展开更多
关键词 water vapor flow torrential rain Yangtze River Valley Meiyu period
下载PDF
Isotopic composition of precipitation over Arid Northwestern China and its implications for the water vapor origin 被引量:20
19
作者 柳鉴容 宋献方 +3 位作者 孙晓敏 袁国富 刘鑫 王仕琴 《Journal of Geographical Sciences》 SCIE CSCD 2009年第2期164-174,共11页
In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Prec... In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Precipitation(CHNIP).During the year 2005 and 2006, monthly precipitation samples have been collected and analyzed for the composition of δD and δ18O.The established local meteoric water line δD=7.42δ18O+1.38, based on the 95 obtained monthly composite samples, could be treated as isotopic input function across the region.The deviations of slope and intercept from the Global Meteoric Water Line indicated the specific regional meteorological conditions.The monthly δ18O values were characterized by a positive correlation with surface air temperature(δ18O(‰) =0.33 T(℃)-13.12).The amount effect visualized during summer period(δ18O(‰) =-0.04P(mm)-3.44) though not appeared at a whole yearly-scale.Spatial distributions of δ18O have properly portrayed the atmospheric circulation background in each month over Arid Northwestern China.The quan-titative simulation of δ18O, which involved a Rayleigh fractionation and a kinetic fractionation, demonstrated that the latter one was the dominating function of condensation of raindrops.Furthermore, the raindrop suffered a re-evaporation during falling processes, and the precipitation vapor might have been mixed with a quantity of local recycled water vapor.Multiple linear regression equations and a δ18O-T relation have been gained by using meteorological parameters and δ18O data to evaluate physical controls on the long-term data.The established δ18O-T relation, which has been based on the present-day precipitation, could be considered as a first step of quantitatively reconstructing the historical environmental climate. 展开更多
关键词 Arid Northwestern China (ANC) Δ^18O PRECIPITATION water vapor origin
下载PDF
Water Vapor Transport and Cross-Equatorial Flow over the Asian-Australia Monsoon Region Simulated by CMIP5 Climate Models 被引量:7
20
作者 宋亚娟 乔方利 +1 位作者 宋振亚 姜春飞 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第3期726-738,共13页
The summer mean water vapor transport (WVT) and cross-equatorial flow (CEF) over the Asian- Australian monsoon region simulated by 22 coupled atmospheric-oceanic general circulation models (AOGCMs) from the Worl... The summer mean water vapor transport (WVT) and cross-equatorial flow (CEF) over the Asian- Australian monsoon region simulated by 22 coupled atmospheric-oceanic general circulation models (AOGCMs) from the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) were evaluated. Based on climatology of the twentieth-century simulations, most of models have a reason- ably realistic representation of summer monsoon WVT characterized by southeast water vapor conveyor belt over the South Indian Ocean and southwest belt from the Arabian Sea to the East Asian. The correlation coefficients between NCEP reanalysis and simulations of BCC-CSMI-1, BNU-ESM, CanESM2, FGOALS-s2, MIROC4h and MPI-ESM-LR are up to 0.8. The simulated CEF depicted by the meridional wind along the equator includes the Somali jet and eastern CEF in low atmosphere and the reverse circulation in upper atmosphere, which were generally consistent with NCEP reanalysis. Multi-model ensemble means (MME) can reproduce more reasonable climatological features in spatial distribution both of WVT and CEF. Ten models with more reasonable WVT simulations were selected for future projection studies, including BCC- CSMI-1, BNU-ESM, CanESM2, CCSM4, FGOALS-s2, FIO-ESM, GFDL-ESM2G, MRIOCS, MPI-ESM-LR and NorESM-1M. Analysis based on the future projection experiments in RCP (Representative Concentra- tion Pathway) 2.6, RCP4.5, RCP6 and RCP8.5 show that the global warming forced by different RCP scenarios will results in enhanced WVT over the Indian area and the west Pacific and weaken WVT in the low latitudes of tropical Indian Ocean. 展开更多
关键词 CMIP5 AOGCMs water vapor transport cross-equatorial flow future projection
下载PDF
上一页 1 2 233 下一页 到第
使用帮助 返回顶部