The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and ...The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and animals.This paper explored for the first time the interaction mechanism between natural rubber latex(NRL)and bentonite suspensions(BTs)through a series of characterization experiments,as well as the potential applications in water-based drilling fluids(WBDF).The gel viscoelasticity experiments showed that NRL could decrease the consistency coefficient(k)and flow index(n)of BTs,and enhance the shear thinning performance of BTs as pseudo-plastic fluids.In addition,0.5 w/v%NRL not only increased the critical yield stress and strengthened the structural strength between the bentonite particles,but also facilitated the compatibility of pressure loss and flow efficiency.The evaluation of colloidal stability and WBDF performance indicated that NRL particles could promote the hydration and charge stability on the surface of BTs particles,and optimize the particle size distribution and flow resistance of WBDF under the"intercalation-exfoliation-encapsulation"synergistic interaction.Moreover,NRL can improve the rheological properties of WBDF at high temperatures(<150.C),and form a dense blocking layer by bridging and sealing the pores and cracks of the filter cake,which ultimately reduces the permeability of the cake and the filtration loss of WBDF.展开更多
Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of th...Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.展开更多
Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of...Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of using hydrophobically modified silica nanoparticle(HMN)to enhance the comprehensive performance of WBDFs in the Xinjiang Oilfield,especially the anti-collapse performance.The effect of HMN on the overall performance of WBDFs in the Xinjiang Oilfield,including inhibition,plugging,lu-bricity,rheology,and filtration loss,was studied with a series of experiments.The mechanism of HMN action was studied by analyzing the changes of shale surface structure and chemical groups,wettability,and capillary force.The experimental results showed that HMN could improve the performance of WBDFs in the Xinjiang Oilfeld to inhibit the hydration swelling and dispersion of shale.The plugging and lubrication performance of the WBDFs in the Xinjiang Oilfield were also enhanced with HMN based on the experimental results.HMN had less impact on the rheological and filtration performance of the WBDFs in the Xinjiang Oilfield.In addition,HMN significantly prevented the decrease of shale strength.The potential mechanism of HMN was as follows.The chemical composition and structure of the shale surface were altered due to the adsorption of HMN driven by electrostatic attraction.Changes of the shale surface resulted in significant wettability transition.The capillary force of the shale was converted from a driving force of water into the interior to a resistance.In summary,hydrophobic nanoparticles presented afavorable application potential for WBDFs.展开更多
Difenoconazole(DIF)is a representative variety of broad-spectrum triazole fungicides and liposoluble pesticides.However,the water solubility of DIF is so poor that its application is limited in plant protection.In add...Difenoconazole(DIF)is a representative variety of broad-spectrum triazole fungicides and liposoluble pesticides.However,the water solubility of DIF is so poor that its application is limited in plant protection.In addition,the conventional formulations of DIF always contain abundant organic solvents,which may cause pollution of the environment.In this study,two DIF/cyclodextrins(CDs)inclusion complexes(ICs)were successfully prepared,which were DIF/β-CD IC and DIF/hydroxypropyl-β-CD IC(DIF/HP-β-CD IC).The effect of cyclodextrins on the water solubility and the antifungal effect of liposoluble DIF pesticide were investigated.According to the phase solubility test,the molar ratio and apparent stability constant of ICs were obtained.Fourier transform infrared spectroscopy,thermal gravity analysis,X-ray diffraction and scanning electron microscopy were used systematically to characterize the formation and characteristics of ICs.The results noted that DIF successfully entered the cavities of two CDs.In addition,the antifungal effect test proved the better performance of DIF/HP-β-CD IC,which exceeded that of DIF emulsifiable concentrate.Therefore,our study provides informative direction for the intelligent use of liposoluble pesticides with cyclodextrins to develop water-based environmentally friendly formulations.展开更多
The combination of nano sizes,large pore sizes and green synthesis is recognized as one of the most crucial and challenging problems in constructing metal-organic frameworks(MOFs).Herein,a water-based strategy is prop...The combination of nano sizes,large pore sizes and green synthesis is recognized as one of the most crucial and challenging problems in constructing metal-organic frameworks(MOFs).Herein,a water-based strategy is proposed for the synthesis of nanoscale hierarchical MOFs(NH-MOFs)with high crystallinity and excellent stability.This approach allows the morphology and porosity of MOFs to be fine tuned,thereby enabling the nanoscale crystal generation and a well-defined hierarchical system.The aqueous solution facilitates rapid nucleation kinetics,and the introduced modulator acts as a deprotonation agent to accelerate the deprotonation of the organic ligand as well as a structure-directing agent(SDA)to guide the formation of hierarchical networks.The assynthesized NH-MOFs(NH-ZIF-67)were assessed as efficient adsorbents and heterogeneous catalysts to facilitate the diffusion of guest molecules,outperforming the parent microZIF-67.This study focuses on understanding the NH-MOF growth rules,which could allow tailor-designing NH-MOFs for various functions.展开更多
Water-based drilling fluids can cause hydration of the wellbore rocks,thereby leading to instability.This study aimed to synthesize a hydrophobic small-molecule polymer(HLMP)as an inhibitor to suppress mud shale hydra...Water-based drilling fluids can cause hydration of the wellbore rocks,thereby leading to instability.This study aimed to synthesize a hydrophobic small-molecule polymer(HLMP)as an inhibitor to suppress mud shale hydration.An infrared spectral method and a thermogravimetric technique were used to characterize the chemical composition of the HLMP and evaluate its heat stability.Experiments were conducted to measure the linear swelling,rolling recovery rate,and bentonite inhibition rate and evaluate accordingly the inhibition performance of the HLMP.Moreover,the HLMP was characterized through measurements of the zeta potential,particle size distribution,contact angles,and interlayer space testing.As confirmed by the results,the HLMP could successfully be synthesized with a favorable heat stability.Furthermore,favorable results were found for the inhibitory processes of the HLMP on swelling and dispersed hydration during mud shale hydration.The positively charged HLMP could be electrically neutralized with clay particles,thereby inhibiting diffusion in the double electron clay layers.The hydrophobic group in the HLMP molecular structure resulted in the formation of a hydrophobic membrane on the rock surface,enhancing the hydrophobicity of the rock.In addition,the small molecules of the HLMP could plug the spaces between the layers of bentonite crystals,thereby reducing the entry of water molecules and inhibiting shale hydration.展开更多
To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines...To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines temperature effects on the rheological properties of two types of high-density water-based drilling fluids (fresh water-based and brine-based) under high temperature and high pressure (HTHP) with a Fann 50SL rheometer. On the basis of the water-based drilling fluid systems formulated in laboratory, this paper mainly describes the influences of different types and concentration of clay, the content of a colloid stabilizer named GHJ-1 and fluid density on the rheological parameters such as viscosity and shear stress. In addition, the effects of aging temperature and aging time of the drilling fluid on these parameters were also examined. Clay content and proportions for different densities of brine-based fluids were recommended to effectively regulate the rheological properties. Four theological models, the Bingham, power law, Casson and H-B models, were employed to fit the rheological parameters. It turns out that the H-B model was the best one to describe the rheological properties of the high-density drilling fluid under HTHP conditions and power law model produced the worst fit. In addition, a new mathematical model that describes the apparent viscosity as a function of temperature and pressure was established and has been applied on site.展开更多
Drilling fluids face failure during drilling deep reservoir with high temperature and high salt.The experimental results show that high temperature and salinity reduce the negative charge on the surface of bentonite i...Drilling fluids face failure during drilling deep reservoir with high temperature and high salt.The experimental results show that high temperature and salinity reduce the negative charge on the surface of bentonite in the drilling fluid and cause the coalescence of bentonite particles.As a result,the particles coalesce,the grid structure is destroyed,and the rheological properties,rock-carrying capacity and filtration properties are lost.To resolve the foregoing,in this study,0.05-wt%carbon nanotubes are introduced into a 4%bentonite drilling fluid under conditions where the temperature and concentration of added Na Cl reach 180°C and 10 wt%,respectively.The carbon nanotubes adsorb on the bentonite surface and increase the space among bentonite particles.The steric hindrance prevents the coalescence of bentonite in high temperature and high salt environment.Thus bentonite maintains the small size distribution of bentonite and supports the bentonite grid structure in the drilling fluid.As a result,the rock-carrying capacity of the drilling fluid increases by 85.1%.Moreover,the mud cake formed by the accumulation of small-sized bentonite particles is dense;consequently,the filtration of bentonite drilling fluid reduced by 30.2%.展开更多
Considering the increasing environmental pressure,environmentally friendly and high-performance water-based drilling fluids(WBDFs)have been widely studied in recent years to replace the commonly used oil-based drillin...Considering the increasing environmental pressure,environmentally friendly and high-performance water-based drilling fluids(WBDFs)have been widely studied in recent years to replace the commonly used oil-based drilling fluids(OBDFs).However,few of these drilling fluids are entirely composed of natural materials,which makes it difficult to achieve real environmental protection.Using laponite nanoparticles and various derivatives of natu ral mate rials,including cro sslinked starch,cellulose composite,gelatin ammonium salt,poly-l-arginine,and polyanionic cellulose,a kind of environmentally friendly water-based drilling fluid(EF-WBDF)was built for drilling in environment-sensitive areas.The properties of this EF-WBDF were evaluated by thermal stability tests on rheology,filtration,inhibition,and salt contamination.Besides,biological toxicity,biodegradability,heavy mental content and wheat cultivation tests were conducted to investigate the environmental factor of EF-WBDF.Results showed that EF-WBDF displayed satisfactory thermal resistance up to 150℃,and the rheological properties did not suffer significant fluctuation,showing potential application in high-temperature wells.The optimal rheological model of EF-WBDF was Herschel-Bulkley model.This EF-WBDF performed an eligible filtration of 14.2 mL at 150℃and a differential pressure of 3.5 MPa.This fluid could still maintain colloidal stability after being contaminated by 7.5%NaCl or 0.5%CaC1_(2).Meanwhile,rather low clay swelling degree of 2.44 mm and high shale recovery of more than 95%ensured the inhibitive capability of EF-WBDF.Furthermore,EF-WBDF presented a half maximal effective concentration(EC_(50))of51200 mg/L and a BOD/COD ratio of 47.55%,suggesting that EF-WBDF was non-toxic and easily biodegradable.The wheat cultivated in EF-WBDF could grow healthily,beneficial for reducing the adverse impact on ecological environment.The formed EF-WBDF has a promising future for drilling in environment-sensitive and high-temperature areas.展开更多
The demand for non-toxic and biodegradable shale inhibitors is growing in the drilling industry.In this paper,the effect of notoginsenoside(NS)as a new,environmentally friendly inhibitor of shale hydration is systemat...The demand for non-toxic and biodegradable shale inhibitors is growing in the drilling industry.In this paper,the effect of notoginsenoside(NS)as a new,environmentally friendly inhibitor of shale hydration is systematically studied for the first time.The inhibition performance of NS was evaluated via inhibition evaluation tests,including mud ball immersion tests,linear expansion tests,shale rolling recovery tests,and compressive strength tests.The inhibition mechanism of NS was analyzed using Fourier transform infrared spectroscopy(FTIR),contact angle measurements,particle size distribution determination,thermogravimetric analysis(TGA),and scanning electron microscopy(SEM).The experimental results demonstrate that NS is able to adhere to the clay surface,forming a hydrophobic film that prevents the entry of water molecules and inhibiting the hydration dispersion of the clay.Because of this,NS can maintain the original state of bentonite pellets in water,which can effectively reduce the swelling rate of bentonite,increase the recovery rate of shale drill cuttings,maintain the strength of the shale,and therefore maintain the stability of the borehole wall during drilling.In addition,NS is non-toxic,degradable,and compatible with water-based drilling fluids.The above advantages make NS a promising candidate for use as an environmentally friendly shale inhibitor.展开更多
Mud shale hydration and swelling are major challenges in the development of water-based drilling fuids(WBDFs).In this work,the inhibition performance and inhibition mechanism of polyethylene glycol(PEG)and potassium c...Mud shale hydration and swelling are major challenges in the development of water-based drilling fuids(WBDFs).In this work,the inhibition performance and inhibition mechanism of polyethylene glycol(PEG)and potassium chloride(KCl)were investigated by hot rolling recovery tests,linear swell tests,Fourier transform infrared spectroscopy,X-ray difraction,atomic absorption spectrophotometry and X-ray photoelectron spectroscopy.The experimental results show that the combination of PEG and KCl achieved higher recovery and lower linear swelling rate than those obtained by individual PEG or KCl.Compared to the d-spacing of Na-montmorillonite(Na-Mt)with PEG or KCl,the d-spacing of Na-Mt with PEG+KCl was lower,which indicates that KCl and PEG have synergistic inhibition efect.This synergistic efect can replace sodium ions and water molecules from the interlayer space of Na-Mt and decrease the d-spacing of Na-Mt.Based on the above experimental results and analysis,a method for optimizing PEG and KCl concentrations was proposed and further verifed by rheological and hot rolling recovery tests of WBDFs.Hence,the results of this work can provide valuable theoretical guidance for developing other synergistic inhibitors.展开更多
Water-based drill cuttings(WBDC)and bauxite are used as raw materials to prepare proppants with low density and high performance.The effects of sintering temperature,sintering period,mixture ratios of materials,doping...Water-based drill cuttings(WBDC)and bauxite are used as raw materials to prepare proppants with low density and high performance.The effects of sintering temperature,sintering period,mixture ratios of materials,doping with iron oxide,and acid modification of WBDC on the properties of proppants are discussed.The proppant performance is evaluated according to the national standard SY/T5108-2014.The morphology of the proppant is analyzed using scanning electron microscopy(SEM).The crystal phase structure of the proppant is studied using X-ray diffraction(XRD).Thermal analysis of the proppant sintering process is performed using thermogravimetry(TG).Proppant Z-23 completely satisfied the SY/T5108-2014 standard.This study provides a new perspective for the resource utilization of water-based drill cuttings and preparation of low-density proppants.展开更多
Basil seed,containing anionic heteropolysaccharides in its outer pericarp,swells as gelatinous hydrocolloid when soaked in water.In this study,basil seed powder(BSP)was used as a multifunctional additive for water-bas...Basil seed,containing anionic heteropolysaccharides in its outer pericarp,swells as gelatinous hydrocolloid when soaked in water.In this study,basil seed powder(BSP)was used as a multifunctional additive for water-based drilling fluids.The chemical composition,water absorbency,rheological properties of aqueous suspension of BSP were tested.The effect of BSP on the rheological and filtration of bentonitebased drilling fluid before and after thermal aging was investigated.The inhibition characteristics were evaluated by linear swelling,shale cuttings dispersion and shale immersion test.Lubricity improvement by BSP was measured with extreme pressure lubricity test.The results revealed that incorporation of BSP into bentonite suspension improved rheological and filtration properties effectively after thermal aging of 120℃.BSP exhibited superior inhibitive capacity to xanthan and synergistic effect with KCl.BSP could reduce friction by forming hydration layer.The nanoscale three-dimensional network structures enable BSP to maintain high water retention and absorb strongly on bentonite and metal surface,contributing to enhanced rheology,filtration,inhibition and lubrication properties.The versatile characteristic of BSP,as well as biodegradation makes it a promising additive using in high performance water-based drilling fluid and a potential alternative to conventional synthetic polymers.展开更多
Regulating rheological properties of water-based drilling fluids has always been a hot topic.This paper proposed a new method for regulating rheological properties of water-based drilling fluids by ultrasonic field.Th...Regulating rheological properties of water-based drilling fluids has always been a hot topic.This paper proposed a new method for regulating rheological properties of water-based drilling fluids by ultrasonic field.The experimental results showed that the ultrasound increased the viscosity and yield point of bentonite suspension by reducing the particle size of clay,destroying the network structure between clay particles,increasing the mud yield and the cation exchange capacity of bentonite,and promoting the hydration dispersion of bentonite.The change of rheological property showed a memory effect at room temperature and high temperature.Besides,the ultrasonic energy affected the network structure between clays and polymer chains,thus regulating the rheological properties of the bentonite-polymer system.For two types of drilling fluids investigated,the rheology of the poly-sulfonate drilling fluid was regulated by damaging the grid structure between additives and clays by low-power ultrasound and reducing the clay particle size by high-power ultrasound,while the rheology of the deep-water drilling fluid was mainly regulated by disentangling the spatial grid structure between additives.Additionally,ultrasound showed no effect on the lubricity,inhibition and stability of drilling fluids,which proved the feasibility of ultrasound to regulate rheological properties of water-based drilling fluids.展开更多
A double-layer aluminum consisting of an aluminum core and a shellof SiO2 and polyacrylic acid was synthesized.This modified aluminum was used to improve the corrosion resistance and dispersive property of aluminum in...A double-layer aluminum consisting of an aluminum core and a shellof SiO2 and polyacrylic acid was synthesized.This modified aluminum was used to improve the corrosion resistance and dispersive property of aluminum in waterborne media.TEM,FTIR,XPS,and EDX determination showed that PAA and SiO2 were coated on the surface of aluminum.Evolved hydrogen detection showed that the corrosion resistance of composite particle had been markedly improved.Maximum corrosion inhibition efficiency of SiO2 coated aluminum(SiO2@Al)was 95.1% while that of double-layer coated aluminum(PAA/SiO2@Al)was 98.8%.Meanwhile,polyacrylic acid layer improved the agglomeration of aluminum significantly.According to the dispersibility test,the particle size of 50% volume fraction [d(0.5)] of aluminum,SiO2@Aland PAA/SiO2@Alwere 42,53,and 34 μm,respectively.展开更多
Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free...Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free energy, prevent collapse, protect reservoir, lubricate and increase drilling speed. With this super-amphiphobic agent as the core agent, a super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid system has been developed by combining with other agents based on drilled formation, and compared with high-performance water-based drilling fluid and typical oil based drilling fluid commonly used in oilfields. The results show that the super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid has better rheology, and high temperature and high pressure filtration similar with that of oil-based drilling fluid, inhibiting and lubricating properties close to oil based drilling fluid. Besides, the super-amphiphobic system is non-toxic, safe and environmentally friendly. Field tests show this newly developed drilling fluid system can prevent wellbore collapse, reservoir damage and pipe-sticking, increase drilling speed and lower drilling cost, meeting the requirement of safe, high efficient, economic and environmentally friendly drilling. Compared with other drilling fluids, this new drilling fluid system can reduce downhole complexities by 82.9%, enhance the drilling speed by about 18.5%, lower drilling fluid cost by 39.3%, and increase the daily oil output by more than 1.5 times in the same block.展开更多
Novel water-based nanolubricants using TiO2 nanoparticles(NPs)were synthesised by adding sodium dodecyl benzene sulfonate(SDBS)and glycerol,which exhibited excellent dispersion stability and wettability.The tribologic...Novel water-based nanolubricants using TiO2 nanoparticles(NPs)were synthesised by adding sodium dodecyl benzene sulfonate(SDBS)and glycerol,which exhibited excellent dispersion stability and wettability.The tribological performance of the synthesised nanolubricants was investigated using an Rtec ball-on-disk tribometer,and their application in hot steel rolling was evaluated on a 2-high Hille 100 experimental rolling mill,in comparison to those without SDBS.The water-based nanolubricant containing 4 wt%TiO2 and 0.4 wt%SDBS demonstrated superior tribological performance by decreasing coefficient of friction and ball wear up to 70.5%and 84.3%,respectively,compared to those of pure water.In addition to the lubrication effect,the suspensions also had significant effect on polishing of the work roll surface.The resultant surface improvement thus enabled the decrease in rolling force up to 8.3%under a workpiece reduction of 30%at a rolling temperature of 850◦C.The lubrication mechanisms were primarily ascribed to the formation of lubricating film and ball-bearing effect of the TiO2 NPs.展开更多
Water-based lubrication is an effective method to achieve superlubricity,which implies a friction coefficient in the order of 10−3 or lower.Recent numerical,analytical,and experimental studies confirm that the surface...Water-based lubrication is an effective method to achieve superlubricity,which implies a friction coefficient in the order of 10−3 or lower.Recent numerical,analytical,and experimental studies confirm that the surface force effect is crucial for realizing water-based superlubricity.To enhance the contribution of the surface force,soft and plastic materials can be utilized as friction pair materials because of their effect in increasing the contact area.A new numerical model of water-based lubrication that considers the surface force between plastic and elastic materials is developed in this study to investigate the effect of plastic flow in water-based lubrication.Considering the complexity of residual stress accumulation in lubrication problems,a simplified plastic model is proposed,which merely calculates the result of the dry contact solution and avoids repeated calculations of the plastic flow.The results of the two models show good agreement.Plastic deformation reduces the local contact pressure and enhances the function of the surface force,thus resulting in a lower friction coefficient.展开更多
Water-based fire extinguishing agent is the main means to deal with smoldering fires.However,due to the hydrophobic properties of the particle surface,the porous medium channel provide resistance and slow down the ext...Water-based fire extinguishing agent is the main means to deal with smoldering fires.However,due to the hydrophobic properties of the particle surface,the porous medium channel provide resistance and slow down the extinguishing agent flow during the downward permeation process.To promote the liquid permeation process in such porous media,this work studied liquid imbibition process and analyzed the oscillating and attenuating process of liquid level in capillary channel by theoretical,experimental,and numerical methods.An empirical mathematical equation was proposed to describe the oscillating process,and the effects of the capillary diameter and contact angle parameters on the transportation process were analyzed.Based on this,the“relay-mode”was proposed to promote the liquid transportation forward.Finally,the transient simulation results of liquid permeation in coal stacks showed when the liquid flowed through the channel with changed diameter from large to small ones,the transportation distance was several times longer than that through the unidiameter ones.The trend of liquid“relay-mode”in capillaries can be used to promote the permeation in granular materials porous media stacks.The relevant results also provide new thoughts to develop the water-based fire extinguishing agents and then improve the firefighting efficiency of deep-seated fire in porous media stacks.展开更多
In this study,indium oxide(In2O3) thin-film transistors(TFTs) are fabricated by two kinds of low temperature solution-processed technologies(Ta ≤ 300℃),i.e.,water-based(DIW-based) process and alkoxide-based...In this study,indium oxide(In2O3) thin-film transistors(TFTs) are fabricated by two kinds of low temperature solution-processed technologies(Ta ≤ 300℃),i.e.,water-based(DIW-based) process and alkoxide-based(2-ME-based)process.The thickness values,crystallization properties,chemical structures,surface roughness values,and optical properties of In2O3 thin-films and the electrical characteristics of In2O3 TFTs are studied at different annealing temperatures.Thermal annealing at higher temperature leads to an increase in the saturation mobility(μsat) and a negative shift in the threshold voltage(VTH).The DIW-based processed In2O3-TFT annealed at 300℃ exhibits excellent device performance,and one annealed at 200℃ exhibits an acceptable μsat of 0.86 cm^2/V·s comparable to that of a-Si:H TFTs,whereas the 2-ME-based TFT annealed at 300℃ exhibits an abundant μsat of 1.65 cm^2/Vs and one annealed at 200℃ is inactive.The results are attributed to the fact that the DIW-based process induces a higher degree of oxidation and less defect states than the 2-ME-based process at the same temperature.The DIW-based process for fabricating the In2O3 TFT opens the way for the development of nontoxic,low-cost,and low-temperature oxide electronics.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.51991361 and Grant No.51874329)。
文摘The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and animals.This paper explored for the first time the interaction mechanism between natural rubber latex(NRL)and bentonite suspensions(BTs)through a series of characterization experiments,as well as the potential applications in water-based drilling fluids(WBDF).The gel viscoelasticity experiments showed that NRL could decrease the consistency coefficient(k)and flow index(n)of BTs,and enhance the shear thinning performance of BTs as pseudo-plastic fluids.In addition,0.5 w/v%NRL not only increased the critical yield stress and strengthened the structural strength between the bentonite particles,but also facilitated the compatibility of pressure loss and flow efficiency.The evaluation of colloidal stability and WBDF performance indicated that NRL particles could promote the hydration and charge stability on the surface of BTs particles,and optimize the particle size distribution and flow resistance of WBDF under the"intercalation-exfoliation-encapsulation"synergistic interaction.Moreover,NRL can improve the rheological properties of WBDF at high temperatures(<150.C),and form a dense blocking layer by bridging and sealing the pores and cracks of the filter cake,which ultimately reduces the permeability of the cake and the filtration loss of WBDF.
基金supported by the Preparation and Characterization of Fogging Agents,Cooperative Project of China(Grant No.1900030040)Preparation and Test of Fogging Agents,Cooperative Project of China(Grant No.2200030085)。
文摘Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.
基金the National Natural Science Foundation of China(51904329,52174014)the Major Scientific and Technological Projects of CNPC(ZD 2019-183-005)Key R&D Program of Shandong Province(No.2020ZLYS07).
文摘Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of using hydrophobically modified silica nanoparticle(HMN)to enhance the comprehensive performance of WBDFs in the Xinjiang Oilfield,especially the anti-collapse performance.The effect of HMN on the overall performance of WBDFs in the Xinjiang Oilfield,including inhibition,plugging,lu-bricity,rheology,and filtration loss,was studied with a series of experiments.The mechanism of HMN action was studied by analyzing the changes of shale surface structure and chemical groups,wettability,and capillary force.The experimental results showed that HMN could improve the performance of WBDFs in the Xinjiang Oilfeld to inhibit the hydration swelling and dispersion of shale.The plugging and lubrication performance of the WBDFs in the Xinjiang Oilfield were also enhanced with HMN based on the experimental results.HMN had less impact on the rheological and filtration performance of the WBDFs in the Xinjiang Oilfield.In addition,HMN significantly prevented the decrease of shale strength.The potential mechanism of HMN was as follows.The chemical composition and structure of the shale surface were altered due to the adsorption of HMN driven by electrostatic attraction.Changes of the shale surface resulted in significant wettability transition.The capillary force of the shale was converted from a driving force of water into the interior to a resistance.In summary,hydrophobic nanoparticles presented afavorable application potential for WBDFs.
文摘Difenoconazole(DIF)is a representative variety of broad-spectrum triazole fungicides and liposoluble pesticides.However,the water solubility of DIF is so poor that its application is limited in plant protection.In addition,the conventional formulations of DIF always contain abundant organic solvents,which may cause pollution of the environment.In this study,two DIF/cyclodextrins(CDs)inclusion complexes(ICs)were successfully prepared,which were DIF/β-CD IC and DIF/hydroxypropyl-β-CD IC(DIF/HP-β-CD IC).The effect of cyclodextrins on the water solubility and the antifungal effect of liposoluble DIF pesticide were investigated.According to the phase solubility test,the molar ratio and apparent stability constant of ICs were obtained.Fourier transform infrared spectroscopy,thermal gravity analysis,X-ray diffraction and scanning electron microscopy were used systematically to characterize the formation and characteristics of ICs.The results noted that DIF successfully entered the cavities of two CDs.In addition,the antifungal effect test proved the better performance of DIF/HP-β-CD IC,which exceeded that of DIF emulsifiable concentrate.Therefore,our study provides informative direction for the intelligent use of liposoluble pesticides with cyclodextrins to develop water-based environmentally friendly formulations.
基金the National Key Research and Development Program(2019YFC1805804)the National Natural Science Foundation of China(22008032)+3 种基金the Guangdong Natural Science Foundation(2022A1515011192)the Guangdong Basic and Applied Basic Research Foundation(2019A1515110706)the Guangdong Provincial Key Lab of Green Chemical Product Technology(GC202111)the China Postdoctoral Science Foundation(2021M691059).
文摘The combination of nano sizes,large pore sizes and green synthesis is recognized as one of the most crucial and challenging problems in constructing metal-organic frameworks(MOFs).Herein,a water-based strategy is proposed for the synthesis of nanoscale hierarchical MOFs(NH-MOFs)with high crystallinity and excellent stability.This approach allows the morphology and porosity of MOFs to be fine tuned,thereby enabling the nanoscale crystal generation and a well-defined hierarchical system.The aqueous solution facilitates rapid nucleation kinetics,and the introduced modulator acts as a deprotonation agent to accelerate the deprotonation of the organic ligand as well as a structure-directing agent(SDA)to guide the formation of hierarchical networks.The assynthesized NH-MOFs(NH-ZIF-67)were assessed as efficient adsorbents and heterogeneous catalysts to facilitate the diffusion of guest molecules,outperforming the parent microZIF-67.This study focuses on understanding the NH-MOF growth rules,which could allow tailor-designing NH-MOFs for various functions.
基金The work is supported by the Integration and Testing of Safe and Fast Drilling and Completion Technologies for Complex Ultra-Deep Wells(2020F-46)Major Technology Field Test of Joint-Stock Company(Drilling and Production Engineering).Xuyang received the grant.
文摘Water-based drilling fluids can cause hydration of the wellbore rocks,thereby leading to instability.This study aimed to synthesize a hydrophobic small-molecule polymer(HLMP)as an inhibitor to suppress mud shale hydration.An infrared spectral method and a thermogravimetric technique were used to characterize the chemical composition of the HLMP and evaluate its heat stability.Experiments were conducted to measure the linear swelling,rolling recovery rate,and bentonite inhibition rate and evaluate accordingly the inhibition performance of the HLMP.Moreover,the HLMP was characterized through measurements of the zeta potential,particle size distribution,contact angles,and interlayer space testing.As confirmed by the results,the HLMP could successfully be synthesized with a favorable heat stability.Furthermore,favorable results were found for the inhibitory processes of the HLMP on swelling and dispersed hydration during mud shale hydration.The positively charged HLMP could be electrically neutralized with clay particles,thereby inhibiting diffusion in the double electron clay layers.The hydrophobic group in the HLMP molecular structure resulted in the formation of a hydrophobic membrane on the rock surface,enhancing the hydrophobicity of the rock.In addition,the small molecules of the HLMP could plug the spaces between the layers of bentonite crystals,thereby reducing the entry of water molecules and inhibiting shale hydration.
文摘To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines temperature effects on the rheological properties of two types of high-density water-based drilling fluids (fresh water-based and brine-based) under high temperature and high pressure (HTHP) with a Fann 50SL rheometer. On the basis of the water-based drilling fluid systems formulated in laboratory, this paper mainly describes the influences of different types and concentration of clay, the content of a colloid stabilizer named GHJ-1 and fluid density on the rheological parameters such as viscosity and shear stress. In addition, the effects of aging temperature and aging time of the drilling fluid on these parameters were also examined. Clay content and proportions for different densities of brine-based fluids were recommended to effectively regulate the rheological properties. Four theological models, the Bingham, power law, Casson and H-B models, were employed to fit the rheological parameters. It turns out that the H-B model was the best one to describe the rheological properties of the high-density drilling fluid under HTHP conditions and power law model produced the worst fit. In addition, a new mathematical model that describes the apparent viscosity as a function of temperature and pressure was established and has been applied on site.
基金financially supported by the Natural Science Foundation of China(Grants 51904328)the Natural Science Foundation of China(Grants U1762212)Fundamental Research Funds for the Central Universities(Grants 27R1702031A)
文摘Drilling fluids face failure during drilling deep reservoir with high temperature and high salt.The experimental results show that high temperature and salinity reduce the negative charge on the surface of bentonite in the drilling fluid and cause the coalescence of bentonite particles.As a result,the particles coalesce,the grid structure is destroyed,and the rheological properties,rock-carrying capacity and filtration properties are lost.To resolve the foregoing,in this study,0.05-wt%carbon nanotubes are introduced into a 4%bentonite drilling fluid under conditions where the temperature and concentration of added Na Cl reach 180°C and 10 wt%,respectively.The carbon nanotubes adsorb on the bentonite surface and increase the space among bentonite particles.The steric hindrance prevents the coalescence of bentonite in high temperature and high salt environment.Thus bentonite maintains the small size distribution of bentonite and supports the bentonite grid structure in the drilling fluid.As a result,the rock-carrying capacity of the drilling fluid increases by 85.1%.Moreover,the mud cake formed by the accumulation of small-sized bentonite particles is dense;consequently,the filtration of bentonite drilling fluid reduced by 30.2%.
基金support from CNPC Chuanqing Drilling Engineering Company Limited,Chinathe“academic pass”of Southwest Petroleum Universitythe China Postdoctoral Science Foundation(2022M712644)
文摘Considering the increasing environmental pressure,environmentally friendly and high-performance water-based drilling fluids(WBDFs)have been widely studied in recent years to replace the commonly used oil-based drilling fluids(OBDFs).However,few of these drilling fluids are entirely composed of natural materials,which makes it difficult to achieve real environmental protection.Using laponite nanoparticles and various derivatives of natu ral mate rials,including cro sslinked starch,cellulose composite,gelatin ammonium salt,poly-l-arginine,and polyanionic cellulose,a kind of environmentally friendly water-based drilling fluid(EF-WBDF)was built for drilling in environment-sensitive areas.The properties of this EF-WBDF were evaluated by thermal stability tests on rheology,filtration,inhibition,and salt contamination.Besides,biological toxicity,biodegradability,heavy mental content and wheat cultivation tests were conducted to investigate the environmental factor of EF-WBDF.Results showed that EF-WBDF displayed satisfactory thermal resistance up to 150℃,and the rheological properties did not suffer significant fluctuation,showing potential application in high-temperature wells.The optimal rheological model of EF-WBDF was Herschel-Bulkley model.This EF-WBDF performed an eligible filtration of 14.2 mL at 150℃and a differential pressure of 3.5 MPa.This fluid could still maintain colloidal stability after being contaminated by 7.5%NaCl or 0.5%CaC1_(2).Meanwhile,rather low clay swelling degree of 2.44 mm and high shale recovery of more than 95%ensured the inhibitive capability of EF-WBDF.Furthermore,EF-WBDF presented a half maximal effective concentration(EC_(50))of51200 mg/L and a BOD/COD ratio of 47.55%,suggesting that EF-WBDF was non-toxic and easily biodegradable.The wheat cultivated in EF-WBDF could grow healthily,beneficial for reducing the adverse impact on ecological environment.The formed EF-WBDF has a promising future for drilling in environment-sensitive and high-temperature areas.
基金financially supported by the National Natural Science Foundation of China(Grants 51904328)the Natural Science Foundation of China(Grants 52074330)
文摘The demand for non-toxic and biodegradable shale inhibitors is growing in the drilling industry.In this paper,the effect of notoginsenoside(NS)as a new,environmentally friendly inhibitor of shale hydration is systematically studied for the first time.The inhibition performance of NS was evaluated via inhibition evaluation tests,including mud ball immersion tests,linear expansion tests,shale rolling recovery tests,and compressive strength tests.The inhibition mechanism of NS was analyzed using Fourier transform infrared spectroscopy(FTIR),contact angle measurements,particle size distribution determination,thermogravimetric analysis(TGA),and scanning electron microscopy(SEM).The experimental results demonstrate that NS is able to adhere to the clay surface,forming a hydrophobic film that prevents the entry of water molecules and inhibiting the hydration dispersion of the clay.Because of this,NS can maintain the original state of bentonite pellets in water,which can effectively reduce the swelling rate of bentonite,increase the recovery rate of shale drill cuttings,maintain the strength of the shale,and therefore maintain the stability of the borehole wall during drilling.In addition,NS is non-toxic,degradable,and compatible with water-based drilling fluids.The above advantages make NS a promising candidate for use as an environmentally friendly shale inhibitor.
基金This work was financially supported by the Natural Science Foundation of China(51974270)Innovation Union of China National Petroleum Corporation and Southwest Petroleum University(2020CX040102,2020CX040201)Open Fund(PLN201814)of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University).
文摘Mud shale hydration and swelling are major challenges in the development of water-based drilling fuids(WBDFs).In this work,the inhibition performance and inhibition mechanism of polyethylene glycol(PEG)and potassium chloride(KCl)were investigated by hot rolling recovery tests,linear swell tests,Fourier transform infrared spectroscopy,X-ray difraction,atomic absorption spectrophotometry and X-ray photoelectron spectroscopy.The experimental results show that the combination of PEG and KCl achieved higher recovery and lower linear swelling rate than those obtained by individual PEG or KCl.Compared to the d-spacing of Na-montmorillonite(Na-Mt)with PEG or KCl,the d-spacing of Na-Mt with PEG+KCl was lower,which indicates that KCl and PEG have synergistic inhibition efect.This synergistic efect can replace sodium ions and water molecules from the interlayer space of Na-Mt and decrease the d-spacing of Na-Mt.Based on the above experimental results and analysis,a method for optimizing PEG and KCl concentrations was proposed and further verifed by rheological and hot rolling recovery tests of WBDFs.Hence,the results of this work can provide valuable theoretical guidance for developing other synergistic inhibitors.
基金funded by the Study on Comprehensive Control of Rocky Desertification and Ecological Service Function Improvement in Karst Peaks(No.2016YFC0502402)Fuling Shale Gas Environmental Exploration Technology of National Science and Technology Special Project(Grant No.2016ZX05060)+2 种基金financially supported by the National Natural Science Foundation of China(No.51709254)Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2020335)Key Research and Development Program of Hubei Province,China(No.2020BCA073)。
文摘Water-based drill cuttings(WBDC)and bauxite are used as raw materials to prepare proppants with low density and high performance.The effects of sintering temperature,sintering period,mixture ratios of materials,doping with iron oxide,and acid modification of WBDC on the properties of proppants are discussed.The proppant performance is evaluated according to the national standard SY/T5108-2014.The morphology of the proppant is analyzed using scanning electron microscopy(SEM).The crystal phase structure of the proppant is studied using X-ray diffraction(XRD).Thermal analysis of the proppant sintering process is performed using thermogravimetry(TG).Proppant Z-23 completely satisfied the SY/T5108-2014 standard.This study provides a new perspective for the resource utilization of water-based drill cuttings and preparation of low-density proppants.
基金financially supported by CNPC Innovation Foundation(2020D-5007-0310)National Natural Science Foundation of China(No.51974354)National Key Research and Development Project(2019YFA0708303)。
文摘Basil seed,containing anionic heteropolysaccharides in its outer pericarp,swells as gelatinous hydrocolloid when soaked in water.In this study,basil seed powder(BSP)was used as a multifunctional additive for water-based drilling fluids.The chemical composition,water absorbency,rheological properties of aqueous suspension of BSP were tested.The effect of BSP on the rheological and filtration of bentonitebased drilling fluid before and after thermal aging was investigated.The inhibition characteristics were evaluated by linear swelling,shale cuttings dispersion and shale immersion test.Lubricity improvement by BSP was measured with extreme pressure lubricity test.The results revealed that incorporation of BSP into bentonite suspension improved rheological and filtration properties effectively after thermal aging of 120℃.BSP exhibited superior inhibitive capacity to xanthan and synergistic effect with KCl.BSP could reduce friction by forming hydration layer.The nanoscale three-dimensional network structures enable BSP to maintain high water retention and absorb strongly on bentonite and metal surface,contributing to enhanced rheology,filtration,inhibition and lubrication properties.The versatile characteristic of BSP,as well as biodegradation makes it a promising additive using in high performance water-based drilling fluid and a potential alternative to conventional synthetic polymers.
基金financially supported by the National Natural Science Foundation of China(No.51974351No.51704322+1 种基金Major Program,No.51991361)the National Science and Technology Major Project of China(No.2016ZX05040-005)。
文摘Regulating rheological properties of water-based drilling fluids has always been a hot topic.This paper proposed a new method for regulating rheological properties of water-based drilling fluids by ultrasonic field.The experimental results showed that the ultrasound increased the viscosity and yield point of bentonite suspension by reducing the particle size of clay,destroying the network structure between clay particles,increasing the mud yield and the cation exchange capacity of bentonite,and promoting the hydration dispersion of bentonite.The change of rheological property showed a memory effect at room temperature and high temperature.Besides,the ultrasonic energy affected the network structure between clays and polymer chains,thus regulating the rheological properties of the bentonite-polymer system.For two types of drilling fluids investigated,the rheology of the poly-sulfonate drilling fluid was regulated by damaging the grid structure between additives and clays by low-power ultrasound and reducing the clay particle size by high-power ultrasound,while the rheology of the deep-water drilling fluid was mainly regulated by disentangling the spatial grid structure between additives.Additionally,ultrasound showed no effect on the lubricity,inhibition and stability of drilling fluids,which proved the feasibility of ultrasound to regulate rheological properties of water-based drilling fluids.
基金Funded by the National Natural Science Foundation of China(31170558)the Fundamental Research Funds for the Central Universities(410500006)
文摘A double-layer aluminum consisting of an aluminum core and a shellof SiO2 and polyacrylic acid was synthesized.This modified aluminum was used to improve the corrosion resistance and dispersive property of aluminum in waterborne media.TEM,FTIR,XPS,and EDX determination showed that PAA and SiO2 were coated on the surface of aluminum.Evolved hydrogen detection showed that the corrosion resistance of composite particle had been markedly improved.Maximum corrosion inhibition efficiency of SiO2 coated aluminum(SiO2@Al)was 95.1% while that of double-layer coated aluminum(PAA/SiO2@Al)was 98.8%.Meanwhile,polyacrylic acid layer improved the agglomeration of aluminum significantly.According to the dispersibility test,the particle size of 50% volume fraction [d(0.5)] of aluminum,SiO2@Aland PAA/SiO2@Alwere 42,53,and 34 μm,respectively.
基金Supported by China National Science and Technology Major Project(2017ZX05009-003)National Natural Science Foundation(51474231)China National Petroleum Corporation Project(HX20180961)
文摘Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free energy, prevent collapse, protect reservoir, lubricate and increase drilling speed. With this super-amphiphobic agent as the core agent, a super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid system has been developed by combining with other agents based on drilled formation, and compared with high-performance water-based drilling fluid and typical oil based drilling fluid commonly used in oilfields. The results show that the super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid has better rheology, and high temperature and high pressure filtration similar with that of oil-based drilling fluid, inhibiting and lubricating properties close to oil based drilling fluid. Besides, the super-amphiphobic system is non-toxic, safe and environmentally friendly. Field tests show this newly developed drilling fluid system can prevent wellbore collapse, reservoir damage and pipe-sticking, increase drilling speed and lower drilling cost, meeting the requirement of safe, high efficient, economic and environmentally friendly drilling. Compared with other drilling fluids, this new drilling fluid system can reduce downhole complexities by 82.9%, enhance the drilling speed by about 18.5%, lower drilling fluid cost by 39.3%, and increase the daily oil output by more than 1.5 times in the same block.
基金The authors acknowledge the financial supports from Baosteel-Australia Joint Research&Development Center(BAJC)under the project of BA17004 and Australian Research Council(ARC)under Linkage Project Program(LP150100591)。
文摘Novel water-based nanolubricants using TiO2 nanoparticles(NPs)were synthesised by adding sodium dodecyl benzene sulfonate(SDBS)and glycerol,which exhibited excellent dispersion stability and wettability.The tribological performance of the synthesised nanolubricants was investigated using an Rtec ball-on-disk tribometer,and their application in hot steel rolling was evaluated on a 2-high Hille 100 experimental rolling mill,in comparison to those without SDBS.The water-based nanolubricant containing 4 wt%TiO2 and 0.4 wt%SDBS demonstrated superior tribological performance by decreasing coefficient of friction and ball wear up to 70.5%and 84.3%,respectively,compared to those of pure water.In addition to the lubrication effect,the suspensions also had significant effect on polishing of the work roll surface.The resultant surface improvement thus enabled the decrease in rolling force up to 8.3%under a workpiece reduction of 30%at a rolling temperature of 850◦C.The lubrication mechanisms were primarily ascribed to the formation of lubricating film and ball-bearing effect of the TiO2 NPs.
基金National Natural Science Foundation of China(Grant No.51925506)National Key R&D Program of China(Grants No.2020YFA0711003).
文摘Water-based lubrication is an effective method to achieve superlubricity,which implies a friction coefficient in the order of 10−3 or lower.Recent numerical,analytical,and experimental studies confirm that the surface force effect is crucial for realizing water-based superlubricity.To enhance the contribution of the surface force,soft and plastic materials can be utilized as friction pair materials because of their effect in increasing the contact area.A new numerical model of water-based lubrication that considers the surface force between plastic and elastic materials is developed in this study to investigate the effect of plastic flow in water-based lubrication.Considering the complexity of residual stress accumulation in lubrication problems,a simplified plastic model is proposed,which merely calculates the result of the dry contact solution and avoids repeated calculations of the plastic flow.The results of the two models show good agreement.Plastic deformation reduces the local contact pressure and enhances the function of the surface force,thus resulting in a lower friction coefficient.
基金the funding support of National Natural Science Foundation of China (21978204)
文摘Water-based fire extinguishing agent is the main means to deal with smoldering fires.However,due to the hydrophobic properties of the particle surface,the porous medium channel provide resistance and slow down the extinguishing agent flow during the downward permeation process.To promote the liquid permeation process in such porous media,this work studied liquid imbibition process and analyzed the oscillating and attenuating process of liquid level in capillary channel by theoretical,experimental,and numerical methods.An empirical mathematical equation was proposed to describe the oscillating process,and the effects of the capillary diameter and contact angle parameters on the transportation process were analyzed.Based on this,the“relay-mode”was proposed to promote the liquid transportation forward.Finally,the transient simulation results of liquid permeation in coal stacks showed when the liquid flowed through the channel with changed diameter from large to small ones,the transportation distance was several times longer than that through the unidiameter ones.The trend of liquid“relay-mode”in capillaries can be used to promote the permeation in granular materials porous media stacks.The relevant results also provide new thoughts to develop the water-based fire extinguishing agents and then improve the firefighting efficiency of deep-seated fire in porous media stacks.
基金Project supported by the National Natural Science Foundation of China(Grant No.61675024)the National Basic Research Program of China(Grant No.2014CB643600)
文摘In this study,indium oxide(In2O3) thin-film transistors(TFTs) are fabricated by two kinds of low temperature solution-processed technologies(Ta ≤ 300℃),i.e.,water-based(DIW-based) process and alkoxide-based(2-ME-based)process.The thickness values,crystallization properties,chemical structures,surface roughness values,and optical properties of In2O3 thin-films and the electrical characteristics of In2O3 TFTs are studied at different annealing temperatures.Thermal annealing at higher temperature leads to an increase in the saturation mobility(μsat) and a negative shift in the threshold voltage(VTH).The DIW-based processed In2O3-TFT annealed at 300℃ exhibits excellent device performance,and one annealed at 200℃ exhibits an acceptable μsat of 0.86 cm^2/V·s comparable to that of a-Si:H TFTs,whereas the 2-ME-based TFT annealed at 300℃ exhibits an abundant μsat of 1.65 cm^2/Vs and one annealed at 200℃ is inactive.The results are attributed to the fact that the DIW-based process induces a higher degree of oxidation and less defect states than the 2-ME-based process at the same temperature.The DIW-based process for fabricating the In2O3 TFT opens the way for the development of nontoxic,low-cost,and low-temperature oxide electronics.