Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when...Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production.展开更多
Tillage plays an important role in modifying soil hydraulic properties.The objective of the present study was to evaluate the effect of conservation tillage practices in a maize-wheat cropping system on nearsaturated ...Tillage plays an important role in modifying soil hydraulic properties.The objective of the present study was to evaluate the effect of conservation tillage practices in a maize-wheat cropping system on nearsaturated soil hydraulic properties and pore characteristics in the North-West Himalayan region,India.Three treatments viz.conventional tillage(CT),minimum tillage(MT),and zero tillage(ZT)were evaluated in terms of field saturated hydraulic conductivity(ks),unsaturated hydraulic conductivity k(h),the inverse of capillary length(a),flow-weighted mean pore radius(r0),numbers of pores per square meter(n0)and water-conducting macroporosity(Ɛ).The above hydraulic conductivity and pore characteristics were derived from steady-state water flux(q)measured using hood infiltrometer at 0,1,and3 cm pressure head for each treatment after seven years of establishment of this tillage experiment.Results revealed significantly(p<0.05)higher values of ks,k(h),a,andƐin ZT as compared with CT.MT had intermediate values.Higher a values suggested a greater gravity-dominated flow under ZT and MT as compared with CT.Analysis of r0 values indicated better connectivity of pores in ZT and MT as compared with CT.Macropore flow suggested that on average pore radii,>0.50 mm conducted about 63.60,68.01,and 75.97%of total flow(at 0 cm pressure head)in the corresponding water-conducting macroporosity of 0.00030,0.00044,and 0.00069%of soil volume under CT,MT,and ZT,respectively.Overall,zero-tillage based agriculture system was found to improve near-saturated soil hydraulic properties.展开更多
基金supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities 2014QNA88the National Natural Science Foundation(No.41674133)
文摘Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production.
文摘Tillage plays an important role in modifying soil hydraulic properties.The objective of the present study was to evaluate the effect of conservation tillage practices in a maize-wheat cropping system on nearsaturated soil hydraulic properties and pore characteristics in the North-West Himalayan region,India.Three treatments viz.conventional tillage(CT),minimum tillage(MT),and zero tillage(ZT)were evaluated in terms of field saturated hydraulic conductivity(ks),unsaturated hydraulic conductivity k(h),the inverse of capillary length(a),flow-weighted mean pore radius(r0),numbers of pores per square meter(n0)and water-conducting macroporosity(Ɛ).The above hydraulic conductivity and pore characteristics were derived from steady-state water flux(q)measured using hood infiltrometer at 0,1,and3 cm pressure head for each treatment after seven years of establishment of this tillage experiment.Results revealed significantly(p<0.05)higher values of ks,k(h),a,andƐin ZT as compared with CT.MT had intermediate values.Higher a values suggested a greater gravity-dominated flow under ZT and MT as compared with CT.Analysis of r0 values indicated better connectivity of pores in ZT and MT as compared with CT.Macropore flow suggested that on average pore radii,>0.50 mm conducted about 63.60,68.01,and 75.97%of total flow(at 0 cm pressure head)in the corresponding water-conducting macroporosity of 0.00030,0.00044,and 0.00069%of soil volume under CT,MT,and ZT,respectively.Overall,zero-tillage based agriculture system was found to improve near-saturated soil hydraulic properties.