As the first link element for the transmission of shaft vibration to the pedestal and even to the hull,water-lubricated bearing plays a key role in suppressing vibration.Although the porous structure is considered as ...As the first link element for the transmission of shaft vibration to the pedestal and even to the hull,water-lubricated bearing plays a key role in suppressing vibration.Although the porous structure is considered as one of the main methods for improving the wideband vibration and noise reduction performance of materials in many industrial fields,the studies in the field of water-lubricated bearing remain insufficient.To enhance vibration reduction performance,a fluid-saturated perforated slab is designed in this study,and via the establishment of a fluid-solid coupled vibration model,the influence law and impact levels were analyzed and verified by simulation and experiments.The results obtained verified that the total vibration amplitude of damping-enhanced stern bearing in the vertical direction was smaller than that of the normal stern bearing,and the reduction amplitude of the characteristic frequency agreed with the optimal value at approximately 0.1 of the volume fraction of the liquid phase when the solid-fluid phase was rubber–water.Additionally,the increase in fluid fraction did not enhance the damping effect,instead,it unexpectedly reduced the natural frequency of the raw material significantly.This research indicates that the design of the fluid-saturated perforated slab is effective in reducing the transmission of the vibration amplitude from the shaft,and presents the best volume fraction of the liquid phase.展开更多
With the development of green tribology in the shipping industry,the application of water lubrication gradually replaces oil lubrication in stern bearings and thrust bearings.In terms of large-scale and high-speed shi...With the development of green tribology in the shipping industry,the application of water lubrication gradually replaces oil lubrication in stern bearings and thrust bearings.In terms of large-scale and high-speed ships,water-lubricated bearings with high performance are more strictly required.However,due to the lubricating medium,water-lubricated bearings have many problems such as friction,wear,vibration,noise,etc.This review focuses on the performance of marine water-lubricated bearings and their failure prevention mechanism.Furthermore,the research of marine water-lubricated bearings is reviewed by discussing its lubrication principle,test technology,friction and wear mechanism,and friction noise generation mechanism.The performance enhancement methods have been overviewed from structure optimization and material modification.Finally,the potential problems and the perspective of water-lubricated bearings are given in detail.展开更多
Water-lubricated bearing has become the development trend in the future because of its economy and environmental friendliness.The poor friction performance under low speed and heavy load seriously limits the populariz...Water-lubricated bearing has become the development trend in the future because of its economy and environmental friendliness.The poor friction performance under low speed and heavy load seriously limits the popularization and application of water-lubricated bearings.Learning from nature,the phenomenon of low friction and wear in nature has aroused great interest of scientists,and a lot of research has been carried out from mechanism analysis to bionic application.In this review,our purpose is to provide guiding methods and analysis basis for the bionic design and theoretical research of anti-friction and anti-wear of water-lubricated bearings.The development of water-lubricated bearing materials are described.Some typical examples of natural friction reduction and drag reduction are introduced in detail,and several representative preparation methods are listed.Finally,the application status of bionic tribology in water-lubricated bearings is summarized,and the future development direction of water-lubricated bearings is prospected.展开更多
Water-lubricated bearings have great advantages in the application of ship tail bearings due to the characteristics of green,pollution-free,and sustainable.However,the poor wettability of water-lubricated materials,as...Water-lubricated bearings have great advantages in the application of ship tail bearings due to the characteristics of green,pollution-free,and sustainable.However,the poor wettability of water-lubricated materials,as well as the low viscosity and poor load-carrying capacity of water,resulting in poor lubricating film integrity and short material service life under low-speed,heavy-load,start-stop conditions,which limits its application.To study the relationship between wettability and lubrication state and improve the lubrication performance of Si_(3)N_(4) under water lubrication conditions,the characteristic parameters that determine the hydrophilicity of Sphagnum were detected and extracted,and the bionic Si_(3)N_(4) model was established using Material Studio.Then,the molecular dynamic behavior and tribological properties of different Si_(3)N_(4) models were simulated and analyzed.Pore structure affects the spreading and storage of water on the material surface and changes the wettability of the material.Under the condition of water lubrication,better wettability and water storage promote the formation of water film,effectively improve the lubrication state of the material,and improve its bearing performance.展开更多
Based on the energy flow theory of nonlinear dynamical system,the stabilities,bifurcations,possible periodical/chaotic motions of nonlinear water-lubricated bearing-shaft coupled systems are investigated in this paper...Based on the energy flow theory of nonlinear dynamical system,the stabilities,bifurcations,possible periodical/chaotic motions of nonlinear water-lubricated bearing-shaft coupled systems are investigated in this paper.It is revealed that the energy flow characteristics around the equlibrium point of system behaving in the three types with different friction-para-mters.(a)Energy flow matrix has two negative and one positive energy flow factors,constructing an attractive local zero-energy flow surface,in which free vibrations by initial disturbances show damped modulated oscillations with the system tending its equlibrium state,while forced vibrations by external forces show stable oscillations,(b)Energy flow matrix has one negative and two positive energy flow factors,spaning a divergence local zero-energy flow surface,so that the both free and forced vibrations are divergence oscillations with the system being unstable,(c)Energy flow matrix has a zero-energy flow factor and two opposite factors,which constructes a local zero-energy flow surface dividing the local phase space into stable,unstable and central subspace,and the simulation shows friction self-induced unstable vibrations for both free and forced cases.For a set of friction parameters,the system behaves a periodical oscillation,where the bearing motion tends zero and the shaft motion reaches a stable limit circle in phase space with the instant energy flow tending a constant and the time averaged one tending zero.Numerical simulations have not found any possible chaotic motions of the system.It is discovered that the damping matrices of cases(a),(b)and(c)respectively have positive,negative and zero diagonal elements,resulting in the different dynamic behavour of system,which gives a giderline to design the water-lubricated bearing unit with expected performance by adjusting the friction parameters for applications.展开更多
A bearing fault diagnosis method based on the Markov transitionfield(MTF)and SEnet(SE)-IShufflenetV2 model is proposed in this paper due to the problems of complex working conditions,low fault diagnosis accuracy,and poo...A bearing fault diagnosis method based on the Markov transitionfield(MTF)and SEnet(SE)-IShufflenetV2 model is proposed in this paper due to the problems of complex working conditions,low fault diagnosis accuracy,and poor generalization of rolling bearing.Firstly,MTF is used to encode one-dimensional time series vibration sig-nals and convert them into time-dependent and unique two-dimensional feature images.Then,the generated two-dimensional dataset is fed into the SE-IShufflenetV2 model for training to achieve fault feature extraction and classification.This paper selects the bearing fault datasets from Case Western Reserve University and Paderborn University to experimentally verify the effectiveness and superiority of the proposed method.The generalization performance of the proposed method is tested under the variable load condition and different signal-to-noise ratios(SNRs).The experimental results show that the average accuracy of the proposed method under different working conditions is 99.2%without adding noise.The accuracy under different working conditions from 0 to 1 HP is 100%.When the SNR is 0 dB,the average accuracy of the proposed method can still reach 98.7%under varying working conditions.Therefore,the bearing fault diagnosis method proposed in this paper is characterized by high accuracy,strong anti-noise ability,and generalization.Moreover,the proposed method can also overcome the influence of variable working conditions on diagnosis accuracy,providing method support for the accurate diagnosis of bearing faults under strong noise and variable working conditions.展开更多
To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concret...To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.展开更多
The water-lubricated conical bearing has attracted attentions of researchers for its simple structure, easily adjusted gap (fdm thickness ), lower friction loss, and less pollution in application. A mathematic model...The water-lubricated conical bearing has attracted attentions of researchers for its simple structure, easily adjusted gap (fdm thickness ), lower friction loss, and less pollution in application. A mathematic model with consideration of the effects of turbulence, two-phase flow, and temperature on the pressure field at bearing surface is proposed here. Using this model, the Reynolds' equation and energy equation are solved in which the thermo- physical properties of the water as lubricant are taken into account. The dependency of characteristics of bearing, such as load-earrying capacity, flow rate (pumping losses ), and frictional losses, on angular velocity, conical angle, and radial eccentricities, is presented. The research results are beneficial to the improvement of the efficiency of conical bearing and the environmental protection.展开更多
The water-lubricated bearings are usually the state of turbulent cavitating flow under high-speed conditions. And the distribution of cavitation bubbles and the interface effect between the two phases have not been in...The water-lubricated bearings are usually the state of turbulent cavitating flow under high-speed conditions. And the distribution of cavitation bubbles and the interface effect between the two phases have not been included in previous studies on high-speed water-lubricated bearings. In order to study the influence of interface effect and cavitation bubble distribution on the dynamic characteristics of high-speed water-lubricated spiral groove thrust bearings(SGTB).A turbulent cavitating flow lubrication model based on two-phase fluid and population balance equation of bubbles was established in this paper. Stiffness and the damping coefficients of the SGTB were calculated using the perturbation pressure equations. An experimental apparatus was developed to verify the theoretical model. Simulating and experimental results show that the small-sized bubbles tend to generate in the turbulent cavitating flow when at a high rotary speed, and the bubbles mainly locate at the edges of the spiral groove. The simulating results also show that the direct stiffness coefficients are increased due to cavitation effect, and cross stiffness coefficients and damping coefficients are hardly affected by the cavitation effect. Turbulent effect on the dynamic characteristics of SGTB is much stronger than the cavitating effect.展开更多
Water-lubrication bearings are critical components in ship operation.However,studies on their maintenance and failure detection are highly limited.The use of sensors to continually monitor the working operation of bea...Water-lubrication bearings are critical components in ship operation.However,studies on their maintenance and failure detection are highly limited.The use of sensors to continually monitor the working operation of bearings is a potential approach to solve this problem,which is collectively called intelligent bearings.In this literature review,the recent progress of electrical resistance strain gauges,Fiber Bragg grating,triboelectric nanogenerators,piezoelectric nanogenerators,and thermoelectric sensors for in-situ monitoring is summarized.Future research and design concepts on intelligent water-lubrication bearings are also comprehensively discussed.The findings show that the accident risks,lubrication condition,and remaining life of water-lubricated bearings can be evaluated with the surface temperature,coefficient of friction,and wear volume monitoring.The research work on intelligent water-lubricated bearings is committed to promoting the development of green,electrified,and intelligent technologies for ship propulsion systems,which have important theoretical significance and application value.展开更多
As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in pra...As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.展开更多
The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded...The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency.展开更多
To address the common issues of wrinkling,tearing,and uneven wall thickness in the actual sheet metal stamp-ing process of the outer ring of needle roller bearings,this study analyzes critical technical indicators suc...To address the common issues of wrinkling,tearing,and uneven wall thickness in the actual sheet metal stamp-ing process of the outer ring of needle roller bearings,this study analyzes critical technical indicators such asforming limits,thickness distribution,and principal strains in the forming process in detail.Three-dimensionalmodels of the concave and convex dies were constructed.The effects of different process parameters,includingstamping speed,edge pressure,sheet metal thickness,and friction coefficient,on the quality of the forming partswere investigated by varying these parameters.Subsequently,the orthogonal experimental method was used todetermine an optimal experimental group from multiple sets of experiments.It was found that under the processparameters of a stamping speed of 3000 mm/s,edge pressure of 2000 N,sheet metal thickness of 0.9 mm,andfriction coefficient of 0.125,the forming quality of the outer ring of the bearing is ideal.展开更多
A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shea...A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.展开更多
High-speed trains typically utilize helical gear transmissions,which significantly impact the bearing load capacity and fatigue service performance of the gearbox bearings.This paper focuses on the gearbox bearings,es...High-speed trains typically utilize helical gear transmissions,which significantly impact the bearing load capacity and fatigue service performance of the gearbox bearings.This paper focuses on the gearbox bearings,establishing dynamic models for both helical gear and herringbone gear transmissions in high-speed trains.The modeling particularly emphasizes the precision of the bearings at the gearbox's pinion and gear wheels.Using this model,a comparative analysis is conducted on the bearing loads and contact stresses of the gearbox bearings under uniform-speed operation between the two gear transmissions.The findings reveal that the helical gear transmission generates axial forces leading to severe load imbalance on the bearings at both sides of the large gear,and this imbalance intensifies with the increase in train speed.Consequently,this results in a significant increase in contact stress on the bearings on one side.The adoption of herringbone gear transmission effectively suppresses axial forces,resolving the load imbalance issue and substantially reducing the contact stress on the originally biased side of the bearings.The study demonstrates that employing herringbone gear transmission can significantly enhance the service performance of high-speed train gearbox bearings,thereby extending their service life.展开更多
As an important component of the running gear of high-speed trains,axle box bearings can cause lubricating grease failure and damage to bearing components under continuous high-temperature operation,which will affect ...As an important component of the running gear of high-speed trains,axle box bearings can cause lubricating grease failure and damage to bearing components under continuous high-temperature operation,which will affect the normal operation of highspeed trains.Therefore,bearing temperature is one of the key parameters to be monitored in the online monitoring system for trains.Based on the thermal network method,this paper establishes a thermal network model for the axle box bearing,considering the radial thermal deformation of the double-row tapered roller bearing components caused by the oil film characteristics and the temperature variations of the lubricating grease.A thermo-mechanical coupling model for the grease-lubricated double-row tapered roller axle box bearing of high-speed trains with track irregularity excitation is established.The correctness of the model is verified using the test bench data,and the temperature of the bearing at different rotational speeds,loads,fault sizes,and ambient temperatures are investigated.展开更多
Cam-lobe radial-piston hydraulic motors are widely used as rotation driving units for various marine machinery owing to their ultrahigh output torque(more than 100 kN m).A multi-row cam roller bearing(MCRB)is the key ...Cam-lobe radial-piston hydraulic motors are widely used as rotation driving units for various marine machinery owing to their ultrahigh output torque(more than 100 kN m).A multi-row cam roller bearing(MCRB)is the key component that directly determines the fatigue life of a cam-lobe radial-piston hydraulic motor.However,compact geometry and complex loads render MCRB susceptible to fatigue failure,highlighting the need for an optimized MCRB to achieve longer fatigue life and higher reliability.Therefore,this study proposes an innovative geometry optimization method for an MCRB to improve its fatigue life.In this method,a quasi-static model was developed to calculate the load distribution,with the fatigue life of the MCRB calculated using both basic dynamic loading and load distribution.Subsequently,a genetic algorithm was used to obtain the optimized geometry parameters,which significantly improved the fatigue life of the MCRB.Finally,a loading test was conducted on a hydraulic motor installed with both the initial and optimized MCRB to validate the effectiveness of the proposed optimization method.This study provides a theoretical guideline for optimizing the design of MCRB,thereby increasing the fatigue life of hydraulic motors.展开更多
Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power ge...Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.展开更多
Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance o...Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance on anomaly detection to preempt equipment malfunctions faces the challenge of sudden anomaly discernment.To address this challenge,this paper proposes a dual-task learning approach for bearing anomaly detection and state evaluation of safe regions.The proposed method transforms the execution of the two tasks into an optimization issue of the hypersphere center.By leveraging the monotonicity and distinguishability pertinent to the tasks as the foundation for optimization,it reconstructs the SVDD model to ensure equilibrium in the model’s performance across the two tasks.Subsequent experiments verify the proposed method’s effectiveness,which is interpreted from the perspectives of parameter adjustment and enveloping trade-offs.In the meantime,experimental results also show two deficiencies in anomaly detection accuracy and state evaluation metrics.Their theoretical analysis inspires us to focus on feature extraction and data collection to achieve improvements.The proposed method lays the foundation for realizing predictive maintenance in a healthy stage by improving condition awareness in safe regions.展开更多
Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently.To address the problem that the insufficient fault feature extraction ability of traditional fa...Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently.To address the problem that the insufficient fault feature extraction ability of traditional fault diagnosis methods results in poor diagnosis effect under variable load and noise interference scenarios,a rolling bearing fault diagnosis model combining Multi-Scale Convolutional Neural Network(MSCNN)and Long Short-Term Memory(LSTM)fused with attention mechanism is proposed.To adaptively extract the essential spatial feature information of various sizes,the model creates a multi-scale feature extraction module using the convolutional neural network(CNN)learning process.The learning capacity of LSTM for time information sequence is then used to extract the vibration signal’s temporal feature information.Two parallel large and small convolutional kernels teach the system spatial local features.LSTM gathers temporal global features to thoroughly and painstakingly mine the vibration signal’s characteristics,thus enhancing model generalization.Lastly,bearing fault diagnosis is accomplished by using the SoftMax classifier.The experiment outcomes demonstrate that the model can derive fault properties entirely from the initial vibration signal.It can retain good diagnostic accuracy under variable load and noise interference and has strong generalization compared to other fault diagnosis models.展开更多
基金Supported by State Key Program Grant of National Natural Science Foundation of China(Grant No.51579198)Key Laboratory of High Performance Ship Technology Opening Foundation(Grant No.2016gxnc04).
文摘As the first link element for the transmission of shaft vibration to the pedestal and even to the hull,water-lubricated bearing plays a key role in suppressing vibration.Although the porous structure is considered as one of the main methods for improving the wideband vibration and noise reduction performance of materials in many industrial fields,the studies in the field of water-lubricated bearing remain insufficient.To enhance vibration reduction performance,a fluid-saturated perforated slab is designed in this study,and via the establishment of a fluid-solid coupled vibration model,the influence law and impact levels were analyzed and verified by simulation and experiments.The results obtained verified that the total vibration amplitude of damping-enhanced stern bearing in the vertical direction was smaller than that of the normal stern bearing,and the reduction amplitude of the characteristic frequency agreed with the optimal value at approximately 0.1 of the volume fraction of the liquid phase when the solid-fluid phase was rubber–water.Additionally,the increase in fluid fraction did not enhance the damping effect,instead,it unexpectedly reduced the natural frequency of the raw material significantly.This research indicates that the design of the fluid-saturated perforated slab is effective in reducing the transmission of the vibration amplitude from the shaft,and presents the best volume fraction of the liquid phase.
基金financially supported by the National Key R&D Program of China(No.2018YFE0197600)National Natural Science Foundation of China(No.52071244).
文摘With the development of green tribology in the shipping industry,the application of water lubrication gradually replaces oil lubrication in stern bearings and thrust bearings.In terms of large-scale and high-speed ships,water-lubricated bearings with high performance are more strictly required.However,due to the lubricating medium,water-lubricated bearings have many problems such as friction,wear,vibration,noise,etc.This review focuses on the performance of marine water-lubricated bearings and their failure prevention mechanism.Furthermore,the research of marine water-lubricated bearings is reviewed by discussing its lubrication principle,test technology,friction and wear mechanism,and friction noise generation mechanism.The performance enhancement methods have been overviewed from structure optimization and material modification.Finally,the potential problems and the perspective of water-lubricated bearings are given in detail.
基金the National Natural Science Foundation of China(Grant no.52171319).
文摘Water-lubricated bearing has become the development trend in the future because of its economy and environmental friendliness.The poor friction performance under low speed and heavy load seriously limits the popularization and application of water-lubricated bearings.Learning from nature,the phenomenon of low friction and wear in nature has aroused great interest of scientists,and a lot of research has been carried out from mechanism analysis to bionic application.In this review,our purpose is to provide guiding methods and analysis basis for the bionic design and theoretical research of anti-friction and anti-wear of water-lubricated bearings.The development of water-lubricated bearing materials are described.Some typical examples of natural friction reduction and drag reduction are introduced in detail,and several representative preparation methods are listed.Finally,the application status of bionic tribology in water-lubricated bearings is summarized,and the future development direction of water-lubricated bearings is prospected.
基金The authors would like to express their sincere gratitude to the National Natural Science Foundation of China(Grant no.52171319).
文摘Water-lubricated bearings have great advantages in the application of ship tail bearings due to the characteristics of green,pollution-free,and sustainable.However,the poor wettability of water-lubricated materials,as well as the low viscosity and poor load-carrying capacity of water,resulting in poor lubricating film integrity and short material service life under low-speed,heavy-load,start-stop conditions,which limits its application.To study the relationship between wettability and lubrication state and improve the lubrication performance of Si_(3)N_(4) under water lubrication conditions,the characteristic parameters that determine the hydrophilicity of Sphagnum were detected and extracted,and the bionic Si_(3)N_(4) model was established using Material Studio.Then,the molecular dynamic behavior and tribological properties of different Si_(3)N_(4) models were simulated and analyzed.Pore structure affects the spreading and storage of water on the material surface and changes the wettability of the material.Under the condition of water lubrication,better wettability and water storage promote the formation of water film,effectively improve the lubrication state of the material,and improve its bearing performance.
基金We gratefully acknowledge NSFC(51509194)CSC for providing finacial support eanabling Li Qin and Hongling Qin to visit the University of Southampton to engage the related research.
文摘Based on the energy flow theory of nonlinear dynamical system,the stabilities,bifurcations,possible periodical/chaotic motions of nonlinear water-lubricated bearing-shaft coupled systems are investigated in this paper.It is revealed that the energy flow characteristics around the equlibrium point of system behaving in the three types with different friction-para-mters.(a)Energy flow matrix has two negative and one positive energy flow factors,constructing an attractive local zero-energy flow surface,in which free vibrations by initial disturbances show damped modulated oscillations with the system tending its equlibrium state,while forced vibrations by external forces show stable oscillations,(b)Energy flow matrix has one negative and two positive energy flow factors,spaning a divergence local zero-energy flow surface,so that the both free and forced vibrations are divergence oscillations with the system being unstable,(c)Energy flow matrix has a zero-energy flow factor and two opposite factors,which constructes a local zero-energy flow surface dividing the local phase space into stable,unstable and central subspace,and the simulation shows friction self-induced unstable vibrations for both free and forced cases.For a set of friction parameters,the system behaves a periodical oscillation,where the bearing motion tends zero and the shaft motion reaches a stable limit circle in phase space with the instant energy flow tending a constant and the time averaged one tending zero.Numerical simulations have not found any possible chaotic motions of the system.It is discovered that the damping matrices of cases(a),(b)and(c)respectively have positive,negative and zero diagonal elements,resulting in the different dynamic behavour of system,which gives a giderline to design the water-lubricated bearing unit with expected performance by adjusting the friction parameters for applications.
基金supported by Hebei Natural Science Foundation under Grant No.E2024402079Key Laboratory of Intelligent Industrial Equipment Technology of Hebei Province(Hebei University of Engineering)under Grant No.202206.
文摘A bearing fault diagnosis method based on the Markov transitionfield(MTF)and SEnet(SE)-IShufflenetV2 model is proposed in this paper due to the problems of complex working conditions,low fault diagnosis accuracy,and poor generalization of rolling bearing.Firstly,MTF is used to encode one-dimensional time series vibration sig-nals and convert them into time-dependent and unique two-dimensional feature images.Then,the generated two-dimensional dataset is fed into the SE-IShufflenetV2 model for training to achieve fault feature extraction and classification.This paper selects the bearing fault datasets from Case Western Reserve University and Paderborn University to experimentally verify the effectiveness and superiority of the proposed method.The generalization performance of the proposed method is tested under the variable load condition and different signal-to-noise ratios(SNRs).The experimental results show that the average accuracy of the proposed method under different working conditions is 99.2%without adding noise.The accuracy under different working conditions from 0 to 1 HP is 100%.When the SNR is 0 dB,the average accuracy of the proposed method can still reach 98.7%under varying working conditions.Therefore,the bearing fault diagnosis method proposed in this paper is characterized by high accuracy,strong anti-noise ability,and generalization.Moreover,the proposed method can also overcome the influence of variable working conditions on diagnosis accuracy,providing method support for the accurate diagnosis of bearing faults under strong noise and variable working conditions.
文摘To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.
基金Natural Science Foundation of Heilongjiang Province of China (No.LC2009C05)
文摘The water-lubricated conical bearing has attracted attentions of researchers for its simple structure, easily adjusted gap (fdm thickness ), lower friction loss, and less pollution in application. A mathematic model with consideration of the effects of turbulence, two-phase flow, and temperature on the pressure field at bearing surface is proposed here. Using this model, the Reynolds' equation and energy equation are solved in which the thermo- physical properties of the water as lubricant are taken into account. The dependency of characteristics of bearing, such as load-earrying capacity, flow rate (pumping losses ), and frictional losses, on angular velocity, conical angle, and radial eccentricities, is presented. The research results are beneficial to the improvement of the efficiency of conical bearing and the environmental protection.
基金Supported by National Natural Science Foundation of China (Grant Nos. 51635004, 11472078)。
文摘The water-lubricated bearings are usually the state of turbulent cavitating flow under high-speed conditions. And the distribution of cavitation bubbles and the interface effect between the two phases have not been included in previous studies on high-speed water-lubricated bearings. In order to study the influence of interface effect and cavitation bubble distribution on the dynamic characteristics of high-speed water-lubricated spiral groove thrust bearings(SGTB).A turbulent cavitating flow lubrication model based on two-phase fluid and population balance equation of bubbles was established in this paper. Stiffness and the damping coefficients of the SGTB were calculated using the perturbation pressure equations. An experimental apparatus was developed to verify the theoretical model. Simulating and experimental results show that the small-sized bubbles tend to generate in the turbulent cavitating flow when at a high rotary speed, and the bubbles mainly locate at the edges of the spiral groove. The simulating results also show that the direct stiffness coefficients are increased due to cavitation effect, and cross stiffness coefficients and damping coefficients are hardly affected by the cavitation effect. Turbulent effect on the dynamic characteristics of SGTB is much stronger than the cavitating effect.
基金Supported by the National Natural Science Foundation of China(Grant No.52171319).
文摘Water-lubrication bearings are critical components in ship operation.However,studies on their maintenance and failure detection are highly limited.The use of sensors to continually monitor the working operation of bearings is a potential approach to solve this problem,which is collectively called intelligent bearings.In this literature review,the recent progress of electrical resistance strain gauges,Fiber Bragg grating,triboelectric nanogenerators,piezoelectric nanogenerators,and thermoelectric sensors for in-situ monitoring is summarized.Future research and design concepts on intelligent water-lubrication bearings are also comprehensively discussed.The findings show that the accident risks,lubrication condition,and remaining life of water-lubricated bearings can be evaluated with the surface temperature,coefficient of friction,and wear volume monitoring.The research work on intelligent water-lubricated bearings is committed to promoting the development of green,electrified,and intelligent technologies for ship propulsion systems,which have important theoretical significance and application value.
基金supported by the National Natural Science Foundation of China(Nos.51922023,61874011)Fundamental Research Funds for the Central Universities(E1EG6804)
文摘As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.
文摘The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency.
基金supported by the China Postdoctoral Science Foundation(Grant No.2022M721395)the National Natural Science Foundation of China(Grant No.72072089).
文摘To address the common issues of wrinkling,tearing,and uneven wall thickness in the actual sheet metal stamp-ing process of the outer ring of needle roller bearings,this study analyzes critical technical indicators such asforming limits,thickness distribution,and principal strains in the forming process in detail.Three-dimensionalmodels of the concave and convex dies were constructed.The effects of different process parameters,includingstamping speed,edge pressure,sheet metal thickness,and friction coefficient,on the quality of the forming partswere investigated by varying these parameters.Subsequently,the orthogonal experimental method was used todetermine an optimal experimental group from multiple sets of experiments.It was found that under the processparameters of a stamping speed of 3000 mm/s,edge pressure of 2000 N,sheet metal thickness of 0.9 mm,andfriction coefficient of 0.125,the forming quality of the outer ring of the bearing is ideal.
基金supported by the National Natural Science Foundation of China(51978345,52278264).
文摘A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.
基金financial support provided by the National Key Research and Development Project of China(Grant No.2022YFB3402901)the National Natural Science Foundation of China(Grant No.52305070,52302467)。
文摘High-speed trains typically utilize helical gear transmissions,which significantly impact the bearing load capacity and fatigue service performance of the gearbox bearings.This paper focuses on the gearbox bearings,establishing dynamic models for both helical gear and herringbone gear transmissions in high-speed trains.The modeling particularly emphasizes the precision of the bearings at the gearbox's pinion and gear wheels.Using this model,a comparative analysis is conducted on the bearing loads and contact stresses of the gearbox bearings under uniform-speed operation between the two gear transmissions.The findings reveal that the helical gear transmission generates axial forces leading to severe load imbalance on the bearings at both sides of the large gear,and this imbalance intensifies with the increase in train speed.Consequently,this results in a significant increase in contact stress on the bearings on one side.The adoption of herringbone gear transmission effectively suppresses axial forces,resolving the load imbalance issue and substantially reducing the contact stress on the originally biased side of the bearings.The study demonstrates that employing herringbone gear transmission can significantly enhance the service performance of high-speed train gearbox bearings,thereby extending their service life.
基金Project supported by the National Natural Science Foundation of China(Nos.12393780,12032017,and 12002221)the Key Scientific Research Projects of China Railway Group(No.N2021J032)+2 种基金the College Education Scientific Research Project of Hebei Province of China(No.JZX2024006)the S&T Program of Hebei Province of China(No.21567622H)the National Scholarship Council of China。
文摘As an important component of the running gear of high-speed trains,axle box bearings can cause lubricating grease failure and damage to bearing components under continuous high-temperature operation,which will affect the normal operation of highspeed trains.Therefore,bearing temperature is one of the key parameters to be monitored in the online monitoring system for trains.Based on the thermal network method,this paper establishes a thermal network model for the axle box bearing,considering the radial thermal deformation of the double-row tapered roller bearing components caused by the oil film characteristics and the temperature variations of the lubricating grease.A thermo-mechanical coupling model for the grease-lubricated double-row tapered roller axle box bearing of high-speed trains with track irregularity excitation is established.The correctness of the model is verified using the test bench data,and the temperature of the bearing at different rotational speeds,loads,fault sizes,and ambient temperatures are investigated.
基金Supported by National Key R&D Program of China(Grant No.2021YFB3400501).
文摘Cam-lobe radial-piston hydraulic motors are widely used as rotation driving units for various marine machinery owing to their ultrahigh output torque(more than 100 kN m).A multi-row cam roller bearing(MCRB)is the key component that directly determines the fatigue life of a cam-lobe radial-piston hydraulic motor.However,compact geometry and complex loads render MCRB susceptible to fatigue failure,highlighting the need for an optimized MCRB to achieve longer fatigue life and higher reliability.Therefore,this study proposes an innovative geometry optimization method for an MCRB to improve its fatigue life.In this method,a quasi-static model was developed to calculate the load distribution,with the fatigue life of the MCRB calculated using both basic dynamic loading and load distribution.Subsequently,a genetic algorithm was used to obtain the optimized geometry parameters,which significantly improved the fatigue life of the MCRB.Finally,a loading test was conducted on a hydraulic motor installed with both the initial and optimized MCRB to validate the effectiveness of the proposed optimization method.This study provides a theoretical guideline for optimizing the design of MCRB,thereby increasing the fatigue life of hydraulic motors.
基金supported by the National Natural Science Foundations of China under Grant Nos.52206123,52075506,52205543,52322510,52275470 and 52105129Science and Technology Planning Project of Sichuan Province under Grant No.2021YJ0557+2 种基金Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC1947Presidential Foundation of China Academy of Engineering PhysicsGrant No.YZJJZQ2022009。
文摘Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.
基金Supported by Sichuan Provincial Key Research and Development Program of China(Grant No.2023YFG0351)National Natural Science Foundation of China(Grant No.61833002).
文摘Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance on anomaly detection to preempt equipment malfunctions faces the challenge of sudden anomaly discernment.To address this challenge,this paper proposes a dual-task learning approach for bearing anomaly detection and state evaluation of safe regions.The proposed method transforms the execution of the two tasks into an optimization issue of the hypersphere center.By leveraging the monotonicity and distinguishability pertinent to the tasks as the foundation for optimization,it reconstructs the SVDD model to ensure equilibrium in the model’s performance across the two tasks.Subsequent experiments verify the proposed method’s effectiveness,which is interpreted from the perspectives of parameter adjustment and enveloping trade-offs.In the meantime,experimental results also show two deficiencies in anomaly detection accuracy and state evaluation metrics.Their theoretical analysis inspires us to focus on feature extraction and data collection to achieve improvements.The proposed method lays the foundation for realizing predictive maintenance in a healthy stage by improving condition awareness in safe regions.
文摘Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently.To address the problem that the insufficient fault feature extraction ability of traditional fault diagnosis methods results in poor diagnosis effect under variable load and noise interference scenarios,a rolling bearing fault diagnosis model combining Multi-Scale Convolutional Neural Network(MSCNN)and Long Short-Term Memory(LSTM)fused with attention mechanism is proposed.To adaptively extract the essential spatial feature information of various sizes,the model creates a multi-scale feature extraction module using the convolutional neural network(CNN)learning process.The learning capacity of LSTM for time information sequence is then used to extract the vibration signal’s temporal feature information.Two parallel large and small convolutional kernels teach the system spatial local features.LSTM gathers temporal global features to thoroughly and painstakingly mine the vibration signal’s characteristics,thus enhancing model generalization.Lastly,bearing fault diagnosis is accomplished by using the SoftMax classifier.The experiment outcomes demonstrate that the model can derive fault properties entirely from the initial vibration signal.It can retain good diagnostic accuracy under variable load and noise interference and has strong generalization compared to other fault diagnosis models.