[Objective]This study aimed to select hybrid mil et varieties those can produce high yield under water-saving irrigation conditions. [Method] From 2011 to 2013, drought-resistant experiments on 200 hybrid mil et combi...[Objective]This study aimed to select hybrid mil et varieties those can produce high yield under water-saving irrigation conditions. [Method] From 2011 to 2013, drought-resistant experiments on 200 hybrid mil et combinations were carried out in the three consecutive years in Dunhuang City. Plastic film was covered on the soil surface in one treatment (F) and was not in the other treatment (NF). Irri-gation was only performed once before sowing. At seedling stage, jointing stage, heading stage and fil ing stage, we measured the water contents of soil at 0-20, 20-40, 40-60, 60-80, 80-100 and 100-120 cm deep. Plant height, panicle length, til er number, grain weight per ear, grain weight per plant, grass weight and above-ground biomass were measured from a bulk of eight plants in each plot. Grain yield per plot was measured final y. [Result] Under the only irrigation of 1 200 m3/hm2 before sowing, 18 hybrid mil et combinations exhibited stronger resistance to drought, and four of them: 13DH2, 13DH3, 13DH8 and 13DH9 produced grain more than 3 000 kg/hm2. The yield of hybrid mil et combination 13DH8 was up to 6 000 kg/hm2 under the only irrigation of 1 200 m3/hm2, i.e. 1 m3 of water could produce 5 kg of grain on average. Therefore, application of this cultivation technology could increase arable land of irrigated arid area by several times. In addition, irrigation of 1 200 m3/hm2 is equivalent to 120 mm of rainfal; so this cultivation technology also can be applied in arid area with 200 mm of rainfal . [Conclusion] The cultivation technology can cope with the occurrence of extreme weather, protect water re-sources and enlarge global grain planting area. At the same time, it also ensures food production and food safety.展开更多
The water shortage faced with rice production in China was comprehensively analyzed,and the seasonal as well as spatial and temporal differences were the factors limiting rice production,which would be a severe test f...The water shortage faced with rice production in China was comprehensively analyzed,and the seasonal as well as spatial and temporal differences were the factors limiting rice production,which would be a severe test for grain production safety.Therefore,solving strategies had been proposed from the following aspects:the improvement of irrigation practices was of significant effect on improving the high efficient utilization of water;the screening of drought resistance cultivars and upland rice cultivation could also greatly improve the ability of drought resistance;the combination of traditional breeding techniques with modern transgenic technology as well as the QTL analysis had made considerable progress on improving the soil moisture productive potential of rice from the perspective of genetics.The development of China's rice industry would face greater water scarcity in the future,but the conventional water-saving technologies could only reduce water consume to a certain extent,while the exploration and improvement of the water saving potential of wetland rice to give full play to the biological water-saving function would become the goal of agricultural development in China.展开更多
Recent studies revealed that DNA methylation plays an important role in plant growth and development. In this study, a water-saving and drought-resistant rice variety Huhan 3 was subjected to drought stress from tille...Recent studies revealed that DNA methylation plays an important role in plant growth and development. In this study, a water-saving and drought-resistant rice variety Huhan 3 was subjected to drought stress from tillering to grain-filling stages in six successive growth cycles. The variations in DNA methylation pattern between the original generation (Go) and the sixth generation (G6) were analyzed by using methylation sensitive amplification polymorphism method. The results revealed that the methylated loci accounted for 34.3% to 34.8% of the total loci. Among these methylated loci, 83.1% to 84.8% were full- and hyper-methylated and 15.2% to 16.9% were hemi-methylated. The DNA methylation level decreased from the three-leaf to four-leaf stages in Huhan 3. Differentially methylated loci (DML) between generations or/and between different developmental stages accounted for 4.0% of the total loci, most of which were only related to plant development (57.9%). Compared to Go, the DNA methylation pattern of G8 changed after drought domestication, at the three-leaf stage, de-methylation accounting for 59.1%, while at the four-leaf stage, re-methylation for 47.9%. Genome-wide alternations of DNA methylation were observed between the two seedling stages, and DML mainly occurred on the gene's promoter and exon region. The genes related to DML involved in a wide range of functional biology and participated in many important biological processes.展开更多
Rice production accounts for approximately half of the freshwater resources utilized in agriculture,result-ing in greenhouse gas emissions such as methane(CH4)from flooded paddy fields.To address this chal-lenge,envir...Rice production accounts for approximately half of the freshwater resources utilized in agriculture,result-ing in greenhouse gas emissions such as methane(CH4)from flooded paddy fields.To address this chal-lenge,environmentally friendly and cost-effective water-saving techniques have become widely adopted in rice cultivation.However,the implementation of water-saving treatments(WsTs)in paddy-field rice has been associated with a substantial yield loss of up to 50%as well as a reduction in nitrogen use efficiency(NUE).In this study,we discovered that the target of rapamycin(TOR)signaling pathway is compromised in rice under WsT.Polysome profiling-coupled transcriptome sequencing(polysome-seq)analysis unveiled a substantial reduction in global translation in response to WST associated with the downregulation of TOR activity.Molecular,biochemical,and genetic analyses revealed new insights into the impact of the positive TOR-S6K-RPS6 and negative TOR-MAF1 modules on translation repression under WST.Intriguingly,ammonium exhibited a greater ability to alleviate growth constraints under WsT by enhancing TOR signaling,which simultaneously promoted uptake and utilization of ammonium and nitrogen allocation.We further demonstrated that TOR modulates the ammonium transporter AMT1;1 as well as the amino acid permease APP1 and dipeptide transporter NPF7.3 at the translational level through the 5'untranslated region.Collectively,these findings reveal that enhancing TOR signaling could mitigate rice yield penalty due to WST by regulating the processes involved in protein synthesis and NUE.Our study will contribute to the breeding of new rice varieties with increased water and fertilizer utilization efficiency.展开更多
基金Supported by National Key Technology Research and Development Program(2011BAD06B01)~~
文摘[Objective]This study aimed to select hybrid mil et varieties those can produce high yield under water-saving irrigation conditions. [Method] From 2011 to 2013, drought-resistant experiments on 200 hybrid mil et combinations were carried out in the three consecutive years in Dunhuang City. Plastic film was covered on the soil surface in one treatment (F) and was not in the other treatment (NF). Irri-gation was only performed once before sowing. At seedling stage, jointing stage, heading stage and fil ing stage, we measured the water contents of soil at 0-20, 20-40, 40-60, 60-80, 80-100 and 100-120 cm deep. Plant height, panicle length, til er number, grain weight per ear, grain weight per plant, grass weight and above-ground biomass were measured from a bulk of eight plants in each plot. Grain yield per plot was measured final y. [Result] Under the only irrigation of 1 200 m3/hm2 before sowing, 18 hybrid mil et combinations exhibited stronger resistance to drought, and four of them: 13DH2, 13DH3, 13DH8 and 13DH9 produced grain more than 3 000 kg/hm2. The yield of hybrid mil et combination 13DH8 was up to 6 000 kg/hm2 under the only irrigation of 1 200 m3/hm2, i.e. 1 m3 of water could produce 5 kg of grain on average. Therefore, application of this cultivation technology could increase arable land of irrigated arid area by several times. In addition, irrigation of 1 200 m3/hm2 is equivalent to 120 mm of rainfal; so this cultivation technology also can be applied in arid area with 200 mm of rainfal . [Conclusion] The cultivation technology can cope with the occurrence of extreme weather, protect water re-sources and enlarge global grain planting area. At the same time, it also ensures food production and food safety.
文摘The water shortage faced with rice production in China was comprehensively analyzed,and the seasonal as well as spatial and temporal differences were the factors limiting rice production,which would be a severe test for grain production safety.Therefore,solving strategies had been proposed from the following aspects:the improvement of irrigation practices was of significant effect on improving the high efficient utilization of water;the screening of drought resistance cultivars and upland rice cultivation could also greatly improve the ability of drought resistance;the combination of traditional breeding techniques with modern transgenic technology as well as the QTL analysis had made considerable progress on improving the soil moisture productive potential of rice from the perspective of genetics.The development of China's rice industry would face greater water scarcity in the future,but the conventional water-saving technologies could only reduce water consume to a certain extent,while the exploration and improvement of the water saving potential of wetland rice to give full play to the biological water-saving function would become the goal of agricultural development in China.
基金supported by the National High-Technology R&D Program of China (Grant No. 2012AA101102)the Project for High-Level Talents of China (Grant No. 2010C1120)Shanghai Key Program for Agriculture Science and Technology, China
文摘Recent studies revealed that DNA methylation plays an important role in plant growth and development. In this study, a water-saving and drought-resistant rice variety Huhan 3 was subjected to drought stress from tillering to grain-filling stages in six successive growth cycles. The variations in DNA methylation pattern between the original generation (Go) and the sixth generation (G6) were analyzed by using methylation sensitive amplification polymorphism method. The results revealed that the methylated loci accounted for 34.3% to 34.8% of the total loci. Among these methylated loci, 83.1% to 84.8% were full- and hyper-methylated and 15.2% to 16.9% were hemi-methylated. The DNA methylation level decreased from the three-leaf to four-leaf stages in Huhan 3. Differentially methylated loci (DML) between generations or/and between different developmental stages accounted for 4.0% of the total loci, most of which were only related to plant development (57.9%). Compared to Go, the DNA methylation pattern of G8 changed after drought domestication, at the three-leaf stage, de-methylation accounting for 59.1%, while at the four-leaf stage, re-methylation for 47.9%. Genome-wide alternations of DNA methylation were observed between the two seedling stages, and DML mainly occurred on the gene's promoter and exon region. The genes related to DML involved in a wide range of functional biology and participated in many important biological processes.
基金Thise research was supported by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City City(320LH031 and HSPHDSRF-2023-04-016)Zhejiang Provincial Natural Science Foundation of China(LY21C020003)+3 种基金Zhejiang University Global Partnership Fund,Fundamental Research Funds for the Central Universities for the Central Universities(K20200168)the Key Research and Development Program of Zhejiang(2020C02002)National Natural Science Foundation of China(32201819)China Postdoctoral Science Foundation(2022M712807).
文摘Rice production accounts for approximately half of the freshwater resources utilized in agriculture,result-ing in greenhouse gas emissions such as methane(CH4)from flooded paddy fields.To address this chal-lenge,environmentally friendly and cost-effective water-saving techniques have become widely adopted in rice cultivation.However,the implementation of water-saving treatments(WsTs)in paddy-field rice has been associated with a substantial yield loss of up to 50%as well as a reduction in nitrogen use efficiency(NUE).In this study,we discovered that the target of rapamycin(TOR)signaling pathway is compromised in rice under WsT.Polysome profiling-coupled transcriptome sequencing(polysome-seq)analysis unveiled a substantial reduction in global translation in response to WST associated with the downregulation of TOR activity.Molecular,biochemical,and genetic analyses revealed new insights into the impact of the positive TOR-S6K-RPS6 and negative TOR-MAF1 modules on translation repression under WST.Intriguingly,ammonium exhibited a greater ability to alleviate growth constraints under WsT by enhancing TOR signaling,which simultaneously promoted uptake and utilization of ammonium and nitrogen allocation.We further demonstrated that TOR modulates the ammonium transporter AMT1;1 as well as the amino acid permease APP1 and dipeptide transporter NPF7.3 at the translational level through the 5'untranslated region.Collectively,these findings reveal that enhancing TOR signaling could mitigate rice yield penalty due to WST by regulating the processes involved in protein synthesis and NUE.Our study will contribute to the breeding of new rice varieties with increased water and fertilizer utilization efficiency.