Based on Kuo and Dai's vectorial wave-field extrapolation equations, we derive new Kirchhoff migration equations by introducing unit vectors which represent the ray directions at the imaging points of the reflected P...Based on Kuo and Dai's vectorial wave-field extrapolation equations, we derive new Kirchhoff migration equations by introducing unit vectors which represent the ray directions at the imaging points of the reflected P- and PS converted-waves. Furthermore, using the slope of the events on shot records and a ray racing procedure, mirror-image reflection points are found and the reflection data are smeared along the Fresnel zone. The migration method proposed in this paper solves two troublesome imaging problems caused by limited receiving aperture and migration artifacts resulting from wave propagation at the velocities of non original wave type. The migration method is applied successfully with model data, demonstrating that the new method is effective and correct.展开更多
Because zero-offset VSP (Vertical Seismic Profile) data can only provide the information of rock properties and structure in the area around the Fresnel zone within the well, the scheme of VSP with offset was develope...Because zero-offset VSP (Vertical Seismic Profile) data can only provide the information of rock properties and structure in the area around the Fresnel zone within the well, the scheme of VSP with offset was developed to acquire the reflection information away from the borehole in order to widen the range of VSP survey and to improve the precision of imaging. In this paper, we present a new CDP (Common Depth Point) mapping approach to image the reflecting structure by using offset VSP data. For the processing of offSet VSP data, we firstly separated the up-going and down-going wave-fields from VSP data by means of F-K filtering technique, and we can calculate the mapping conditions (position and reflecting traveltime for CDP point) in homogeneous media, and then reconstruct the inner structure of the earth. This method is tested by using the offset VSP data which are used to simulate the case of super-deep borehole by means of finite-difference method. The imaged structure matches the real model very well. The results show that the method present here could accurately image the inner structure of the earth if the deviation of initial velocity model from the true model is less than 10%. Finally, we presented the imaged results for the real offset data by using this method.展开更多
The Biot and Squirt-flow are the two most important mechanisms of fluid flow in the porous medium with fluids. Based on the BISQ (Biot-Squirt) model where the two mechanisms are treated simultaneously, dispersion and ...The Biot and Squirt-flow are the two most important mechanisms of fluid flow in the porous medium with fluids. Based on the BISQ (Biot-Squirt) model where the two mechanisms are treated simultaneously, dispersion and attenuation of elastic waves in the porous medium are widely investigated in recent years. However, we have not read any reports on numerical simulation based on the BISQ equation. In this paper, following the BISQ equation, elastic wave propagation in the transversely isotropic porous medium filled with fluids is simulated by the stag-gered grid method for different frequency and phase boundary cases and the two-layer medium. And propagating characteristics of seismic and acoustic waves and various phenomena occured in the propagating process are in-vestigated when the two mechanisms are considered simultaneously.展开更多
基金supported by National High-Tech Research and Development Program of China (Grant No. 2006AA06Z202)Open Fund of the Key Laboratory of Geophysical Exploration of CNPC (Grant No. GPKL0802)+2 种基金CNPC Young Innovation Fund (Grant No. 05E7028) graduate student Innovation Fund of China University of Petroleum(East China) (Grant No. S2008-1)the Program for New Century Excellent Talents in University (Grant No. NCET-07-0845).
文摘Based on Kuo and Dai's vectorial wave-field extrapolation equations, we derive new Kirchhoff migration equations by introducing unit vectors which represent the ray directions at the imaging points of the reflected P- and PS converted-waves. Furthermore, using the slope of the events on shot records and a ray racing procedure, mirror-image reflection points are found and the reflection data are smeared along the Fresnel zone. The migration method proposed in this paper solves two troublesome imaging problems caused by limited receiving aperture and migration artifacts resulting from wave propagation at the velocities of non original wave type. The migration method is applied successfully with model data, demonstrating that the new method is effective and correct.
文摘Because zero-offset VSP (Vertical Seismic Profile) data can only provide the information of rock properties and structure in the area around the Fresnel zone within the well, the scheme of VSP with offset was developed to acquire the reflection information away from the borehole in order to widen the range of VSP survey and to improve the precision of imaging. In this paper, we present a new CDP (Common Depth Point) mapping approach to image the reflecting structure by using offset VSP data. For the processing of offSet VSP data, we firstly separated the up-going and down-going wave-fields from VSP data by means of F-K filtering technique, and we can calculate the mapping conditions (position and reflecting traveltime for CDP point) in homogeneous media, and then reconstruct the inner structure of the earth. This method is tested by using the offset VSP data which are used to simulate the case of super-deep borehole by means of finite-difference method. The imaged structure matches the real model very well. The results show that the method present here could accurately image the inner structure of the earth if the deviation of initial velocity model from the true model is less than 10%. Finally, we presented the imaged results for the real offset data by using this method.
基金State Natural Sciences Foundation of China (No. 40174012) and the Key Laboratory Foundation of the CNPC (No. GPKL0104).
文摘The Biot and Squirt-flow are the two most important mechanisms of fluid flow in the porous medium with fluids. Based on the BISQ (Biot-Squirt) model where the two mechanisms are treated simultaneously, dispersion and attenuation of elastic waves in the porous medium are widely investigated in recent years. However, we have not read any reports on numerical simulation based on the BISQ equation. In this paper, following the BISQ equation, elastic wave propagation in the transversely isotropic porous medium filled with fluids is simulated by the stag-gered grid method for different frequency and phase boundary cases and the two-layer medium. And propagating characteristics of seismic and acoustic waves and various phenomena occured in the propagating process are in-vestigated when the two mechanisms are considered simultaneously.