期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Simulation of double cold cores of the 35°N section in the YellowSea with a wave-tide-circulation coupled model 被引量:7
1
作者 夏长水 乔方利 +2 位作者 张勐宁 杨永增 袁业立 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2004年第3期292-298,共7页
Based on the MASNUM wave-tide-circulation coupled numerical model, the temperature structure along 35°N in the Yellow Sea was simulated and compared with the observations. One of the notable features of the tempe... Based on the MASNUM wave-tide-circulation coupled numerical model, the temperature structure along 35°N in the Yellow Sea was simulated and compared with the observations. One of the notable features of the temperature structure along 35°N section is the double cold cores phenomena during spring and summer. The double cold cores refer to the two cold water centers located near 122°E and 125°E from the depth of 30m to bottom. The formation, maintenance and disappearance of the double cold cores are discussed. At least two reasons make the temperature in the center (near 123°E) of the section higher than that near the west and east shores in winter. One reason is that the water there is deeper than the west and east sides so its heat content is higher. The other is invasion of the warm water brought by the Yellow Sea Warm Current (YSWC) during winter.This temperature pattern of the lower layer (from 30m to bottom) is maintained through spring and summer when the upper layer (0 to 30m) is heated and strong thermocline is formed. Large zonal span of the 35°N section (about 600 km) makes the cold cores have more opportunity to survive. The double cold cores phenomena disappears in early autumn when the west cold core vanishes first with the dropping of the thermocline position. 展开更多
关键词 temperature The Yellow Sea wave-tide-circulation coupled model double cold cores
下载PDF
The summertime circulation of the Bohai Sea simulated from a high-resolution wave-tide-circulation coupled model 被引量:2
2
作者 Changshui Xia Jingsong Guo +2 位作者 Guansuo Wang Zhenhua Chen Xiaodi Kuang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第1期32-37,共6页
The Bohai Sea is a shallow semi-enclosed inner sea with an average depth of 18 m and is located at the west of the northern Yellow Sea. The climatological circulation pattern in summer of the Bohai Sea is studied by u... The Bohai Sea is a shallow semi-enclosed inner sea with an average depth of 18 m and is located at the west of the northern Yellow Sea. The climatological circulation pattern in summer of the Bohai Sea is studied by using a wave-tide-circulation coupled model. The simulated temperature and the circulation agree with the observation well. The result shows that the circulation pattern of the Bohai Sea is jointly influenced by the tidal residual current, wind and baroclinic current. There exists an obvious density current along the temperature front from the west part of the Liaodong Bay to the offshore area of the Huanghe Estuary. In the Liaodong Bay there exists a clockwise gyre in the area north to the 40°N. While in the area south to the 40°N the circulation shows a two-gyre structure, the flow from the offshore area of the Huanghe Estuary to the Liaodong Bay splits into two branches in the area between 39°N and 40°N. The west branch turns into north-west and forms an anti-clockwise gyre with the south-westward density current off the west of the Liaodong Bay. The east branch turns to the east and forms a clockwise gyre with the flow along the east coast of the Liaodong Bay. The forming mechanism of the circulation is also discussed in this paper. 展开更多
关键词 Bohai Sea summer CIRCULATION baroclinic current wave-tide-circulation coupled model
下载PDF
Tidal effects on temperature iront in the Yellow Sea 被引量:6
3
作者 马建 乔方利 +1 位作者 夏长水 杨永增 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2004年第3期314-321,共8页
Temperature front (TF) is one of the important features in the Yellow Sea, which forms in spring,thrives in summer, and fades in autumn as thermocline declines. TF intensity |ST| is defined to describe the distributio... Temperature front (TF) is one of the important features in the Yellow Sea, which forms in spring,thrives in summer, and fades in autumn as thermocline declines. TF intensity |ST| is defined to describe the distribution of TF. Based on the MASNUM wave-tide-circulation coupled model, temperature distribution in the Yellow Sea was simulated with and without tidal effects. Along 36°N, distribution of TF from the simulated results are compared with the observations, and a quantitative analysis is introduced to evaluate the tidal effects on the forming and maintaining processes of the TF. Tidal mixing and the circulation structure adapting to it are the main causes of the TF. 展开更多
关键词 temperature front tidal effects tidal mixing wave-tide-circulation coupled model Yellow Sea Cold Water Mass
下载PDF
The numerical investigation of seasonal variation of the cold water mass in the Beibu Gulf and its mechanisms 被引量:6
4
作者 CHEN Zhenhua QIAO Fangli +1 位作者 XIA Changshui WANG Gang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第1期44-54,共11页
A wave-tide-circulation coupled model based on the Princeton Ocean Model is established to explore the seasonal variation of the cold water mass in the Beibu Gulf and its mechanisms. The results show that the cold wat... A wave-tide-circulation coupled model based on the Princeton Ocean Model is established to explore the seasonal variation of the cold water mass in the Beibu Gulf and its mechanisms. The results show that the cold water mass starts forming in March, reaches the maximum strength during June and July, and fades away since October. Strong mixing in winter transports the cold water from sea surface to bottom. The cold water mass remains in the bottom layer as the thermocline strengthens during spring, except for the shallow water where the themocline is broken by strong tidal mixing, which gradually separate the cold water mass from its surrounding warm water. Further analysis on the ocean current and stream function confirms that the cold water mass in the Beibu Gulf is locally developed, with an anticlockwise circulation caused by a strong temperature gradient. Sensitivity experiments reveal that the cold water mass is controlled by the sea surface heat flux, while the terrain and tidal mixing also play important roles. 展开更多
关键词 Beibu Gulf cold water mass seasonal variation wave-tide-circulation coupled model
下载PDF
Simulation and analysis on seasonal variability of average salinity in the Yellow Sea 被引量:5
5
作者 马建 乔方利 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2004年第3期306-313,共8页
The CTD (conductivity, temperature and depth) data collected by six China-Korea joint cruises during 1996-1998 and the climatological data suggest that the seasonal variability of average salinity in the Yellow Sea (S... The CTD (conductivity, temperature and depth) data collected by six China-Korea joint cruises during 1996-1998 and the climatological data suggest that the seasonal variability of average salinity in the Yellow Sea (Sa) presents a general sinusoid pattern. To study the mechanism of the variability, annual cycles of Sa were simulated and a theoretical analysis based on the governing equations was reported.Three main factors are responsible for the variability: the Yellow Sea Warm Current (YSWC), the Changji-ang (Yangtze) River diluted water (YRDW) and the evaporation minus precipitation (E-P). From December to the next May, the variability of Sa is mainly controlled by the salt transportation of the YSWC. But in early July, the YSWC is overtaken and replaced by the YRDW which then becomes the most important controller in summer. From late September to November, the E-P gradually took the lead. The mass exchange north of the 37癗 line is not significant. 展开更多
关键词 Yellow Sea average salinity wave-tide-circulation coupled model Yellow Sea Warm Current Changjiang (Yangtze) River diluted water evaporation minus precipitation
下载PDF
Seasonal variability of thermocline in the Yellow Sea 被引量:3
6
作者 乔方利 夏长水 +3 位作者 施建伟 马建 葛人峰 袁业立 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2004年第3期299-305,共7页
Based on the MASNUM wave-tide-circulation coupled numerical model, seasonal variability of thermocline in the Yellow Sea was simulated and compared with in-situ observations. Both simulated mixed layer depth (MLD) and... Based on the MASNUM wave-tide-circulation coupled numerical model, seasonal variability of thermocline in the Yellow Sea was simulated and compared with in-situ observations. Both simulated mixed layer depth (MLD) and thermocline intensity have similar spatial patterns to the observations. The simulated maximum MLD are 8 m and 22 m, while the corresponding observed values are 13 m and 27 m in July and October, respectively. The simulated thermocline intensity are 1.2℃/m and 0.5℃/m in July and October,respectively, which are 0.6℃/m less than those of the observations. It may be the main reason why the simulated thermocline is weaker than the observations that the model vertical resolution is less precise than that of the CTD data which is 1 m. Contours of both simulated and observed thermocline intensity present a circle in general. The wave-induced mixing plays a key role in the formation of the upper mixed layer in spring and summer. Tidal mixing enhances the thermocline intensity. Buoyancy-driven mixing destroys the thermocline in autumn and keeps the vertical temperature uniform in winter. 展开更多
关键词 thennocline the Yellow Sea wave-tide-circulation coupled model wave-induced mixing tidalmixing
下载PDF
Case study on the three-dimensional structure of meso-scale eddy in the South China Sea based on a high-resolution model 被引量:3
7
作者 XIA Changshui JUNG Kyung Tae +2 位作者 WANG Guansuo YIN Xunqiang GUO Jingsong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第2期29-38,共10页
Meso-scale eddies are important features in the South China Sea(SCS). The eddies with diameters of 50–200 km can greatly impact the transport of heat, momentum, and tracers. A high-resolution wave-tide-circulation ... Meso-scale eddies are important features in the South China Sea(SCS). The eddies with diameters of 50–200 km can greatly impact the transport of heat, momentum, and tracers. A high-resolution wave-tide-circulation coupled model was developed to simulate the meso-scale eddy in the SCS in this study. The aim of this study is to examine the model ability to simulate the meso-scale eddy in the SCS without data assimilations The simulated Sea Surface Height(SSH) anomalies agree with the observed the AVISO SSH anomalies well. The simulated subsurface temperature profiles agree with the CTD observation data from the ROSE(Responses of Marine Hazards to climate change in the Western Pacific) project. The simulated upper-ocean currents also agree with the main circulation based on observations. A warm eddy is identified in winter in the northern SCS. The position and domain of the simulated eddy are confirmed by the observed sea surface height data from the AVISO. The result shows that the model has the ability to simulate the meso-scale eddy in the SCS without data assimilation.The three-dimensional structure of the meso-scale eddy in the SCS is analyzed using the model result. It is found that the eddy center is tilted vertically, which agrees with the observation. It is also found that the velocity center of the eddy does not coincide with the temperature center of the eddy. The result shows that the model has the ability to simulate the meso-scale eddy in the SCS without data assimilations. Further study on the forming mechanism and the three-dimensional structure of the meso-scale eddies will be carried out using the model result and cruise observation data in the near future. 展开更多
关键词 meso-scale eddy South China Sea high-resolution wave-tide-circulation coupled model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部