Wear tests are essential in the design of parts intended to work in environments that subject a part to high wear.Wear tests involve high cost and lengthy experiments,and require special test equipment.The use of mach...Wear tests are essential in the design of parts intended to work in environments that subject a part to high wear.Wear tests involve high cost and lengthy experiments,and require special test equipment.The use of machine learning algorithms for wear loss quantity predictions is a potentially effective means to eliminate the disadvantages of experimental methods such as cost,labor,and time.In this study,wear loss data of AISI 1020 steel coated by using a plasma transfer arc welding(PTAW)method with FeCrC,FeW,and FeB powders mixed in different ratios were obtained experimentally by some of the researchers in our group.The mechanical properties of the coating layers were detected by microhardness measurements and dry sliding wear tests.The wear tests were performed at three different loads(19.62,39.24,and 58.86 N)over a sliding distance of 900 m.In this study,models have been developed by using four different machine learning algorithms(an artificial neural network(ANN),extreme learning machine(ELM),kernel-based extreme learning machine(KELM),and weighted extreme learning machine(WELM))on the data set obtained from the wear test experiments.The R2 value was calculated as 0.9729 in the model designed with WELM,which obtained the best performance among the models evaluated.展开更多
A method to determine muzzle velocity loss according to the actual measured bore wear pattern is proposed.Therefore,it is unnecessary to conduct live firing and other experiments for determination of muzzle velocity l...A method to determine muzzle velocity loss according to the actual measured bore wear pattern is proposed.Therefore,it is unnecessary to conduct live firing and other experiments for determination of muzzle velocity loss.It has been applied to a national military standard since July 1,2004.展开更多
Carbon nanotubes (CNTs) were coated by tungsten layer using metal organic chemical vapor deposition process with tungsten hexacarbonyl as a precursor. The W-coated CNTs (W-CNTs) were dispersed into Cu powders by m...Carbon nanotubes (CNTs) were coated by tungsten layer using metal organic chemical vapor deposition process with tungsten hexacarbonyl as a precursor. The W-coated CNTs (W-CNTs) were dispersed into Cu powders by magnetic stirring process and then the mixed powders were consolidated by spark plasma sintering to fabricate W-CNTs/Cu composites. The CNTs/Cu composites were fabricated using the similafprocesses. The friction coefficient and mass wear loss of W-CNTs/Cu and CNTs/Cu composites were studied. The results showed that the W-CNT content, interfacial bonding situation, and applied load could influence the friction coefficient and wear loss of W-CNTs/Cu com- posites. When the W-CNT content was 1.0 wt.%, the W-CNTs/Cu composites got the minimum friction coefficient and wear loss, which were decreased by 72.1% and 47.6%, respectively, compared with pure Cu specimen. The friction coefficient and wear loss of W-CNTs/Cu composites were lower than those of CNTs/Cu composites, which was due to that the interracial bonding at (W-CNTs)-Cu interface was better than that at CNTs-Cu interface. The friction coefficient of composites did not vary obviously with increasing applied load, while the wear loss of composites increased significantly with the increase of applied load.展开更多
Hybrid metal matrix composites are important class of engineering materials used in automotive, aerospace and other applications because of their lower density, higher specific strength, and better physical and mechan...Hybrid metal matrix composites are important class of engineering materials used in automotive, aerospace and other applications because of their lower density, higher specific strength, and better physical and mechanical properties compared to pure aluminium. The mechanical and wear properties of hybrid aluminium metal matrix composites were investigated. Mica and SiC ceramic particles were incorporated into A1 356 alloy by stir-casting route. Microstructures of the samples were studied using scanning electron microscope (SEM). The chemical composition was investigated through energy dispersive X-ray (EDX) detector. The results indicate that the better strength and hardness are achieved with A1/10SiC-3mica composites. The increase in mass fraction of mica improves the wear loss of the composites.展开更多
The variation of the friction coefficient of the CuAlBi alloy at different connecting loading and friction speed were investigated by using MMU-5G sliding friction-wear tester, besides, the wear mass loss of the CuAlB...The variation of the friction coefficient of the CuAlBi alloy at different connecting loading and friction speed were investigated by using MMU-5G sliding friction-wear tester, besides, the wear mass loss of the CuAlBi alloy was measured, and the influence of loading and rotation speed on friction and wear properties of CuAlBi alloy was also discussed. The results show that the friction coefficient increase then decrease with increase of connecting loading as well as decreases with increase of friction speed, and the wear loss mass increases with increase of connecting loading and friction speed. As a result, the wear failure form of CuAlBi alloy is mainly ploughing.展开更多
CNTs-Ag-G electrical contact composite material was prepared by means of powder metallurgical method. The influence of the graphite content on sliding wear characteristics of electrical contact levels was examined. In...CNTs-Ag-G electrical contact composite material was prepared by means of powder metallurgical method. The influence of the graphite content on sliding wear characteristics of electrical contact levels was examined. In experiments, CNTs content was retained as 1% (mass fraction), and graphite was added at content levels of 8%, 10%, 13%, 15% and 18%, respectively. The results indicate that with the increase of graphite content, the contact resistance of electrical contacts is enhanced to a certain level then remains constant. Friction coefficient decreases gradually with the increase of graphite content. Wear mass loss decreases to the minimum value then increases. With the small content of graphite, the adhesive wear is hindered, which leads to the decrease of wear mass loss, while excessive graphite brings much more worn debris, resulting in the increase of mass loss. It is concluded that wear mass loss reaches the minimum value when the graphite mass fraction is about 13%. Compared with conventional Ag-G contact material, the wear mass loss of CNTs-Ag-G composite is much less due to the obvious increase of hardness and electrical conductivity, decline of friction surface temperature and inhibition of adhesive wear between composites and slip rings.展开更多
The microstructures and abrasion wear resistance of directional solidification Fe-B alloy have been investigated using optical microscopy, X-ray diffraction, scanning electron microscopy and laser scanning microscopy....The microstructures and abrasion wear resistance of directional solidification Fe-B alloy have been investigated using optical microscopy, X-ray diffraction, scanning electron microscopy and laser scanning microscopy. The results show that the microstructure of as-cast Fe-B alloy consists of ferrite, pearlite and eutectic boride. After heat treatment, the microstructure is composed of boride and martensite. The plane which is perpendicular to the boride growth direction possesses the highest hardness. In two-body abrasive wear tests, the silicon carbide abrasive can cut the boride and martensite matrix synchronously, and the wear mechanism is micro cutting mechanism. The worn surface roughness and the wear weight loss both increase with the increasing contact load. Moreover, when the boride growth direction is perpendicular to the worn surface, the highest hardness plane of the boride can effectively oppose abrasion, and the martensite matrix can surround and support borides perfectly.展开更多
Friction and wear of GCr15 under cross-sliding condition is tested on a ball-on-disc wear test machine. Thisresult shows that the cross-sliding of friction pair leads to different friction and wear behavior. For the c...Friction and wear of GCr15 under cross-sliding condition is tested on a ball-on-disc wear test machine. Thisresult shows that the cross-sliding of friction pair leads to different friction and wear behavior. For the condition de-scribed in this paper, the friction coefficients with ball reciprocating are smaller than that without ball reciprocating.The friction coefficients increase with the increase of reciprocating frequency.. The wear weight loss of the ball sub-jected reciprocating sliding decreases, however, the wear weight loss of disc against the reciprocating ball increases. Incross-sliding friction, the worn surfaces of the ball show crinkle appearance along the circumferential sliding traces.Delaminating of small strip debris is formed along the plowing traces on the disc worn surface. The plowing furrow onthe disc surfaces looks deeper and wider than that without reciprocating sliding. The size of wear particles fromcross-sliding wear is larger than those without reciprocating sliding.展开更多
During the past two decades, considerable efforts have been made in the development of high performance spring steels to meet the needs for weight and savings in the automotive industry. During the service the suspens...During the past two decades, considerable efforts have been made in the development of high performance spring steels to meet the needs for weight and savings in the automotive industry. During the service the suspension system will be subjected to different environmental conditions, at the same time it has to sustain a variety of loads acting on it. Among all the wear of spring steel plays a vital role. In this experimental analysis an attempt has been made to investigate the performance of spring steel (EN-47 / SUP 10) under the dry sliding condition. The specimen preparation and the experimentations have been carried out according to the ASTM G99 standards. The effects of tempering and cryogenic treatments on the performance of the spring steel have also been determined. The results have revealed that the material condition has got a significant influence on the performance of the spring steel. In order to analyze the percentage contribution of different wear parameter and the material condition, the DOE and ANOVA have been made. The results have shown that the load (49.205%) has shown the highest influence and the material condition has shown 22.56% of contribution on wear behavior.展开更多
Wear is an important issue in hip implants. Excessive wear can lead to toxicity and other implant associated medical issues such as patient discomfort and decreased mobility. Since implant wear is the result of contac...Wear is an important issue in hip implants. Excessive wear can lead to toxicity and other implant associated medical issues such as patient discomfort and decreased mobility. Since implant wear is the result of contact between surfaces of femoral head and acetabulum implant, it is important to establish a model that can address implant surface roughness interaction. A statistical contact model is developed for the interaction of femoral head and acetabulum implant in which surface roughness effects are included. The model accounts for the elastic-plastic interaction of the implant surface roughness. For this purpose femoral head and acetabulum implants are considered as macroscopically spherical surfaces containing micron-scale roughness. Approximate equations are obtained that relate the contact force to the mean surface separation explicitly. Closed form equations are obtained for hysteretic energy loss in implant using the approximate equations.展开更多
Wear is a continuous process in which material is degraded with every cycle. Scientists are busy in improving the wear resistance. Approximately 75% failure in components or machine parts is due to wear. The present p...Wear is a continuous process in which material is degraded with every cycle. Scientists are busy in improving the wear resistance. Approximately 75% failure in components or machine parts is due to wear. The present paper investigates experimentally the effect of orientation and normal load on alloy of copper and zinc, i.e. Brass, and calculates weight loss due to wear. To do so, a multi-orientational pin-on-disc apparatus was designed and fabricated. Experiments were carried out under normal load 05-20 N, speed 2000 rpm. Results show that the with-increasing load weight loss increases at all angular positions. The loss in weight is maximum at zero degree (horizontal position) and minimum at ninety degree (vertical position) for a particular load. Maximum wear occurs when the test specimen is held at 0° angle and minimum wear occurs when the specimen is held at 90° angle for given applied load. The circumferential distance travel is constant for all positions and for all loads but still mass loss varies.展开更多
目的:分析固定-活动义齿在牙齿重度磨耗伴缺失治疗中的应用效果。方法:回顾性分析2020年2月-2021年10月在笔者医院行口腔修复治疗的88例牙齿重度磨耗伴缺失患者的临床资料,按治疗方式的不同分为对照组(n=43,活动义齿修复)和研究组(n=45...目的:分析固定-活动义齿在牙齿重度磨耗伴缺失治疗中的应用效果。方法:回顾性分析2020年2月-2021年10月在笔者医院行口腔修复治疗的88例牙齿重度磨耗伴缺失患者的临床资料,按治疗方式的不同分为对照组(n=43,活动义齿修复)和研究组(n=45,固定-活动义齿修复)。修复后半年判定两组修复效果,并比较两组患者修复前及修复后半年咀嚼效能、颞下颌关节(Temporomandibularjoint,TMJ)功能、生活质量及修复满意度。结果:研究组修复效果(95.56%)明显高于对照组(81.40%)(P<0.05);修复后两组咬合力、咀嚼效率和修复前相比均明显增高(P<0.05),且研究组高于对照组(P<0.05);修复后两组Helkimo临床功能障碍指数、TMJ功能指数(Fricton指数)中的TMJ紊乱指数评分、口腔健康影响程度量表14(Oral health impact scale 14,OHIP-14)评分和修复前相比均明显降低(P<0.05),且研究组低于对照组(P<0.05);研究组患者修复满意度评分高于对照组(P<0.05)。结论:应用固定-活动义齿对牙齿重度磨耗伴缺失患者进行修复的效果较佳,可明显改善患者咀嚼效能和TMJ功能,有效提高其生活质量,并能够提升患者满意度。展开更多
文摘Wear tests are essential in the design of parts intended to work in environments that subject a part to high wear.Wear tests involve high cost and lengthy experiments,and require special test equipment.The use of machine learning algorithms for wear loss quantity predictions is a potentially effective means to eliminate the disadvantages of experimental methods such as cost,labor,and time.In this study,wear loss data of AISI 1020 steel coated by using a plasma transfer arc welding(PTAW)method with FeCrC,FeW,and FeB powders mixed in different ratios were obtained experimentally by some of the researchers in our group.The mechanical properties of the coating layers were detected by microhardness measurements and dry sliding wear tests.The wear tests were performed at three different loads(19.62,39.24,and 58.86 N)over a sliding distance of 900 m.In this study,models have been developed by using four different machine learning algorithms(an artificial neural network(ANN),extreme learning machine(ELM),kernel-based extreme learning machine(KELM),and weighted extreme learning machine(WELM))on the data set obtained from the wear test experiments.The R2 value was calculated as 0.9729 in the model designed with WELM,which obtained the best performance among the models evaluated.
文摘A method to determine muzzle velocity loss according to the actual measured bore wear pattern is proposed.Therefore,it is unnecessary to conduct live firing and other experiments for determination of muzzle velocity loss.It has been applied to a national military standard since July 1,2004.
基金financially supported by the National Natural Science Foundation of China (No.50971020)National HighTech Research and Development Program of China (No.2009AA03Z116)
文摘Carbon nanotubes (CNTs) were coated by tungsten layer using metal organic chemical vapor deposition process with tungsten hexacarbonyl as a precursor. The W-coated CNTs (W-CNTs) were dispersed into Cu powders by magnetic stirring process and then the mixed powders were consolidated by spark plasma sintering to fabricate W-CNTs/Cu composites. The CNTs/Cu composites were fabricated using the similafprocesses. The friction coefficient and mass wear loss of W-CNTs/Cu and CNTs/Cu composites were studied. The results showed that the W-CNT content, interfacial bonding situation, and applied load could influence the friction coefficient and wear loss of W-CNTs/Cu com- posites. When the W-CNT content was 1.0 wt.%, the W-CNTs/Cu composites got the minimum friction coefficient and wear loss, which were decreased by 72.1% and 47.6%, respectively, compared with pure Cu specimen. The friction coefficient and wear loss of W-CNTs/Cu composites were lower than those of CNTs/Cu composites, which was due to that the interracial bonding at (W-CNTs)-Cu interface was better than that at CNTs-Cu interface. The friction coefficient of composites did not vary obviously with increasing applied load, while the wear loss of composites increased significantly with the increase of applied load.
文摘Hybrid metal matrix composites are important class of engineering materials used in automotive, aerospace and other applications because of their lower density, higher specific strength, and better physical and mechanical properties compared to pure aluminium. The mechanical and wear properties of hybrid aluminium metal matrix composites were investigated. Mica and SiC ceramic particles were incorporated into A1 356 alloy by stir-casting route. Microstructures of the samples were studied using scanning electron microscope (SEM). The chemical composition was investigated through energy dispersive X-ray (EDX) detector. The results indicate that the better strength and hardness are achieved with A1/10SiC-3mica composites. The increase in mass fraction of mica improves the wear loss of the composites.
文摘The variation of the friction coefficient of the CuAlBi alloy at different connecting loading and friction speed were investigated by using MMU-5G sliding friction-wear tester, besides, the wear mass loss of the CuAlBi alloy was measured, and the influence of loading and rotation speed on friction and wear properties of CuAlBi alloy was also discussed. The results show that the friction coefficient increase then decrease with increase of connecting loading as well as decreases with increase of friction speed, and the wear loss mass increases with increase of connecting loading and friction speed. As a result, the wear failure form of CuAlBi alloy is mainly ploughing.
基金Project(50271021) supported by the National Natural Science Foundation of ChinaProject(ZD2008003) supported by Key Science Foundation of the Education Department of Anhui Province, China+2 种基金Project(CF07-10) supported by the Innovation Center for Postgraduates at HFNL (USTC), ChinaProject(KF0702) supported by the Open Project Program of Ministry of Education of ChinaProject supported by Nippon Sheet Glass Foundation of Japan for Materials Science and Engineering
文摘CNTs-Ag-G electrical contact composite material was prepared by means of powder metallurgical method. The influence of the graphite content on sliding wear characteristics of electrical contact levels was examined. In experiments, CNTs content was retained as 1% (mass fraction), and graphite was added at content levels of 8%, 10%, 13%, 15% and 18%, respectively. The results indicate that with the increase of graphite content, the contact resistance of electrical contacts is enhanced to a certain level then remains constant. Friction coefficient decreases gradually with the increase of graphite content. Wear mass loss decreases to the minimum value then increases. With the small content of graphite, the adhesive wear is hindered, which leads to the decrease of wear mass loss, while excessive graphite brings much more worn debris, resulting in the increase of mass loss. It is concluded that wear mass loss reaches the minimum value when the graphite mass fraction is about 13%. Compared with conventional Ag-G contact material, the wear mass loss of CNTs-Ag-G composite is much less due to the obvious increase of hardness and electrical conductivity, decline of friction surface temperature and inhibition of adhesive wear between composites and slip rings.
基金financially supported by the National Natural Science Foundation of China(51641105)the Natural Science Basic Research Plan in Shaanxi Province of China(2014JQ2-5028)+4 种基金the Scientific Research Program Funded by Shaanxi Provincial Education Department(15JK1486)the Open Research Subject of Key Laboratory of Special Materials and Manufacturing Technology in Sichuan Provincial Universities(szjj2016-089)the Huozhou Coal Electricity Group Co.,Ltd.of China(HZMDJSHT20007)the International S&T Cooperation Projects of China(2015DFR50990)the International S&T Cooperation Projects of Qinghai Province(2014HZ819 and 2015HZ811)
文摘The microstructures and abrasion wear resistance of directional solidification Fe-B alloy have been investigated using optical microscopy, X-ray diffraction, scanning electron microscopy and laser scanning microscopy. The results show that the microstructure of as-cast Fe-B alloy consists of ferrite, pearlite and eutectic boride. After heat treatment, the microstructure is composed of boride and martensite. The plane which is perpendicular to the boride growth direction possesses the highest hardness. In two-body abrasive wear tests, the silicon carbide abrasive can cut the boride and martensite matrix synchronously, and the wear mechanism is micro cutting mechanism. The worn surface roughness and the wear weight loss both increase with the increasing contact load. Moreover, when the boride growth direction is perpendicular to the worn surface, the highest hardness plane of the boride can effectively oppose abrasion, and the martensite matrix can surround and support borides perfectly.
文摘Friction and wear of GCr15 under cross-sliding condition is tested on a ball-on-disc wear test machine. Thisresult shows that the cross-sliding of friction pair leads to different friction and wear behavior. For the condition de-scribed in this paper, the friction coefficients with ball reciprocating are smaller than that without ball reciprocating.The friction coefficients increase with the increase of reciprocating frequency.. The wear weight loss of the ball sub-jected reciprocating sliding decreases, however, the wear weight loss of disc against the reciprocating ball increases. Incross-sliding friction, the worn surfaces of the ball show crinkle appearance along the circumferential sliding traces.Delaminating of small strip debris is formed along the plowing traces on the disc worn surface. The plowing furrow onthe disc surfaces looks deeper and wider than that without reciprocating sliding. The size of wear particles fromcross-sliding wear is larger than those without reciprocating sliding.
文摘During the past two decades, considerable efforts have been made in the development of high performance spring steels to meet the needs for weight and savings in the automotive industry. During the service the suspension system will be subjected to different environmental conditions, at the same time it has to sustain a variety of loads acting on it. Among all the wear of spring steel plays a vital role. In this experimental analysis an attempt has been made to investigate the performance of spring steel (EN-47 / SUP 10) under the dry sliding condition. The specimen preparation and the experimentations have been carried out according to the ASTM G99 standards. The effects of tempering and cryogenic treatments on the performance of the spring steel have also been determined. The results have revealed that the material condition has got a significant influence on the performance of the spring steel. In order to analyze the percentage contribution of different wear parameter and the material condition, the DOE and ANOVA have been made. The results have shown that the load (49.205%) has shown the highest influence and the material condition has shown 22.56% of contribution on wear behavior.
文摘Wear is an important issue in hip implants. Excessive wear can lead to toxicity and other implant associated medical issues such as patient discomfort and decreased mobility. Since implant wear is the result of contact between surfaces of femoral head and acetabulum implant, it is important to establish a model that can address implant surface roughness interaction. A statistical contact model is developed for the interaction of femoral head and acetabulum implant in which surface roughness effects are included. The model accounts for the elastic-plastic interaction of the implant surface roughness. For this purpose femoral head and acetabulum implants are considered as macroscopically spherical surfaces containing micron-scale roughness. Approximate equations are obtained that relate the contact force to the mean surface separation explicitly. Closed form equations are obtained for hysteretic energy loss in implant using the approximate equations.
文摘Wear is a continuous process in which material is degraded with every cycle. Scientists are busy in improving the wear resistance. Approximately 75% failure in components or machine parts is due to wear. The present paper investigates experimentally the effect of orientation and normal load on alloy of copper and zinc, i.e. Brass, and calculates weight loss due to wear. To do so, a multi-orientational pin-on-disc apparatus was designed and fabricated. Experiments were carried out under normal load 05-20 N, speed 2000 rpm. Results show that the with-increasing load weight loss increases at all angular positions. The loss in weight is maximum at zero degree (horizontal position) and minimum at ninety degree (vertical position) for a particular load. Maximum wear occurs when the test specimen is held at 0° angle and minimum wear occurs when the specimen is held at 90° angle for given applied load. The circumferential distance travel is constant for all positions and for all loads but still mass loss varies.
文摘目的:分析固定-活动义齿在牙齿重度磨耗伴缺失治疗中的应用效果。方法:回顾性分析2020年2月-2021年10月在笔者医院行口腔修复治疗的88例牙齿重度磨耗伴缺失患者的临床资料,按治疗方式的不同分为对照组(n=43,活动义齿修复)和研究组(n=45,固定-活动义齿修复)。修复后半年判定两组修复效果,并比较两组患者修复前及修复后半年咀嚼效能、颞下颌关节(Temporomandibularjoint,TMJ)功能、生活质量及修复满意度。结果:研究组修复效果(95.56%)明显高于对照组(81.40%)(P<0.05);修复后两组咬合力、咀嚼效率和修复前相比均明显增高(P<0.05),且研究组高于对照组(P<0.05);修复后两组Helkimo临床功能障碍指数、TMJ功能指数(Fricton指数)中的TMJ紊乱指数评分、口腔健康影响程度量表14(Oral health impact scale 14,OHIP-14)评分和修复前相比均明显降低(P<0.05),且研究组低于对照组(P<0.05);研究组患者修复满意度评分高于对照组(P<0.05)。结论:应用固定-活动义齿对牙齿重度磨耗伴缺失患者进行修复的效果较佳,可明显改善患者咀嚼效能和TMJ功能,有效提高其生活质量,并能够提升患者满意度。