Under the assumptions of triangular cross section channel and uniform stable flow, an analytical solution of the minimum ecological in-stream flow requirement (MEIFR) is deduced. Based on the analytical solution, th...Under the assumptions of triangular cross section channel and uniform stable flow, an analytical solution of the minimum ecological in-stream flow requirement (MEIFR) is deduced. Based on the analytical solution, the uncertainty of the wetted perimeter method is analyzed by comparing the two techniques for the determination of the critical point on the relationship curve between wetted perimeter, P and discharge, Q. It is clearly shown that the results of MEIFR based on curvature technique (corresponding to the maximum curvature) and slope technique (slope being 1) are significantly different. On the P-Q curve, the slope of the critical point with the maximum curvature is 0.39 and the MEIFR varied prominently with the change of the slope threshold. This indicates that if a certain value of the slope threshold is not available for slope technique, curvature technique may be a better choice. By applying the analytical solution of MEIFR in the losing rivers of the Western Route South-to-North Water Transfer Project in China, the MEIFR value via curvature technique is 2.5%-23.7% of the multi-year average annual discharge, while that for slope technique is 11%-105.7%. General conclusions would rely on the more detailed research for all kinds of cross-sections.展开更多
The present investigation focuses on the thermal performance of a fully wet stretching/shrinking longitudinal fin of exponential profile coated with a mechanism like a conveyer belt.The modeled equation is non-dimensi...The present investigation focuses on the thermal performance of a fully wet stretching/shrinking longitudinal fin of exponential profile coated with a mechanism like a conveyer belt.The modeled equation is non-dimensionalized and solved by applying the Runge-Kutta-Fehlberg(RKF)method.The effects of parameters such as the wet parameter,the fin shape parameter,and the stretching/shrinking parameter on the heat transfer and thermal characteristics of the fin are graphically analyzed and discussed.It is inferred that the negative effects of motion and internal heat generation on the fin heat transfer rate can be lessened by setting a shrinking mechanism on the fin surface.The current examination is inclined towards practical applications and is beneficial to the design of fins.展开更多
Extensive dust control on the dry Owens Lake mainly uses constructed basins that are flooded with shallow depths of fresh water. This dust control is mandated by law as a minimum percent of the area of each individual...Extensive dust control on the dry Owens Lake mainly uses constructed basins that are flooded with shallow depths of fresh water. This dust control is mandated by law as a minimum percent of the area of each individual wetting basin. Wetted surfaces are evaluated for area and degree of wetness using the shortwave infrared (SWIR) band of Landsat TM, or similar earth observation satellite sensor. The SWIR region appropriate for these measurements lies within the electromagnetic spectrum between about 1.5 and 1.8 μm wavelengths. A threshold value for Landsat TM5 band 5 reflectance of 0.19 was found to conform with surfaces having a threshold for adequate wetting at a nascent point where rapid drying would occur following loss of capillary connection with groundwater. This threshold is robust and requires no atmospheric correction for the effects of aerosol scatter and attenuation as long as the features on the image appear clear. Monthly monitoring of surface wetting has proven accurate, verifiable and repeatable using these methods. This threshold can be calibrated for any Earth observation satellite that records the appropriate SWIR region. The monitoring program is expected to provide major input for the final phase of the dust control program that will have a focus to conserve water and resources.展开更多
As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous ...As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous research has mainly focused on the long-term linear changes of dry/wet conditions, while the detection and evolution of the non-linear trends related to dry/wet changes have received less attention. The non-linear trends of the annual aridity index, obtained by the Ensemble Empirical Mode Decomposition(EEMD) method, reveal that changes in dry/wet conditions in China are asymmetric and can be characterized by contrasting features in both time and space in China. Spatially, most areas in western China have experienced transitions from drying to wetting, while opposite changes have occurred in most areas of eastern China. Temporally, the transitions occurred earlier in western China compared to eastern China. Research into the asymmetric spatial characteristics of dry/wet conditions compensates for the inadequacies of previous studies, which focused solely on temporal evolution;at the same time, it remedies the inadequacies of traditional research on linear trends over centennial timescales. Analyzing the non-linear trend also provides for a more comprehensive understanding of the drying/wetting changes in China.展开更多
The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional meth...The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.展开更多
The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography a...The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.展开更多
The wetted perimeter method(WPM) is used in hydrology and hydraulics to calculate instream flows.The WPM requires few data.It requires only the values of the wetted perimeter,flow and water level,which can be obtained...The wetted perimeter method(WPM) is used in hydrology and hydraulics to calculate instream flows.The WPM requires few data.It requires only the values of the wetted perimeter,flow and water level,which can be obtained from the hydrologic stations of the river in question.In addition,the WPM is not limited by the impacts of human activities on the river runoff.Therefore,this method is generally suitable for the current conditions in China.However,the process of applying the WPM involves two key aspects:how to plot the curve describing the relationship between the wetted perimeter and the discharge and how to confirm the breakpoint of the wetted perimeter-discharge curve.The traditional method is to calculate the curvature or the slope of the wetted perimeter-discharge curve to obtain the minimum flow.According to this method,the minimum flow corresponds to the point of maximum curvature or to the point at which the slope of the curve is equal to 1.The wetted perimeter-discharge curve of a natural river is only part of the complete curve.Thus,the instream flow calculated by the traditional method is the minimum or maximum discharge.The new criterion for defining the breakpoint of the wetted perimeter-discharge curve is that the slope at the breakpoint is a relative maximum,the second-largest slope.The discharges at the breakpoints corresponded to the minimum flow levels required to maintain the ecological function of the river.The minimum instream flow requirements(MIFRs) of four typical reaches,Zhuba,Daofu,Ganzi and Zumuzu hydrological stations on the West Course of the First Stage Project of the South-North Water Transfer Project(WCFSPSNWTP),are calculated using an improved wetted perimeter method(IWPM).The results show that the MIFRs of Zhuba,Daofu,Ganzi and Zumuzu are approximately 9.06-14.5 m 3 s-1,20.7-43.5 m3 s-1,38.8-77.2 m 3 s-1 and 40.4-59.5 m 3 s-1,corresponding to 11.7%-33.9%,14.2%-37.6%,12.4%-28.4% and 17.5%-30.2%,respectively of the annual average flow(AAF).These MIFRs can maintain good ecological function in a river according to the criterion furnished by the Tennant method.展开更多
Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing d...Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing demand in special fields for the development of surfaces that can resist wetting by high-temperature molten droplets(>1200°C)using facile design and fabrication strategies.Herein,bioinspired directional structures(BDSs)were prepared on Y2O3-stabilized ZrO2(YSZ)surfaces using femtosecond laser ablation.Benefiting from the anisotropic energy barriers,the BDSs featured with no additional modifiers showed a remarkable increase from 9.2°to 60°in the contact angle of CaO–MgO–Al2O3–SiO2(CMAS)melt and a 70.1%reduction in the spreading area of CMAS at 1250°C,compared with polished super-CMAS-melt-philic YSZ surfaces.Moreover,the BDSs demonstrated exceptional wetting inhibition even at 1400°C,with an increase from 3.3°to 31.3°in contact angle and a 67.9%decrease in spreading area.This work provides valuable insight and a facile preparation strategy for effectively inhibiting the wetting of molten droplets on super-melt-philic surfaces at extremely high temperatures.展开更多
Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency...Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency and geometrical precision are required.Wet etching has been proven to be the most efficient etching method for large-scale production of quartz devices,and many wet etching approaches have been developed over the years.However,until now,there has been no systematic review of quartz crystal etching in liquid phase environments.Therefore,this article provides a comprehensive review of the development of wet etching processes and the achievements of the latest research in thisfield,covering conventional wet etching,additive etching,laser-induced backside wet etching,electrochemical etching,and electrochemical discharge machining.For each technique,a brief overview of its characteristics is provided,associated problems are described,and possible solutions are discussed.This review should provide an essential reference and guidance for the future development of processing strategies for the manufacture of quartz crystal devices.展开更多
The removal of microplastics(MPs)from water using oil has shown early promise;however,incorporation of this technique into a feasible in situ method has yet to be developed.Here,a simple yet effective method of MP cap...The removal of microplastics(MPs)from water using oil has shown early promise;however,incorporation of this technique into a feasible in situ method has yet to be developed.Here,a simple yet effective method of MP capture from water using vegetable oil with bubbles is demonstrated to achieve high removal efficiencies of>98%.Comparisons are made with other methods of agitation,and higher removal efficiencies are observed when bubbles are used.Due to the low agitation provided by the bubbles,the oil layer remains unbroken,meaning that no oil is released into the bulk water phase.In this way,secondary contamination is avoided—unlike membrane filtration,another effective removal method,in which polymer-based membranes can break down due to chemical backwashing and ageing.It is demonstrated that variation in MP size within the micrometer range(50–170 lm)has minor impact on the removal efficiency;however,100%removal is achieved for larger,millimeter-sized MPs(500–5000 lm).Similarly,a high removal efficiency of greater than 99%is achieved in the capture of microfibers.Other factors such as oil volume and water salinity are also investigated and discussed.Based on these results,the proposed method can be introduced into multiple setting types as a passive and continuous method of MP capture.展开更多
Under global warming,understanding the long-term variation in different types of heatwaves is vital for China’s preparedness against escalating heat stress.This study investigates dry and wet heatwave shifts in easte...Under global warming,understanding the long-term variation in different types of heatwaves is vital for China’s preparedness against escalating heat stress.This study investigates dry and wet heatwave shifts in eastern China over recent decades.Spatial trend analysis displays pronounced warming in inland midlatitudes and the Yangtze River Valley,with increased humidity in coastal regions.EOF results indicate intensifying dry heatwaves in northern China,while the Yangtze River Valley sees more frequent dry heatwaves.On the other hand,Indochina and regions north of 25°N also experience intensified wet heatwaves,corresponding to regional humidity increases.Composite analysis is conducted based on different situations:strong,frequent dry or wet heatwaves.Strong dry heatwaves are influenced by anticyclonic circulations over northern China,accompanied by warming SST anomalies around the coastal midlatitudes of the western North Pacific(WNP).Frequent dry heatwaves are related to strong subsidence along with a strengthened subtropical high over the WNP.Strong and frequent wet heatwaves show an intensified Okhotsk high at higher latitudes in the lower troposphere,and a negative circumglobal teleconnection wave train pattern in the upper troposphere.Decaying El Niño SST patterns are observed in two kinds of wet heatwave and frequent dry heatwave years.Risk analysis indicates that El Niño events heighten the likelihood of these heatwaves in regions most at risk.As global warming continues,adapting and implementing mitigation strategies toward extreme heatwaves becomes crucial,especially for the aforementioned regions under significant heat stress.展开更多
Ecological stability is a core issue in ecological research and holds significant implications forhumanity. The increased frequency and intensity of drought and wet climate events resulting from climatechange pose a m...Ecological stability is a core issue in ecological research and holds significant implications forhumanity. The increased frequency and intensity of drought and wet climate events resulting from climatechange pose a major threat to global ecological stability. Variations in stability among different ecosystemshave been confirmed, but it remains unclear whether there are differences in stability within the sameterrestrial vegetation ecosystem under the influence of climate events in different directions and intensities.China's grassland ecosystem includes most grassland types and is a good choice for studying this issue.This study used the Standardized Precipitation Evapotranspiration Index-12 (SPEI-12) to identify thedirections and intensities of different types of climate events, and based on Normalized DifferenceVegetation Index (NDVI), calculated the resistance and resilience of different grassland types for 30consecutive years from 1990 to 2019 (resistance and resilience are important indicators to measurestability). Based on a traditional regression model, standardized methods were integrated to analyze theimpacts of the intensity and duration of drought and wet events on vegetation stability. The resultsshowed that meadow steppe exhibited the highest stability, while alpine steppe and desert steppe had thelowest overall stability. The stability of typical steppe, alpine meadow, temperate meadow was at anintermediate level. Regarding the impact of the duration and intensity of climate events on vegetationecosystem stability for the same grassland type, the resilience of desert steppe during drought was mainlyaffected by the duration. In contrast, the impact of intensity was not significant. However, alpine steppewas mainly affected by intensity in wet environments, and duration had no significant impact. Ourconclusions can provide decision support for the future grassland ecosystem governance.展开更多
In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnat...In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnation(D)method and solid-melting(G)method,respectively,with Pr(S)as the active component and Al-pillared montmorillonite as the carrier.The catalysts were applied to treat the 2-hydroxybenzoic acid(2-HA)-simulated wastewater by catalytic wet peroxide oxidation(CWPO)technique,and the chemical oxygen demand(COD)removal rate and the 2-HA degradation rate were used as indicators to evaluate the catalytic performance.The results of the experiment indicated that the solid-melting method was more conducive to preparing the catalyst when the Co/Fe molar ratio of 7:3 and the optimal structural properties of the catalysts were achieved.The influence of operating parameters,including reaction temperature,catalyst dosage,H_(2)O_(2)dosage,pH,and initial 2-HA concentration,were optimized for the degradation of 2-HA by CWPO.The results showed that 97.64%of 2-HA degradation and 75.23%of COD removal rate were achieved under more suitable experimental conditions.In addition,after the catalyst was used five times,the degradation rate of 2-HA could still reach 76.93%,which implied the high stability and reusability of the catalyst.The high catalytic activity of the catalyst was due to the doping of Co into PrFeO_(3),which could promote the generation of HO·,and the high stability could be attributed to the loading of Pr(S)onto Al-Mt,which reduced the leaching of reactive metals.The study of reaction mechanism and kinetics showed that the whole degradation process conformed to the pseudo-firstorder kinetic equation,and the Langmuir-Hinshelwood method was applied to demonstrate that catalysis was dominant in the degradation process.展开更多
Lysine content is a criterion of the nutritional quality of rice.Understanding the process of lysine biosynthesis in early-flowering superior grain(SG)and late-flowering inferior grain(IG)of rice would advance breedin...Lysine content is a criterion of the nutritional quality of rice.Understanding the process of lysine biosynthesis in early-flowering superior grain(SG)and late-flowering inferior grain(IG)of rice would advance breeding and cultivation to improve nutritional quality.However,little information is available on differences in lysine anabolism between SG and IG and the underlying mechanism,and whether and how irrigation regimes affect lysine anabolism in these grains.A japonica rice cultivar was grown in the field and two irrigation regimes,continuous flooding(CF)and wetting alternating with partial drying(WAPD),were imposed from heading to the mature stage.Lysine content and activities of key enzymes of lysine biosynthesis,and levels of brassinosteroids(BRs)were lower in the IG than in the SG at the early grainfilling stage but higher at middle and late grain-filling stages.WAPD increased activities of these key enzymes,BR levels,and contents of lysine and total amino acids in IG,but not SG relative to CF.Application of 2,4-epibrassinolide to rice panicles in CF during early grain filling reproduced the effects of WAPD,but neither treatment altered the activities of enzymes responsible for lysine catabolism in either SG or IG.WAPD and elevated BR levels during grain filling increased lysine biosynthesis in IG.Improvement in lysine biosynthesis in rice should focus on IG.展开更多
We investigate the characteristics and mechanisms of persistent wet–cold events(PWCEs)with different types of coldair paths.Results show that the cumulative single-station frequency of the PWCEs in the western part o...We investigate the characteristics and mechanisms of persistent wet–cold events(PWCEs)with different types of coldair paths.Results show that the cumulative single-station frequency of the PWCEs in the western part of South China is higher than that in the eastern part.The pattern of single-station frequency of the PWCEs are“Yangtze River(YR)uniform”and“east–west inverse”.The YR uniform pattern is the dominant mode,so we focus on this pattern.The cold-air paths for PWCEs of the YR uniform pattern are divided into three types—namely,the west,northwest and north types—among which the west type accounts for the largest proportion.The differences in atmospheric circulation of the PWCEs under the three types of paths are obvious.The thermal inversion layer in the lower troposphere is favorable for precipitation during the PWCEs.The positive water vapor budget for the three types of PWCEs mainly appears at the southern boundary.展开更多
Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e...Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e.,matrix and macropore)and ponding condition,and proposed the infiltration equations,infiltration–runoff coupled model,and safety factor calculation method.Results show that the infiltration processes of macropore slope can be divided into three stages,and the proposed model is rational by a comparative analysis.The wetting front depth of the traditional unsaturated slope is 17.2%larger than that of the macropore slope in the early rainfall stage and 27%smaller than that of the macropore slope in the late rainfall stage.Then,macropores benefit the slope stability in the early rainfall but not in the latter.Macropore flow does not occur initially but becomes pronounced with increasing rainfall duration.The equal depth of the wetting front in the two domains is regarded as the onset criteria of macropore flow.Parameter analysis shows that macropore flow is delayed by increasing proportion of macropore domain(ω_(f)),whereas promoted by increasing ratio of saturated permeability coefficients between the two domains(μ).The increasing trend of ponding depth is sharp at first and then grows slowly.Finally,when rainfall duration is less than 3 h,ωf andμhave no significant effect on the safety factor,whereas it decreases with increasingωf and increases with increasingμunder longer duration(≥3 h).With the increase ofω_(f),the slope maximum instability time advances by 10.5 h,and with the increase ofμ,the slope maximum instability time delays by 3.1 h.展开更多
Through a self-developed model test system,the mechanical properties of silt and the deformation characteristics of airport runways were investigated during the period of subgrade wetting.Based on the test results,the...Through a self-developed model test system,the mechanical properties of silt and the deformation characteristics of airport runways were investigated during the period of subgrade wetting.Based on the test results,the reliability of the numerical simulation results was verified.Numerical models with different sizes were established.Under the same cushion parameter and loading width ranges,the effects of the cushion parameters and loading conditions on the mechanical responses of the cushion before and after subgrade wetting were analyzed.The results show that the internal friction angles of silt with different wetting degrees are approximately 34°.The cohesion is from 8 to 44 kPa,and the elastic modulus is from 15 to 34 MPa.Before and after subgrade wetting,the variation rates of the cushion horizontal tensile stresses with the same cushion parameters and loading width ranges are different under the influence of boundary effects.After subgrade wetting,the difference in the variation rates of the cushion horizontal tensile stresses under the same cushion parameter range decreases compared with that before subgrade wetting;however,this difference increases under the same loading width range.Before and after subgrade wetting,the influence of the boundary effect on the mechanical response evaluation of the cushion is not beneficial for optimizing the pavement design parameters.When the cushion thickness is more than 0.25 m,the influence of the boundary effect can be disregarded.展开更多
●AIM:To determine the teaching effects of a real-time three dimensional(3D)visualization system in the operating room for early-stage phacoemulsification training.●METHODS:A total of 10 ophthalmology residents of th...●AIM:To determine the teaching effects of a real-time three dimensional(3D)visualization system in the operating room for early-stage phacoemulsification training.●METHODS:A total of 10 ophthalmology residents of the first-year postgraduate were included.All the residents were novices to cataract surgery.Real-time cataract surgical observations were performed using a custom-built 3D visualization system.The training lasted 4wk(32h)in all.A modified International Council of Ophthalmology’s Ophthalmology Surgical Competency Assessment Rubric(ICO-OSCAR)containing 4 specific steps of cataract surgery was applied.The self-assessment(self)and expert-assessment(expert)were performed through the microsurgical attempts in the wet lab for each participant.●RESULTS:Compared with pre-training assessments(self 3.2±0.8,expert 2.5±0.6),the overall mean scores of posttraining(self 5.2±0.4,expert 4.7±0.6)were significantly improved after real-time observation training of 3D visualization system(P<0.05).Scores of 4 surgical items were significantly improved both self and expert assessment after training(P<0.05).●CONCLUSION:The 3D observation training provides novice ophthalmic residents with a better understanding of intraocular microsurgical techniques.It is a useful tool to improve teaching efficiency of surgical education.展开更多
In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-g...In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization.展开更多
The wetting behavior of molten Cu on the B_(4)C-xTiB_(2)ceramic composites was investigated in this work.The results show that the contact angle of molten Cu alloy on B_(4)C-TiB_(2)ceramic composites is linear with th...The wetting behavior of molten Cu on the B_(4)C-xTiB_(2)ceramic composites was investigated in this work.The results show that the contact angle of molten Cu alloy on B_(4)C-TiB_(2)ceramic composites is linear with the composition rate of TiB_(2)or B_(4)C while the temperature is in the range of 1300 to 1350℃,consistent with the expectation of the commonly used theoretical method.However,a nonlinear relationship between the contact angle and the composition rate unexpectedly occurred at temperatures ranging from 1400 to 1500℃.The big difference of the contact angles between the molten metal and the components in the composites was found to be the key point.This result identifies that the commonly used theoretical method only works at a limited difference of the contact angle of the liquid on the different phases in the composites,and fails at a big difference.展开更多
基金National Natural Science Foundation of China, No. 90211007 No.50279049+1 种基金 Knowledge Innovation Project of IGSNRR, CAS, No.CXIOG-A04-12 No.CX10G-E01-08
文摘Under the assumptions of triangular cross section channel and uniform stable flow, an analytical solution of the minimum ecological in-stream flow requirement (MEIFR) is deduced. Based on the analytical solution, the uncertainty of the wetted perimeter method is analyzed by comparing the two techniques for the determination of the critical point on the relationship curve between wetted perimeter, P and discharge, Q. It is clearly shown that the results of MEIFR based on curvature technique (corresponding to the maximum curvature) and slope technique (slope being 1) are significantly different. On the P-Q curve, the slope of the critical point with the maximum curvature is 0.39 and the MEIFR varied prominently with the change of the slope threshold. This indicates that if a certain value of the slope threshold is not available for slope technique, curvature technique may be a better choice. By applying the analytical solution of MEIFR in the losing rivers of the Western Route South-to-North Water Transfer Project in China, the MEIFR value via curvature technique is 2.5%-23.7% of the multi-year average annual discharge, while that for slope technique is 11%-105.7%. General conclusions would rely on the more detailed research for all kinds of cross-sections.
基金Project supported by the Department of Science and Technology,Government of India(No.SR/FST/MS-I/2018/23(C))
文摘The present investigation focuses on the thermal performance of a fully wet stretching/shrinking longitudinal fin of exponential profile coated with a mechanism like a conveyer belt.The modeled equation is non-dimensionalized and solved by applying the Runge-Kutta-Fehlberg(RKF)method.The effects of parameters such as the wet parameter,the fin shape parameter,and the stretching/shrinking parameter on the heat transfer and thermal characteristics of the fin are graphically analyzed and discussed.It is inferred that the negative effects of motion and internal heat generation on the fin heat transfer rate can be lessened by setting a shrinking mechanism on the fin surface.The current examination is inclined towards practical applications and is beneficial to the design of fins.
文摘Extensive dust control on the dry Owens Lake mainly uses constructed basins that are flooded with shallow depths of fresh water. This dust control is mandated by law as a minimum percent of the area of each individual wetting basin. Wetted surfaces are evaluated for area and degree of wetness using the shortwave infrared (SWIR) band of Landsat TM, or similar earth observation satellite sensor. The SWIR region appropriate for these measurements lies within the electromagnetic spectrum between about 1.5 and 1.8 μm wavelengths. A threshold value for Landsat TM5 band 5 reflectance of 0.19 was found to conform with surfaces having a threshold for adequate wetting at a nascent point where rapid drying would occur following loss of capillary connection with groundwater. This threshold is robust and requires no atmospheric correction for the effects of aerosol scatter and attenuation as long as the features on the image appear clear. Monthly monitoring of surface wetting has proven accurate, verifiable and repeatable using these methods. This threshold can be calibrated for any Earth observation satellite that records the appropriate SWIR region. The monitoring program is expected to provide major input for the final phase of the dust control program that will have a focus to conserve water and resources.
基金supported by the National key research and development program (2019YFA0607104)National Natural Science Foundation of China (Grant Nos. 41991231, 42275034, 41975076, 42075029, 42075017, and 42075018)the Gansu Provincial Science and Technology Project (22JR5RA405)。
文摘As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous research has mainly focused on the long-term linear changes of dry/wet conditions, while the detection and evolution of the non-linear trends related to dry/wet changes have received less attention. The non-linear trends of the annual aridity index, obtained by the Ensemble Empirical Mode Decomposition(EEMD) method, reveal that changes in dry/wet conditions in China are asymmetric and can be characterized by contrasting features in both time and space in China. Spatially, most areas in western China have experienced transitions from drying to wetting, while opposite changes have occurred in most areas of eastern China. Temporally, the transitions occurred earlier in western China compared to eastern China. Research into the asymmetric spatial characteristics of dry/wet conditions compensates for the inadequacies of previous studies, which focused solely on temporal evolution;at the same time, it remedies the inadequacies of traditional research on linear trends over centennial timescales. Analyzing the non-linear trend also provides for a more comprehensive understanding of the drying/wetting changes in China.
基金The work described in this paper was partially supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project Nos.HKU 17207518 and R5037-18).
文摘The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.
文摘The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.
基金supported by the National Natural Science Foundation of China (Grant No. 50809027)the Fundamental Research Funds for the Central Universities (Grant No. 11MG15)the Open Research Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science (Grant No. 2009B050)
文摘The wetted perimeter method(WPM) is used in hydrology and hydraulics to calculate instream flows.The WPM requires few data.It requires only the values of the wetted perimeter,flow and water level,which can be obtained from the hydrologic stations of the river in question.In addition,the WPM is not limited by the impacts of human activities on the river runoff.Therefore,this method is generally suitable for the current conditions in China.However,the process of applying the WPM involves two key aspects:how to plot the curve describing the relationship between the wetted perimeter and the discharge and how to confirm the breakpoint of the wetted perimeter-discharge curve.The traditional method is to calculate the curvature or the slope of the wetted perimeter-discharge curve to obtain the minimum flow.According to this method,the minimum flow corresponds to the point of maximum curvature or to the point at which the slope of the curve is equal to 1.The wetted perimeter-discharge curve of a natural river is only part of the complete curve.Thus,the instream flow calculated by the traditional method is the minimum or maximum discharge.The new criterion for defining the breakpoint of the wetted perimeter-discharge curve is that the slope at the breakpoint is a relative maximum,the second-largest slope.The discharges at the breakpoints corresponded to the minimum flow levels required to maintain the ecological function of the river.The minimum instream flow requirements(MIFRs) of four typical reaches,Zhuba,Daofu,Ganzi and Zumuzu hydrological stations on the West Course of the First Stage Project of the South-North Water Transfer Project(WCFSPSNWTP),are calculated using an improved wetted perimeter method(IWPM).The results show that the MIFRs of Zhuba,Daofu,Ganzi and Zumuzu are approximately 9.06-14.5 m 3 s-1,20.7-43.5 m3 s-1,38.8-77.2 m 3 s-1 and 40.4-59.5 m 3 s-1,corresponding to 11.7%-33.9%,14.2%-37.6%,12.4%-28.4% and 17.5%-30.2%,respectively of the annual average flow(AAF).These MIFRs can maintain good ecological function in a river according to the criterion furnished by the Tennant method.
基金This work was supported by National Natural Science Foundation of China(No.52105212)Sichuan Science and Technology Program(No.2023NSFSC0863)China Postdoctoral Science Foundation(No.2021M702712).
文摘Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing demand in special fields for the development of surfaces that can resist wetting by high-temperature molten droplets(>1200°C)using facile design and fabrication strategies.Herein,bioinspired directional structures(BDSs)were prepared on Y2O3-stabilized ZrO2(YSZ)surfaces using femtosecond laser ablation.Benefiting from the anisotropic energy barriers,the BDSs featured with no additional modifiers showed a remarkable increase from 9.2°to 60°in the contact angle of CaO–MgO–Al2O3–SiO2(CMAS)melt and a 70.1%reduction in the spreading area of CMAS at 1250°C,compared with polished super-CMAS-melt-philic YSZ surfaces.Moreover,the BDSs demonstrated exceptional wetting inhibition even at 1400°C,with an increase from 3.3°to 31.3°in contact angle and a 67.9%decrease in spreading area.This work provides valuable insight and a facile preparation strategy for effectively inhibiting the wetting of molten droplets on super-melt-philic surfaces at extremely high temperatures.
基金supported by the Natural Science Foundation of China (Grant No.12234005)the major research and development program of Jiangsu Province (Grant Nos.BE2021007-2 and BK20222007)。
文摘Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency and geometrical precision are required.Wet etching has been proven to be the most efficient etching method for large-scale production of quartz devices,and many wet etching approaches have been developed over the years.However,until now,there has been no systematic review of quartz crystal etching in liquid phase environments.Therefore,this article provides a comprehensive review of the development of wet etching processes and the achievements of the latest research in thisfield,covering conventional wet etching,additive etching,laser-induced backside wet etching,electrochemical etching,and electrochemical discharge machining.For each technique,a brief overview of its characteristics is provided,associated problems are described,and possible solutions are discussed.This review should provide an essential reference and guidance for the future development of processing strategies for the manufacture of quartz crystal devices.
基金start-up financial support from the School of Engineering,Newcastle UniversityEngineering and Physical Sciences Research Council(EPSRC)for his Doctoral Training Partnership(DTP)studentship.
文摘The removal of microplastics(MPs)from water using oil has shown early promise;however,incorporation of this technique into a feasible in situ method has yet to be developed.Here,a simple yet effective method of MP capture from water using vegetable oil with bubbles is demonstrated to achieve high removal efficiencies of>98%.Comparisons are made with other methods of agitation,and higher removal efficiencies are observed when bubbles are used.Due to the low agitation provided by the bubbles,the oil layer remains unbroken,meaning that no oil is released into the bulk water phase.In this way,secondary contamination is avoided—unlike membrane filtration,another effective removal method,in which polymer-based membranes can break down due to chemical backwashing and ageing.It is demonstrated that variation in MP size within the micrometer range(50–170 lm)has minor impact on the removal efficiency;however,100%removal is achieved for larger,millimeter-sized MPs(500–5000 lm).Similarly,a high removal efficiency of greater than 99%is achieved in the capture of microfibers.Other factors such as oil volume and water salinity are also investigated and discussed.Based on these results,the proposed method can be introduced into multiple setting types as a passive and continuous method of MP capture.
基金supported by the National Natural Science Foundation of China(Grant Nos.42120104001,42192563 and 42005010)the Hong Kong RGC General Research Fund 11300920.
文摘Under global warming,understanding the long-term variation in different types of heatwaves is vital for China’s preparedness against escalating heat stress.This study investigates dry and wet heatwave shifts in eastern China over recent decades.Spatial trend analysis displays pronounced warming in inland midlatitudes and the Yangtze River Valley,with increased humidity in coastal regions.EOF results indicate intensifying dry heatwaves in northern China,while the Yangtze River Valley sees more frequent dry heatwaves.On the other hand,Indochina and regions north of 25°N also experience intensified wet heatwaves,corresponding to regional humidity increases.Composite analysis is conducted based on different situations:strong,frequent dry or wet heatwaves.Strong dry heatwaves are influenced by anticyclonic circulations over northern China,accompanied by warming SST anomalies around the coastal midlatitudes of the western North Pacific(WNP).Frequent dry heatwaves are related to strong subsidence along with a strengthened subtropical high over the WNP.Strong and frequent wet heatwaves show an intensified Okhotsk high at higher latitudes in the lower troposphere,and a negative circumglobal teleconnection wave train pattern in the upper troposphere.Decaying El Niño SST patterns are observed in two kinds of wet heatwave and frequent dry heatwave years.Risk analysis indicates that El Niño events heighten the likelihood of these heatwaves in regions most at risk.As global warming continues,adapting and implementing mitigation strategies toward extreme heatwaves becomes crucial,especially for the aforementioned regions under significant heat stress.
基金the National Natural Science Foundation of China(42271289).
文摘Ecological stability is a core issue in ecological research and holds significant implications forhumanity. The increased frequency and intensity of drought and wet climate events resulting from climatechange pose a major threat to global ecological stability. Variations in stability among different ecosystemshave been confirmed, but it remains unclear whether there are differences in stability within the sameterrestrial vegetation ecosystem under the influence of climate events in different directions and intensities.China's grassland ecosystem includes most grassland types and is a good choice for studying this issue.This study used the Standardized Precipitation Evapotranspiration Index-12 (SPEI-12) to identify thedirections and intensities of different types of climate events, and based on Normalized DifferenceVegetation Index (NDVI), calculated the resistance and resilience of different grassland types for 30consecutive years from 1990 to 2019 (resistance and resilience are important indicators to measurestability). Based on a traditional regression model, standardized methods were integrated to analyze theimpacts of the intensity and duration of drought and wet events on vegetation stability. The resultsshowed that meadow steppe exhibited the highest stability, while alpine steppe and desert steppe had thelowest overall stability. The stability of typical steppe, alpine meadow, temperate meadow was at anintermediate level. Regarding the impact of the duration and intensity of climate events on vegetationecosystem stability for the same grassland type, the resilience of desert steppe during drought was mainlyaffected by the duration. In contrast, the impact of intensity was not significant. However, alpine steppewas mainly affected by intensity in wet environments, and duration had no significant impact. Ourconclusions can provide decision support for the future grassland ecosystem governance.
基金supported by the Key Research and Development Program of Shaanxi,China(2018GY-067).
文摘In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnation(D)method and solid-melting(G)method,respectively,with Pr(S)as the active component and Al-pillared montmorillonite as the carrier.The catalysts were applied to treat the 2-hydroxybenzoic acid(2-HA)-simulated wastewater by catalytic wet peroxide oxidation(CWPO)technique,and the chemical oxygen demand(COD)removal rate and the 2-HA degradation rate were used as indicators to evaluate the catalytic performance.The results of the experiment indicated that the solid-melting method was more conducive to preparing the catalyst when the Co/Fe molar ratio of 7:3 and the optimal structural properties of the catalysts were achieved.The influence of operating parameters,including reaction temperature,catalyst dosage,H_(2)O_(2)dosage,pH,and initial 2-HA concentration,were optimized for the degradation of 2-HA by CWPO.The results showed that 97.64%of 2-HA degradation and 75.23%of COD removal rate were achieved under more suitable experimental conditions.In addition,after the catalyst was used five times,the degradation rate of 2-HA could still reach 76.93%,which implied the high stability and reusability of the catalyst.The high catalytic activity of the catalyst was due to the doping of Co into PrFeO_(3),which could promote the generation of HO·,and the high stability could be attributed to the loading of Pr(S)onto Al-Mt,which reduced the leaching of reactive metals.The study of reaction mechanism and kinetics showed that the whole degradation process conformed to the pseudo-firstorder kinetic equation,and the Langmuir-Hinshelwood method was applied to demonstrate that catalysis was dominant in the degradation process.
基金This work was supported by the National Natural Science Foundation of China(32071943,32272198).
文摘Lysine content is a criterion of the nutritional quality of rice.Understanding the process of lysine biosynthesis in early-flowering superior grain(SG)and late-flowering inferior grain(IG)of rice would advance breeding and cultivation to improve nutritional quality.However,little information is available on differences in lysine anabolism between SG and IG and the underlying mechanism,and whether and how irrigation regimes affect lysine anabolism in these grains.A japonica rice cultivar was grown in the field and two irrigation regimes,continuous flooding(CF)and wetting alternating with partial drying(WAPD),were imposed from heading to the mature stage.Lysine content and activities of key enzymes of lysine biosynthesis,and levels of brassinosteroids(BRs)were lower in the IG than in the SG at the early grainfilling stage but higher at middle and late grain-filling stages.WAPD increased activities of these key enzymes,BR levels,and contents of lysine and total amino acids in IG,but not SG relative to CF.Application of 2,4-epibrassinolide to rice panicles in CF during early grain filling reproduced the effects of WAPD,but neither treatment altered the activities of enzymes responsible for lysine catabolism in either SG or IG.WAPD and elevated BR levels during grain filling increased lysine biosynthesis in IG.Improvement in lysine biosynthesis in rice should focus on IG.
基金supported by the National Key Research and Development Program of China (Grant No. 2018YFC1505602)the National Natural Science Foundation of China (Grant No. 41705055)+2 种基金the Graduate Innovation Project of Jiangsu Province (Grant No. CXZZ11_0485)the Creative Teams of Jiangsu Qinglan Projectthe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘We investigate the characteristics and mechanisms of persistent wet–cold events(PWCEs)with different types of coldair paths.Results show that the cumulative single-station frequency of the PWCEs in the western part of South China is higher than that in the eastern part.The pattern of single-station frequency of the PWCEs are“Yangtze River(YR)uniform”and“east–west inverse”.The YR uniform pattern is the dominant mode,so we focus on this pattern.The cold-air paths for PWCEs of the YR uniform pattern are divided into three types—namely,the west,northwest and north types—among which the west type accounts for the largest proportion.The differences in atmospheric circulation of the PWCEs under the three types of paths are obvious.The thermal inversion layer in the lower troposphere is favorable for precipitation during the PWCEs.The positive water vapor budget for the three types of PWCEs mainly appears at the southern boundary.
基金funded by the Natural Science Foundation of Fujian Province(Grant No.2023J011133)。
文摘Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e.,matrix and macropore)and ponding condition,and proposed the infiltration equations,infiltration–runoff coupled model,and safety factor calculation method.Results show that the infiltration processes of macropore slope can be divided into three stages,and the proposed model is rational by a comparative analysis.The wetting front depth of the traditional unsaturated slope is 17.2%larger than that of the macropore slope in the early rainfall stage and 27%smaller than that of the macropore slope in the late rainfall stage.Then,macropores benefit the slope stability in the early rainfall but not in the latter.Macropore flow does not occur initially but becomes pronounced with increasing rainfall duration.The equal depth of the wetting front in the two domains is regarded as the onset criteria of macropore flow.Parameter analysis shows that macropore flow is delayed by increasing proportion of macropore domain(ω_(f)),whereas promoted by increasing ratio of saturated permeability coefficients between the two domains(μ).The increasing trend of ponding depth is sharp at first and then grows slowly.Finally,when rainfall duration is less than 3 h,ωf andμhave no significant effect on the safety factor,whereas it decreases with increasingωf and increases with increasingμunder longer duration(≥3 h).With the increase ofω_(f),the slope maximum instability time advances by 10.5 h,and with the increase ofμ,the slope maximum instability time delays by 3.1 h.
基金The National Natural Science Foundation of China(No.52008401)the Natural Science Foundation of Hunan Province(No.2021JJ40770)the Open Fund of Hunan Tieyuan Civil Engineering Testing Co.,Ltd.(No.HNTY2022K04).
文摘Through a self-developed model test system,the mechanical properties of silt and the deformation characteristics of airport runways were investigated during the period of subgrade wetting.Based on the test results,the reliability of the numerical simulation results was verified.Numerical models with different sizes were established.Under the same cushion parameter and loading width ranges,the effects of the cushion parameters and loading conditions on the mechanical responses of the cushion before and after subgrade wetting were analyzed.The results show that the internal friction angles of silt with different wetting degrees are approximately 34°.The cohesion is from 8 to 44 kPa,and the elastic modulus is from 15 to 34 MPa.Before and after subgrade wetting,the variation rates of the cushion horizontal tensile stresses with the same cushion parameters and loading width ranges are different under the influence of boundary effects.After subgrade wetting,the difference in the variation rates of the cushion horizontal tensile stresses under the same cushion parameter range decreases compared with that before subgrade wetting;however,this difference increases under the same loading width range.Before and after subgrade wetting,the influence of the boundary effect on the mechanical response evaluation of the cushion is not beneficial for optimizing the pavement design parameters.When the cushion thickness is more than 0.25 m,the influence of the boundary effect can be disregarded.
基金Supported by research grants from the National Key Research and Development Program of China(No.2020YFE0204400)the National Natural Science Foundation of China(No.82271042+1 种基金No.52203191)the Zhejiang Province Key Research and Development Program(No.2023C03090).
文摘●AIM:To determine the teaching effects of a real-time three dimensional(3D)visualization system in the operating room for early-stage phacoemulsification training.●METHODS:A total of 10 ophthalmology residents of the first-year postgraduate were included.All the residents were novices to cataract surgery.Real-time cataract surgical observations were performed using a custom-built 3D visualization system.The training lasted 4wk(32h)in all.A modified International Council of Ophthalmology’s Ophthalmology Surgical Competency Assessment Rubric(ICO-OSCAR)containing 4 specific steps of cataract surgery was applied.The self-assessment(self)and expert-assessment(expert)were performed through the microsurgical attempts in the wet lab for each participant.●RESULTS:Compared with pre-training assessments(self 3.2±0.8,expert 2.5±0.6),the overall mean scores of posttraining(self 5.2±0.4,expert 4.7±0.6)were significantly improved after real-time observation training of 3D visualization system(P<0.05).Scores of 4 surgical items were significantly improved both self and expert assessment after training(P<0.05).●CONCLUSION:The 3D observation training provides novice ophthalmic residents with a better understanding of intraocular microsurgical techniques.It is a useful tool to improve teaching efficiency of surgical education.
基金supported by Research Project Supported by Horizon Europe Framework Programme(101183092)Shanxi Scholarship Council of China(2023-128)+2 种基金National Natural Science Foundation of China(22208328)Fundamental Research Program of Shanxi Province(20210302124618)Small and mediumsized oriented scientific and technological enterprises innovation ability improvement project of Shandong Province(2023TSGC0004)。
文摘In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization.
基金Funded by National Natural Science Foundation of China(Nos.51521001,51832003,and 51911530153)。
文摘The wetting behavior of molten Cu on the B_(4)C-xTiB_(2)ceramic composites was investigated in this work.The results show that the contact angle of molten Cu alloy on B_(4)C-TiB_(2)ceramic composites is linear with the composition rate of TiB_(2)or B_(4)C while the temperature is in the range of 1300 to 1350℃,consistent with the expectation of the commonly used theoretical method.However,a nonlinear relationship between the contact angle and the composition rate unexpectedly occurred at temperatures ranging from 1400 to 1500℃.The big difference of the contact angles between the molten metal and the components in the composites was found to be the key point.This result identifies that the commonly used theoretical method only works at a limited difference of the contact angle of the liquid on the different phases in the composites,and fails at a big difference.