期刊文献+
共找到58,905篇文章
< 1 2 250 >
每页显示 20 50 100
Measured dynamic load distribution within the in situ axlebox bearing of high-speed trains under polygonal wheel–rail excitation
1
作者 Yu Hou Xi Wang +4 位作者 Jiaqi Wei Menghua Zhao Wei Zhao Huailong Shi Chengyu Sha 《Railway Engineering Science》 EI 2024年第4期444-460,共17页
The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measuremen... The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input. 展开更多
关键词 High-speed train Axlebox bearing Dynamic load distribution In situ measurement Polygonal wheel–rail excitation
下载PDF
Effect of wheelset flexibility on wheel–rail contact behavior and a specific coupling of wheel–rail contact to flexible wheelset 被引量:10
2
作者 Shuoqiao Zhong Xinbiao Xiao +1 位作者 Zefeng Wen Xuesong Jin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期252-264,共13页
The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel... The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel web,a specifi coupling of wheel–rail contact with a fexible wheelset is presented and integrated into a conventional vehicle–track dynamic system model.Both conventional and the proposed dynamic system models are used to carry out numerical analyses on the effects of wheelset bending and axial deformation of the wheel web on wheel–rail rolling contact behaviors.Excitations with various irregularities and speeds were considered.The irregularities included measured track irregularity and harmonic irregularities with two different wavelengths.The speeds ranged from 200 to400km/h.The results show that the proposed model can characterize the effects of fexible wheelset deformation on the wheel–rail rolling contact behavior very well. 展开更多
关键词 High-speed railway vehicle wheel–rail contact behavior Flexible wheelset Modal analysis Resonance
下载PDF
Typical wheel–rail profile change rules and matching characteristics of high speed railway in China
3
作者 Maorui Hou Fengshou Liu Xiaoyi Hu 《Railway Sciences》 2022年第2期289-306,共18页
Purpose–In order to systematically grasp the changes and matching characteristics of wheel and rail profiles of high speed railway(HSR)in China,172 rail profile measurement points and 384 wheels of 6 high-speed elect... Purpose–In order to systematically grasp the changes and matching characteristics of wheel and rail profiles of high speed railway(HSR)in China,172 rail profile measurement points and 384 wheels of 6 high-speed electric motive unites(EMUs)were selected on 6 typical HSR lines,including Beijing–Shanghai,Wuhan–Guangzhou,Harbin–Dalian,Lanzhou–Xinjiang,Guiyang–Guangzhou and Dandong–Dalian for a two-year field test.Design/methodology/approach–Based on the measured data,the characteristics of rail and wheel wear were analyzed by mathematical statistics method.The equivalent conicity of wheel and rail matching in a wheel reprofiling cycle was analyzed by using the measured rail profile.Findings–Results showed that when the curve radius of HSR was larger than 2,495 m,the wear rate of straight line and curve rail was almost the same.For the line with annual traffic gross weight less than 11 Mt,the vertical wear of rail was less than 0.01 mm.The wear rate of the rail with the curve radius less than 800 m increased obviously.The wheel tread wear of EMUs on Harbin–Dalian line,Lanzhou–Xinjiang line and Dandong–Dalian line was relatively large,and the average wear rate of tread was about 0.05–0.06 mm$(10,000 km)1,while that of Beijing–Shanghai line,Wuhan–Guangzhou line and Guiyang–Guangzhou line was about 0.03–0.035 mm$(10,000 km)1.When the wear range was small,the equivalent conicity increased with the increase of wheel tread wear.When the wear range of wheel was wide,the wheel–rail contact points were evenly distributed,and the equivalent conicity did not increase obviously.Originality/value–This research proposes the distribution range of the equivalent conicity in one reprofiling cycle of various EMU trains,which provides guidance for the condition-based wheel reprofiling. 展开更多
关键词 High speed railway(HSR) Typical railway line rail wear wheel wear wheel–rail interface Equivalent conicity
下载PDF
A dynamic simulation of the wheel–rail impact caused by a wheel flat using a 3D rolling contact model 被引量:7
4
作者 Liangliang Han Lin Jing Kai Liu 《Journal of Modern Transportation》 2017年第2期124-131,共8页
A three-dimensional (3-D) wheel-rail rolling contact model with a wheel fiat was built using commercial software Hypermesh, and the dynamic finite element simulation was conducted using LS-DYNA 3D/explicit code. Inf... A three-dimensional (3-D) wheel-rail rolling contact model with a wheel fiat was built using commercial software Hypermesh, and the dynamic finite element simulation was conducted using LS-DYNA 3D/explicit code. Influences of the train speed, flat length and axle load on the vertical wheel-rail impact response were discussed, respectively. The results show that the maximum vertical wheel-rail impact force induced by the wheel flat is higher than that generated by the perfect wheel, and these two dynamic impact forces are much greater than the static axle load. Besides, the maximum von Mises equivalent stress and maximum equivalent plastic strain are observed on the wheel-rail contact surface, and both of them as well as the maximum wheel-rail impact force are sensitive to train speed, fiat length and axle load. 展开更多
关键词 High-speed train wheel-rail impact wheel flat - FE simulation
下载PDF
Safety evaluation for railway vehicles using an improved indirect measurement method of wheel–rail forces 被引量:8
5
作者 Jing Zeng Lai Wei Pingbo Wu 《Journal of Modern Transportation》 2016年第2期114-123,共10页
The wheel-rail force measurement is of great importance to the condition monitoring and safety evaluation of railway vehicles. In this paper, an improved indirect method for wheel-rail force measurement is proposed to... The wheel-rail force measurement is of great importance to the condition monitoring and safety evaluation of railway vehicles. In this paper, an improved indirect method for wheel-rail force measurement is proposed to evaluate the running safety of railway vehicles. In this method, the equilibrium equations of a suspended wheelset are derived and the wheel-rail forces are then be obtained from measured suspension and inertia forces. This indirect method avoids structural modifications to the wheelset and is applicable to the long-term operation of railway vehicles. As the wheel-rail lateral forces at two sides of the wheelset are difficult to separate, a new derailment criterion by combined use of wheelset derailment coefficient and wheel unloading ratio is proposed. To illustrate its effectiveness, the indirect method is applied to safety evaluation of rail- way vehicles in different scenarios, such as the cross wind safety of a high-speed train and the safety of a metro vehicle with hunting motions. Then, the feasibility of using this method to identify wheel-rail forces for low-floor light rail vehicles with resilient wheels is discussed. The values identified by this method is compared with that by Simpack simulation for the same low-floor vehicle, which shows a good coincidence between them in the time domain of the wheelset lateral force and the wheel-rail vertical force. In addition, use of the method to determine the high-frequency wheel-rail interaction forces reveals that it is possible to identify the high-frequency wheel-rail forces through the accelerations on the axle box. 展开更多
关键词 wheel-rail force Safety evaluation - Indirect method Union safety domain wheelset derailment coefficient Hunting motions Cross wind Low-floor vehicle
下载PDF
Investigation into rail corrugation in high-speed railway tracks from the viewpoint of the frictional self-excited vibration of a wheel–rail system 被引量:1
6
作者 G.X.Chen X.L.Cui W.J.Qian 《Journal of Modern Transportation》 2016年第2期124-131,共8页
A finite element vibration model of a multiple wheel-rail system which consists of four wheels, one rail, and a series of sleepers is established to address the problem of rail corrugation in high-speed tracks. In the... A finite element vibration model of a multiple wheel-rail system which consists of four wheels, one rail, and a series of sleepers is established to address the problem of rail corrugation in high-speed tracks. In the model, the creep forces between the wheels and rail are considered to be saturated and equal to the normal contact forces times the friction coefficient. The oscillation of the rail is coupled with that of wheels in the action of the saturated creep forces. When the coupling is strong, self- excited oscillation of the wheel-rail system occurs. The self-excited vibration propensity of the model is analyzed using the complex eigenvalue method. Results show that there are strong propensities of unstable self-excited vibrations whose frequencies are less than 1,200 Hz under some conditions. Preventing wheels from slipping on rails is an effective method for suppressing rail corrugation in high-speed tracks. 展开更多
关键词 rail corrugation WEAR Friction-induced vibration Self-excited vibration - Elastic vibration mode wheel-rail system High-speed railway
下载PDF
Vibration and sound radiation of a rotating train wheel subject to a vertical harmonic wheel–rail force 被引量:8
7
作者 Tingsheng Zhong Gong Chen +3 位作者 Xiaozhen Sheng Xueyan Zhan Liqun Zhou Jian Kai 《Journal of Modern Transportation》 2018年第2期81-95,共15页
The rapid development of high-speed railway networks requires advanced methods for analysing vibration and sound radiation characteristics of a fast rotating train wheel subject to a vertical harmonic wheel-rail force... The rapid development of high-speed railway networks requires advanced methods for analysing vibration and sound radiation characteristics of a fast rotating train wheel subject to a vertical harmonic wheel-rail force. In order to consider the rotation of the wheel and at the same time increase the computational efficiency, a procedure is adapted in this paper taking advantage of the axial symmetry of the wheel. In this procedure, a recently developed 2.5D finite element method, which can consider wheel rotation but only requires a 2D mesh over a cross section containing the wheel axis, is used to calculate the vibration response of the wheel. Then, the vibration response of the wheel is taken as acoustic boundary condition and the 2.5D acoustic boundary element method, which only requires a 1D mesh over the boundary of the above cross section, is utilised to calculate the sound radiation of the wheel. These 2.5D methods and relevant programs are validated by comparing results from this procedure with those from conventional 3D analyses using commercial software. The comparison also demonstrates that these 2.5D methods have a much higher computational efficiency. Using the 2.5D methods, we study the wheel rotation speed influences on the factors including the vertical receptance of the wheel at wheel-rail contact point, sound pressure level at a pre-defined standard measurement point, radiated sound power level, directivity of the radia- tion, and contribution of each part of the wheel. It can be concluded that the wheel rotation speed splits most peaks of the vertical receptance at the wheel-rail contact point, sound pressure levels at the field, and the sound power level of the wheel into two peaks. The directivity and power contribution of the wheel are also significantly changed by the wheel rotation speed. Therefore, the rotation of a train wheel should be taken into account when calculating its vibration and sound radiation. 展开更多
关键词 Train wheel Vibration response Soundradiation 2.5D FEM. 2.5D BEM Rotation effect
下载PDF
A Novel Model for Describing Rail Weld Irregularities and Predicting Wheel-Rail Forces Using a Machine Learning Approach
8
作者 Linlin Sun Zihui Wang +3 位作者 Shukun Cui Ziquan Yan Weiping Hu Qingchun Meng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期555-577,共23页
Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail ... Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail noise,component damage,and deterioration.Few researchers have employed the vehicle-track interaction dynamic model to study the dynamic interactions between wheel and rail induced by rail weld geometry irregularities.However,the cosine wave model used to simulate rail weld irregularities mainly focuses on the maximum value and neglects the geometric shape.In this study,novel theoretical models were developed for three categories of rail weld irregularities,based on measurements of the high-speed railway from Beijing to Shanghai.The vertical dynamic forces in the time and frequency domains were compared under different running speeds.These forces generated by the rail weld irregularities that were measured and modeled,respectively,were compared to validate the accuracy of the proposed model.Finally,based on the numerical study,the impact force due to rail weld irrregularity is modeled using an Artificial Neural Network(ANN),and the optimum combination of parameters for this model is found.The results showed that the proposed model provided a more accurate wheel/rail dynamic evaluation caused by rail weld irregularities than that established in the literature.The ANN model used in this paper can effectively predict the impact force due to rail weld irrregularity while reducing the computation time. 展开更多
关键词 rail weld irregularity high-speed railway vehicle-track coupled dynamics wheel/rail dynamic vertical force artificial neural networks
下载PDF
On the Polygonal Wear Evolution of Heavy-Haul Locomotive Wheels due to Wheel/Rail Flexibility and Its Mitigation Measures
9
作者 Yunfan Yang Feifan Chai +3 位作者 Pengfei Liu Liang Ling Kaiyun Wang Wanming Zhai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期40-61,共22页
Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med... Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures. 展开更多
关键词 Heavy-haul locomotive wheel polygonal wear wheel/rail flexibility Long-term polygonal wear evolution Mitigation measures
下载PDF
Research on the strain gauge mounting scheme of track wheel force measurement system based on high-speed wheel/rail relationship test rig
10
作者 Yuanwu Cai Bo Chen Chongyi Chang 《Railway Sciences》 2024年第4期503-513,共11页
Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/appro... Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/approach-Finite element method was employed to analyze the stress and strain distribution on the track wheel web surface under varying wheel-rail forces.Locations with minimal coupling interference between vertical and lateral forces were identified as suitable for strain gauge installation.Findings-The results show that due to the track wheel web’s unique curved shape and wheel-rail force loading mechanism,both tensile and compressive states exit on the surface of the web.When vertical force is applied,Mises stress and strain are relatively high near the inner radius of 710 mm and the outer radius of 1110mmof the web.Under lateral force,high Mises stress and strain are observed near the radius of 670mmon the inner and outer sides of the web.As the wheel-rail force application point shifts laterally toward the outer side,the Mises stress and strain near the inner radius of 710 mm of the web gradually decrease under vertical force while gradually increasing near the outer radius of 1110 mm of the web.Under lateral force,the Mises stress and strain on the surface of the web remain relatively unchanged regardless of the wheel-rail force application point.Based on the analysis of stress and strain on the surface of the web under different wheel-rail forces,the inner radius of 870 mm is recommended as the optimal mounting location of strain gauges for measuring vertical force,while the inner radius of 1143 mm is suitable for measuring lateral force.Originality/value-The research findings provide valuable insights for determining optimal strain gauge locations and designing an effective track wheel force measurement system. 展开更多
关键词 Track wheel High-speed wheel/rail relationship test rig Instrumented wheelset Strain gauge Finite element
下载PDF
A critical review of wheel/rail high frequency vibration-induced vibration fatigue of railway bogie in China
11
作者 Xingwen Wu Zhenxian Zhang +7 位作者 Wubin Cai Ningrui Yang Xuesong Jin Ping Wang Zefeng Wen Maoru Chi Shuling Liang Yunhua Huang 《Railway Sciences》 2024年第2期177-215,共39页
Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the ... Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators.Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration.This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration,including a brief introduction of short-pitch irregularities,associated high frequency vibration in railway bogie,typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.Findings–The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms.The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components.The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure,and the fatigue crack usually initiates from the defect of the weld seam.Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities.The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment,and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.Originality/value–The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration. 展开更多
关键词 wheel/rail high frequency vibration Vibration fatigue railway bogie Fatigue damage assessment
下载PDF
Dynamic analysis of axle box bearings on the high-speed train caused by wheel-rail excitation
12
作者 Qiaoying MA Shaopu YANG +2 位作者 Yongqiang LIU Baosen WANG Zechao LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期441-460,共20页
To explore the impact of wheel-rail excitation on the dynamic performance of axle box bearings,a dynamic model of the high-speed train including axle box bearings is developed.Subsequently,the dynamic response charact... To explore the impact of wheel-rail excitation on the dynamic performance of axle box bearings,a dynamic model of the high-speed train including axle box bearings is developed.Subsequently,the dynamic response characteristics of the axle box bearing are examined.The investigation focuses on the acceleration characteristics of bearing vibration under excitation of track irregularities and wheel flats.In addition,experiments on both normal and faulty bearings are conducted separately,and the correctness of the model and some conclusions are verified.According to the research,track irregularity is unfavorable for bearing fault detection based on resonance demodulation.Under the same speed conditions,the acceleration peak of bearing is inversely proportional to the length of the wheel flat and directly proportional to its depth.The paper will contribute to a deeper understanding of the dynamic performance of axle box bearings. 展开更多
关键词 high-speed train track irregularity wheel flat dynamic simulation
下载PDF
A strategy for out-of-roundness damage wheels identification in railway vehicles based on sparse autoencoders
13
作者 Jorge Magalhães Tomás Jorge +7 位作者 Rúben Silva António Guedes Diogo Ribeiro Andreia Meixedo Araliya Mosleh Cecília Vale Pedro Montenegro Alexandre Cury 《Railway Engineering Science》 EI 2024年第4期421-443,共23页
Wayside monitoring is a promising cost-effective alternative to predict damage in the rolling stock. The main goal of this work is to present an unsupervised methodology to identify out-of-roundness(OOR) damage wheels... Wayside monitoring is a promising cost-effective alternative to predict damage in the rolling stock. The main goal of this work is to present an unsupervised methodology to identify out-of-roundness(OOR) damage wheels, such as wheel flats and polygonal wheels. This automatic damage identification algorithm is based on the vertical acceleration evaluated on the rails using a virtual wayside monitoring system and involves the application of a two-step procedure. The first step aims to define a confidence boundary by using(healthy) measurements evaluated on the rail constituting a baseline. The second step of the procedure involves classifying damage of predefined scenarios with different levels of severities. The proposed procedure is based on a machine learning methodology and includes the following stages:(1) data collection,(2) damage-sensitive feature extraction from the acquired responses using a neural network model, i.e., the sparse autoencoder(SAE),(3) data fusion based on the Mahalanobis distance, and(4) unsupervised feature classification by implementing outlier and cluster analysis. This procedure considers baseline responses at different speeds and rail irregularities to train the SAE model. Then, the trained SAE is capable to reconstruct test responses(not trained) allowing to compute the accumulative difference between original and reconstructed signals. The results prove the efficiency of the proposed approach in identifying the two most common types of OOR in railway wheels. 展开更多
关键词 OOR wheel damage Damage identification Sparse autoencoder Passenger trains Wayside condition monitoring
下载PDF
Influence of railway wheel tread damage on wheel-rail impact loads and the durability of wheelsets
14
作者 Michele Maglio Tore Vernersson +2 位作者 Jens C.O.Nielsen Anders Ekberg Elena Kabo 《Railway Engineering Science》 EI 2024年第1期20-35,共16页
Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the... Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the measured three-dimensional damage geometry is employed in simulations of dynamic vehicle-track interaction to calibrate and verify a simulation model.The relation between the magnitude of the impact load and various operational parameters,such as vehicle speed,lateral position of wheel-rail contact,track stiffness and position of impact within a sleeper bay,is investigated.The calibrated model is later employed in simulations featuring other forms of tread damage;their effects on impact load and subsequent fatigue impact on bearings,wheel webs and subsurface initiated rolling contact fatigue of the wheel tread are assessed.The results quantify the effects of wheel tread defects and are valuable in a shift towards condition-based maintenance of running gear,and for general assessment of the severity of different types of railway wheel tread damage. 展开更多
关键词 wheel tread damage Rolling contact fatigue cluster Field measurements Dynamic vehicle-track interaction wheel-rail impact load wheelset durability
下载PDF
Enhancement of motor functional recovery in thoracic spinal cord injury: voluntary wheel running versus forced treadmill exercise
15
作者 Do-Hun Lee Dan Cao +4 位作者 Younghye Moon Chen Chen Nai-Kui Liu Xiao-Ming Xu Wei Wu 《Neural Regeneration Research》 SCIE CAS 2025年第3期836-844,共9页
Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery ... Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury. 展开更多
关键词 behavioral assessment motor function neural plasticity running wheel exercise spinal cord injury treadmill exercise voluntary exercise
下载PDF
Numerical study of wheel–rail adhesion performance of new-concept high-speed trains with aerodynamic wings 被引量:1
16
作者 Yang CHEN Lin JING +2 位作者 Tian LI Liang LING Kaiyun WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第8期673-691,共19页
Wheel–rail adhesion is a complex tribological problem of wheel–rail rolling contact and is closely related to the operational safety of high-speed trains.A new design concept of high-speed trains was recently propos... Wheel–rail adhesion is a complex tribological problem of wheel–rail rolling contact and is closely related to the operational safety of high-speed trains.A new design concept of high-speed trains was recently proposed with an expectation of a reduction of equivalent weight and total energy consumption by installing aerodynamic wings(aero-wings)on the roof,but it was accompanied by the disadvantage of deteriorating wheel–rail adhesion performance.In this study,a comprehensive multibody dynamics(MBD)model of the high-speed train with predesigned aero-wings is established using the commercial software SIMPACK,in which the real aerodynamic characteristics of the train are taken into account.The available adhesion and adhesion margin are employed to evaluate the wheel–rail adhesion performance.The influences of aero-wing lift,train speed,and contact conditions on the wheel–rail adhesion level are discussed.The results show that the load transfer caused by the action of aerodynamic load and braking torque was the main reason for the inconsistent adhesion condition of four wheelsets.The influences of aero-wing lift and train speed on the wheel–rail adhesion performance are coupled;the available adhesion of both motor car and trailer is negatively correlated with aero-wing lift and train speed under all contact conditions,while the variation law of adhesion margin with train speed shows differences under different contact conditions.When the wheel–rail interface was polluted by a‘third-body medium’such as water and oil,the wheel–rail adhesion performance was dramatically reduced and the wheelset tended to reach adhesion saturation and slide.However,track irregularity had little effect on the adhesion performance and could be ignored to save calculation time.These results are of positive significance for reducing the wheel idling or sliding phenomenon and to ensure the safe operation of high-speed trains with aero-wings. 展开更多
关键词 High-speed train wheel–rail adhesion Aerodynamic wing Multi-body dynamics(MBD)
原文传递
An experimental study on the effects of friction modifiers on wheel-rail dynamic interactions with various angles of attack 被引量:1
17
作者 Zhen Yang Pan Zhang +1 位作者 Jan Moraal Zili Li 《Railway Engineering Science》 2022年第3期360-382,共23页
By modifying friction to the desired level,the application of friction modifiers(FMs)has been considered as a promising emerging tool in the railway engineering for increasing braking/traction force in poor adhesion c... By modifying friction to the desired level,the application of friction modifiers(FMs)has been considered as a promising emerging tool in the railway engineering for increasing braking/traction force in poor adhesion conditions and mitigating wheel/rail interface deterioration,energy consumption,vibration and noise.Understanding the effectiveness of FMs in wheel–rail dynamic interactions is crucial to their proper applications in practice,which has,however,not been well explained.This study experimentally investigates the effects of two types of top-of-rail FM,i.e.FM-A and FM-B,and their application dosages on wheel–rail dynamic interactions with a range of angles of attack(AoAs)using an innovative well-controlled V-track test rig.The tested FMs have been used to provide intermediate friction for wear and noise reduction.The effectiveness of the FMs is assessed in terms of the wheel–rail adhesion characteristics and friction rolling induced axle box acceleration(ABA).This study provides the following new insights into the study of FM:the applications of the tested FMs can both reduce the wheel–rail adhesion level and change the negative friction characteristic to positive;stick–slip can be generated in the V-Track and eliminated by FM-A but intensified by FM-B,depending on the dosage of the FMs applied;the negative friction characteristic is not a must for stick–slip;the increase in ABA with AoA is insignificant until stick–slip occurs and the ABA can thus be influenced by the applications of FM. 展开更多
关键词 Friction modifier V-track test rig ADHESION wheel–rail dynamic interaction Angle of attack Axle box acceleration
下载PDF
Wheel/rail-force–based maintenance interval extension of the C80 series wagon
18
作者 Qi Xiao Weidong Yu +1 位作者 Guangrong Tian Fangxuan Li 《Railway Sciences》 2023年第4期514-524,共11页
Purpose–This study aims to introduce the achievements and benefits of applying wheel/rail-force–based maintenance interval extension of the C80 series wagon in China.Design/methodology/approach–Chinese wagons’exis... Purpose–This study aims to introduce the achievements and benefits of applying wheel/rail-force–based maintenance interval extension of the C80 series wagon in China.Design/methodology/approach–Chinese wagons’existing maintenance strategy had left a certain safety margin for the characteristics of widely running range,unstable service environment and submission to transportation organization requirements.To reduce maintenance costs,China railway(CR)has attempted to extend the maintenance interval since 2020.The maintenance cycle of C80 series heavy haul wagons is extended by three months(no stable routing)or 50,000 km(regular routing).However,in the meantime,the alarming rate of the running state,a key index to reflect the severe degree of hunting stability,by the train performance detection system(TPDS)for the C80 series heavy haul wagons has increased significantly.Findings–The present paper addresses a big data statistical way to evaluate the risk of allowing the C80 series heavy haul wagons to remain in operation longer than stipulated by the maintenance interval initial set.Through the maintenance and wayside-detectordata,whichis divided intothreestages,the extension period(three months),the current maintenance period and the previous maintenance period,this method reveals the alarming rate of hunting was correlated with maintenance interval.The maintainability of wagons will be achieved by utilizing wagon performance degradation modeling with the state of the wheelset and the often-contact side bearing.This paper also proposes a statistical model to return to the average safety level of the previous maintenance period’s baseline through correct alarming thresholds for unplanned corrective maintenance.Originality/value–The paper proposes an approach to reduce safety risk due to maintenance interval extension by effective maintenance program.The results are expected to help the railway company make the optimal solution to balance safety and the economy. 展开更多
关键词 Full-continuous wheel–rail force measurement TPDS Shattered rim HUNTING C80 series heavy haul wagons Maintainability
下载PDF
Running safety assessment method of trains under seismic conditions based on the derailment risk domain
19
作者 Zhihui Zhu Gaoyang Zhou +2 位作者 Weiqi Zheng Wei Gong Yongjiu Tang 《Railway Engineering Science》 EI 2024年第4期499-517,共19页
The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjud... The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjudgment of operational safety and difficulty in evaluating operational margin,making them unsuitable for assessing train safety during earthquakes.Therefore,in order to propose an effective evaluation method for the running safety of trains during earthquakes,this study employs three indexes,namely lateral displacement of the wheel–rail contact point,wheel unloading rate,and wheel lift,to describe the lateral and vertical contact states between the wheel and rail.The corresponding evolution characteristics of the wheel–rail contact states are determined,and the derailment forms under different frequency components of seismic motion are identified through dynamic numerical simulations of the train–track coupled system under sine excitation.The variations in the wheel–rail contact states during the transition from a safe state to the critical state of derailment are analyzed,thereby constructing the evolutionary path of train derailment and seismic derailment risk domain.Lastly,the wheel–rail contact and derailment states under seismic conditions are analyzed,thus verifying the effectiveness of the evaluation method for assessing running safety under earthquakes proposed in this study.The results indicate that the assessment method based on the derailment risk domain accurately and comprehensively reflects the wheel–rail contact states under seismic conditions.It successfully determines the forms of train derailment,the risk levels of derailment,and the evolutionary paths of derailment risk. 展开更多
关键词 Earthquake High-speed train Running safety wheel–rail contact Derailment risk domain
下载PDF
Wheel-rail Profiles Matching Design Considering Railway Track Parameters 被引量:6
20
作者 CUI Dabin LI Li +1 位作者 JIN Xuesong LI Ling 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第4期410-417,共8页
The profile of wheel/rail has great concern with the vehicle running safety, the wheel/rail wear and the rolling contact fatigue between wheel and rail, due to its severer impact on the dynamic behavior of both the ra... The profile of wheel/rail has great concern with the vehicle running safety, the wheel/rail wear and the rolling contact fatigue between wheel and rail, due to its severer impact on the dynamic behavior of both the railway vehicle/track, and the wheel/rail rolling contact status. However, recent studies in this respect are mainly explored in reverse methods, where track parameters are predetermined and invariable during the optimizing process. This paper attempts to propose a wheel-rail profiles matching design method considering multi-parameter, through optimizing wheel/rail profile under different rail cants and track gauges, based on the existed optimization technology for the normal gap of wheel/rail. The method presented in this paper can also, compared with the prior reverse methods, be called "forward solution method" in which the riding comfort, wheel unloading rate and wheel/rail contact stress of the speed-up railway passenger car are calculated by means of a vehicle-track coupling dynamic model, with the range of the rail cant varying from 1/20 to 1/40 and the rail gauge from 1 433 mm to 1 441 mm. These results show that the distribution status of the pairs of contact points can be obviously improved and the contact stress can be reduced significantly; a great influence is exposed by the rail cant and track gauge on the dynamic behavior of the high speed passenger car, and an optimal vehicle dynamics behavior are obtained with the optimized wheel/rail profile when the rail cant is 1/30 and the track gauge is 1 435 mm. This research can provide important references for the investigation of the wheel-rail profiles matching design method considering multi-parameter. 展开更多
关键词 wheel profile OPTIMIZATION dynamic behavior rail cant track gauge
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部