Wide-bandgap(>1.7 eV)perovskites suffer from severe light-induced phase segregation due to high bromine content,causing irreversible damage to devices stability.However,the strategies of suppressing photoinduced ph...Wide-bandgap(>1.7 eV)perovskites suffer from severe light-induced phase segregation due to high bromine content,causing irreversible damage to devices stability.However,the strategies of suppressing photoinduced phase segregation and related mechanisms have not been fully disclosed.Here,we report a new passivation agent 4-aminotetrahydrothiopyran hydrochloride(4-ATpHCl)with multifunctional groups for the interface treatment of a 1.77-eV wide-bandgap perovskite film.4-ATpH^(+)impeded halogen ion migration by anchoring on the perovskite surface,leading to the inhibition of phase segregation and thus the passivation of defects,which is ascribed to the interaction of 4-ATpH^(+)with perovskite and the formation of low-dimensional perovskites.Finally,the champion device achieved an efficiency of 19.32%with an open-circuit voltage(V_(OC))of 1.314 V and a fill factor of 83.32%.Moreover,4-ATpHCl modified device exhibited significant improved stability as compared with control one.The target device maintained 80%of its initial efficiency after 519 h of maximum power output(MPP)tracking under 1 sun illumination,however,the control device showed a rapid decrease in efficiency after 267 h.Finally,an efficiency of 27.38%of the champion 4-terminal all-perovskite tandem solar cell was achieved by mechanically stacking this wide-bandgap top subcell with a 1.25-eV low-bandgap perovskite bottom subcell.展开更多
Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily ...Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily caused by surface defects.In this study,we present a novel method for modifying surfaces using the multifunctional S-ethylisothiourea hydrobromide(SEBr),which can passivate both Pb^(-1)and FA^(-1)terminated surfaces,Moreover,the SEBr upshifted the Fermi level at the perovskite interface,thereby promoting carrier collection.This proposed method was effective for both 1.67 and 1.77 eV WBG PSCs,achieving power conversion efficiencies(PCEs)of 22.47%and 19.90%,respectively,with V_(OC)values of 1.28 and 1.33 V,along with improved film and device stability.With this advancement,we were able to fabricate monolithic all-perovskite tandem solar cells with a champion PCE of 27.10%,This research offers valuable insights for passivating the surface trap states of WBG perovskite through rational multifunctional molecular engineering.展开更多
Wide-bandgap(WB)mixed-halide perovskite solar cells(PSCs)play a crucial role in perovskite-based tandem solar cells(TSCs),enabling them to exceed the Shockley-Queisser limits of single-junction solar cells.Nonetheless...Wide-bandgap(WB)mixed-halide perovskite solar cells(PSCs)play a crucial role in perovskite-based tandem solar cells(TSCs),enabling them to exceed the Shockley-Queisser limits of single-junction solar cells.Nonetheless,the lack of stability in WB perovskite films due to photoinduced phase segregation undermines the stability of WB PSCs and their TSCs,thus impeding the commercialization of perovskite-based TSCs.Many efforts have been made to suppress photoinduced phase segregation in WB perovskite films and significant progresses have been obtained.In this review,we elaborate the mechanisms behind photoinduced phase segregation and its impact on the photovoltaic performance and stability of devices.The importance role of advanced characterization techniques in confirming the photoinduced phase segregation are comprehensively summarized.Beyond that,the effective strategies to alleviate photoinduced phase segregation in WB mixed halide PSCs are systematically assessed.Finally,the prospects for developing highly efficient and stable WB PSCs in tandem application are also presented.展开更多
Wide-bandgap perovskite solar cells(WBG PSCs)have garnered significant research attention for their potential in tandem solar cells.However,they face challenges such as high open-circuit voltage losses and severe phas...Wide-bandgap perovskite solar cells(WBG PSCs)have garnered significant research attention for their potential in tandem solar cells.However,they face challenges such as high open-circuit voltage losses and severe phase instability.These issues are primarily owing to the formation of defects,ion migration,and energy level mismatches at the interface of WBG perovskite devices.Meanwhile,inverted PSCs demonstrate superior stability potential and compatibility with tandem devices,making them the most promising application for WBG perovskite materials.Consequently,interface modulation for such devices has become imperative.In this review,from the perspective of applicability in tandem devices,we first provided a concise overview of WBG perovskite research and its efficiency progress in inverted devices.We further discussed interface carrier dynamics and the potential impact of interfaces on such device performance.Afterward,we presented a comprehensive summary of interface engineering in inverted WBG perovskite(1.60 eV-1.80 eV)solar cells.The research particularly explored both the upper and buried interfaces of WBG absorbers in the inverted PSCs,thoroughly investigating interface design strategies and outlining promising research directions.Finally,this review provides insight into the future development of interface engineering for high-performance and large-area WBG PSCs.展开更多
Perovskite-based tandem solar cells have attracted increasing interest because of its great potential to surpass the Shockley-Queisser limit set for single-junction solar cells.In the tandem architectures,the wide-ban...Perovskite-based tandem solar cells have attracted increasing interest because of its great potential to surpass the Shockley-Queisser limit set for single-junction solar cells.In the tandem architectures,the wide-bandgap(WBG)perovskites act as the front absorber to offer higher open-circuit voltage(VOC)for reduced thermalization losses.Taking advantage of tunable bandgap of the perovskite materials,the WBG perovskites can be easily obtained by substituting halide iodine with bromine,and substituting organic ions FA and MA with Cs.To date,the most concerned issues for the WBG perovskite solar cells(PSCs)are huge VOC deficit and severe photo-induced phase separation.Reducing VOC loss and improving photostability of the WBG PSCs are crucial for further efficiency breakthrough.Recently,scientists have made great efforts to overcome these key issues with tremendous progresses.In this review,we first summarize the recent progress of WBG perovskites from the aspects of compositions,additives,charge transport layers,interfaces and preparation methods.The key factors affecting efficiency and stability are then carefully discussed,which would provide decent guidance to develop highly efficient and stable WBG PSCs for tandem application.展开更多
Wide-bandgap mixed-halide perovskite solar cells(WBG-PSCs)are promising top cells for efficient tandem photovoltaics to achieve high power conversion efficiency(PCE)at low cost.However,the open-circuit voltage(V_(OC))...Wide-bandgap mixed-halide perovskite solar cells(WBG-PSCs)are promising top cells for efficient tandem photovoltaics to achieve high power conversion efficiency(PCE)at low cost.However,the open-circuit voltage(V_(OC))of WBG-PSCs is still unsatisfactory as the V_(OC)-deficit is generally larger than 0.45 V.Herein,we report a buried interface engineering strategy that substantially improves the V_(OC)of WBG-PSCs by inserting amphiphilic molecular hole-selective materials featuring with a cyanovinyl phosphonic acid(CPA)anchoring group between the perovskite and substrate.The assembly and redistribution of CPA-based amphiphilic molecules at the perovskite-substrate buried interface not only promotes the growth of a low-defect crystalline perovskite thin film,but also suppresses the photo-induced halide phase separation.The energy level alignment between wide-bandgap perovskite and the hole-selective layer is further improved by modulating the substituents on the triphenylamine donor moiety(methoxyls for MPA-CPA,methyls for Me PA-CPA,and bare TPA-CPA).Using a 1.68 e V bandgap perovskite,the Me PA-CPA-based devices achieved an unprecedentedly high V_(OC)of 1.29 V and PCE of 22.3%under standard AM 1.5 sunlight.The V_(OC)-deficit(<0.40 V)is the lowest value reported for WBG-PSCs.This work not only provides an effective approach to decreasing the V_(OC)-deficit of WBG-PSCs,but also confirms the importance of energy level alignment at the charge-selective layers in PSCs.展开更多
Wide-bandgap perovskites are recently drawing tremendous attention in the community for high-efficiency all-perovskite tandem solar cells.However,the formamidinium (FA^+) and methylammonium (MA^+) based wide-bandgap m...Wide-bandgap perovskites are recently drawing tremendous attention in the community for high-efficiency all-perovskite tandem solar cells.However,the formamidinium (FA^+) and methylammonium (MA^+) based wide-bandgap mixed halide perovskites suffered from high density of traps and pin-holes,respectively.Fundamental understanding on the crystallization and film formation processes are keys to overcome those challenges but not yet clearly understood.In this study,an in-situ photoluminescence technique was used to investigate the perovskite crystallization during the thermal annealing process.It is found that the crystallization of a mixed halide perovskite with bromide (Br^-) and iodine (I^-) ions following the Ostward ripening crystal growth.Interestingly,it is found that the initial nucleation reaction is quickly completed in the first few seconds,however,leaving the small crystals with inhomogeneous composition.The different aggregation affinities of such inhomogeneous small crystals provoke the formation of pin-holes during the thermal annealing process.By engineering the precursor solution to control the nucleation rate,the chemical composition of the small crystals has become homogenous.Uniform pin-hole free high Br-composited wide-bandgap MA0.9Cs0.1Pb(I0.6Br0.4)3 perovskite films with bandgap energy of 1.8 eV have been realized.The corresponding photovoltaic devices have achieved an encouraging device efficiency of 15.1% with superb photostability.展开更多
Molecular bulks are favorable for the thermal and morphological stability in organic wide-bandgap semiconducting polymers with potential applications in both information and energy electronics. In this review, we pres...Molecular bulks are favorable for the thermal and morphological stability in organic wide-bandgap semiconducting polymers with potential applications in both information and energy electronics. In this review, we present our progress in the design of fluorene-based bulky semiconductors with a fractal four-element pattern. Firstly, we established one-pot methods to spirofluorenes, especially spiro[fluorene-9,9'-xanthene] (SFX) serving as the next-generation spiro-based semiconductors. Secondly, we observed the supramolecular forces at the bulky groups and discovered the supramolecular steric hindrance (SSH) effect on polymorphisms, nanocrystals as well as device performance. Thus, a synergistically molecular attractor-repulsor theory (SMART) was proposed for the control of nanocrystal morphology, thin film phase and morphology. Thirdly, the third possible type of defects has been identified to generate green band (g-band) emission in wide- bandgap semiconductors by the introduction of molecular strain design of cyclofluorene. Finally, the first bulky polydiarylfluorene with highly crystalline and β conformation was achieved by an attractor-repulsor design of tadpole-shape monomer, which offered an effective platform to fabricate stable wide-bandgap semiconducting devices. All the discoveries offer the solid basis to break through bottlenecks of organic/polymer wide-bandgap semiconductors by the improvements of overall performances.展开更多
Wide-bandgap(WBG)perovskites have emerged as promising materials for the construction of perovskite/silicon tandem solar cells.However,poor long-term operational stability due to the notorious photo-induced halide seg...Wide-bandgap(WBG)perovskites have emerged as promising materials for the construction of perovskite/silicon tandem solar cells.However,poor long-term operational stability due to the notorious photo-induced halide segregation is commonly observed.Here,we report the synthesis of stable~1.73 eV MA-based mixed I/Br WBG perovskites by ionic liquid solvent,methylammonium acetate(MAAc).The special internal hydrogen bond(N–H…I and N–H…Br)environment in the ionic liquid MAAc solvent over traditional N,N-dimethylformamide/dimethyl sulfoxide solvent stabilizes the diffusion of halide ions.This allows the suppression of the halide segregation in the mixed I/Br WBG perovskite film,which is previously suggested to be difficult.The hydrogen bonds also enable excellent decoupling of the crystal nucleation and growth process.Finally,a champion device efficiency of 20.59%is achieved,which is one of the highest reports,with improved ambient air,heat,and light stability.展开更多
Emerging wide-bandgap(WBG)devices,such as silicon carbide(SiC)MOSFETs and gallium nitride(GaN)high-electron-mobility transistors(HEMTs)provide new opportunities to realize high efficiency,high power density,and high r...Emerging wide-bandgap(WBG)devices,such as silicon carbide(SiC)MOSFETs and gallium nitride(GaN)high-electron-mobility transistors(HEMTs)provide new opportunities to realize high efficiency,high power density,and high reliability in several kHz,1 kV input,and several kW output applications.However,the performance comparison between SiC MOSFETs and GaN HEMTs in high-voltage,high-frequency,medium-high-power DC conversion applications have not yet been investigated thoroughly.Two 1 kV,3 kW LLC prototypes with GaN and SiC devices are built to perform a careful comparison of the prototypes in terms of parameters,power density,zero voltage switch realization,and overall efficiency.This provides guidance for the appropriate evaluation of WBG devices in high-voltage,high-frequency,and medium-high-power applications.展开更多
Wide-bandgap(≥1.68 eV)inverted perovskite solar cells(PSCs)have been recognized as promising top component cells on the commercial crystalline silicon cell to surpass its Shockley-Queisser efficiency limit.However,th...Wide-bandgap(≥1.68 eV)inverted perovskite solar cells(PSCs)have been recognized as promising top component cells on the commercial crystalline silicon cell to surpass its Shockley-Queisser efficiency limit.However,the power conversion efficiency(PCE)is dramatically limited by the huge open-circuit voltage(V_(OC))loss.Herein,we propose a proton-transfer-induced in situ defect passivation strategy to reduce the nonradiative recombination to minimize the VOC loss.Specifically,a liquid-form neutral amine,3,4,5-trifluorobenzylamine(TFBA)was added into ethyl acetate(EA)as anti-solvent for the film preparation,which induces proton-transfer from the formamidinium(FA)and methylammonium(MA)in the perovskite precursors to the TFBA.The protonated TFBA exhibits a gradient distribution near the surface of the perovskite film,achieving in situ defect passivation.As a result,TFBA-based 1.68 eV-bandgap inverted PSCs afforded a PCE of 20.39%,one of the highest for cells with this bandgap.Meanwhile,due to the strong interaction between TFBA and the perovskite film,the mixed-halide perovskites demonstrate much better photostability.Our findings offer an effective strategy to passivate defects in PSCs.展开更多
By means of density functional theory computations, we predicted two novel two-dimensional (2D) nanolnaterials, namely P2X (X=C, Si) monolayers with pentagonal configurations. Their structures, stabilities, intrin...By means of density functional theory computations, we predicted two novel two-dimensional (2D) nanolnaterials, namely P2X (X=C, Si) monolayers with pentagonal configurations. Their structures, stabilities, intrinsic electronic, and optical properties as well as the effect of external strain to the elec- tronic properties have been systematically examined. Our computations showed that these P2C and P2Si monolayers have rather high thermodynamic, kinetic, and thermal stabilities, and are indirect semiconductors with wide bandgaps (2.76 eV and 2.69 eV, respectively) which can be tuned by an external strain. These monolayers exhibit high absorptions in the UV region, but behave as almost transparent layers for visible light in the electromagnetic spectrum. Their high stabilities and excep- tional electronic and optical properties suggest them as promising candidates for future applications in UV-light shielding and antireflection layers in solar cells.展开更多
In this work,a novel one-time-programmable memory unit based on a Schottky-type p-GaN diode is proposed.During the programming process,the junction switches from a high-resistance state to a low-resistance state throu...In this work,a novel one-time-programmable memory unit based on a Schottky-type p-GaN diode is proposed.During the programming process,the junction switches from a high-resistance state to a low-resistance state through Schottky junction breakdown,and the state is permanently preserved.The memory unit features a current ratio of more than 10^(3),a read voltage window of 6 V,a programming time of less than 10^(−4)s,a stability of more than 108 read cycles,and a lifetime of far more than 10 years.Besides,the fabrication of the device is fully compatible with commercial Si-based GaN process platforms,which is of great significance for the realization of low-cost read-only memory in all-GaN integration.展开更多
Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-d...Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-dominant crystalline silicon(c-Si)is particularly attractive;simple estimates based on the bandgap matching indicate that the efficiency limit in such tandem device is as high as 46%.However,state-of-the-art perovskite/c-Si TSCs only achieve an efficiency of~32.5%,implying significant challenges and also rich opportunities.In this review,we start with the operating mechanism and efficiency limit of TSCs,followed by systematical discussions on wide-bandgap perovskite front cells,interface selective contacts,and electrical interconnection layer,as well as photon management for highly efficient perovskite/c-Si TSCs.We highlight the challenges in this field and provide our understanding of future research directions toward highly efficient and stable large-scale wide-bandgap perovskite front cells for the commercialization of perovskite/c-Si TSCs.展开更多
The choices of proper dopants and doping sites significantly influence the doping efficiency.In this work,using doping in Al N as an example,we discuss how to choose dopants and doping sites in semiconductors to creat...The choices of proper dopants and doping sites significantly influence the doping efficiency.In this work,using doping in Al N as an example,we discuss how to choose dopants and doping sites in semiconductors to create shallow defect levels.By comparing the defect properties of C_(N),O_(N),Mg_(Al),and Si_(Al)in AlN and analyzing the pros and cons of different doping approaches from the aspects of size mismatch between dopant and host elements,electronegativity difference and perturbation to the band edge states after the substitution,we propose that Mg_(Al)and Si_(Al)should be the best dopants and doping sites for p-type and n-type doping,respectively.Further first-principles calculations verify our predictions as these defects present lower formation energies and shallower defect levels.The defect charge distributions also show that the band edge states,which mainly consist of N-s and p orbitals,are less perturbed when Al is substituted,therefore,the derived defect states turn out to be delocalized,opposite to the situation when N is substituted.This approach of analyzing the band structure of the host material and choosing dopants and doping sites to minimize the perturbation on the host band structure is general and can provide reliable estimations for finding shallow defect levels in semiconductors.展开更多
基金financially supported by the National Key R&D Program of China (2022YFB4200304)the National Natural Science Foundation of China (52303347)+3 种基金the Fundamental Research Funds for the Central Universities (YJ2021157)the Engineering Featured Team Fund of Sichuan University (2020SCUNG102)open foundation of Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University (2022GXYSOF05)the support from the National Natural Science Foundation of China (E30853YM19)
文摘Wide-bandgap(>1.7 eV)perovskites suffer from severe light-induced phase segregation due to high bromine content,causing irreversible damage to devices stability.However,the strategies of suppressing photoinduced phase segregation and related mechanisms have not been fully disclosed.Here,we report a new passivation agent 4-aminotetrahydrothiopyran hydrochloride(4-ATpHCl)with multifunctional groups for the interface treatment of a 1.77-eV wide-bandgap perovskite film.4-ATpH^(+)impeded halogen ion migration by anchoring on the perovskite surface,leading to the inhibition of phase segregation and thus the passivation of defects,which is ascribed to the interaction of 4-ATpH^(+)with perovskite and the formation of low-dimensional perovskites.Finally,the champion device achieved an efficiency of 19.32%with an open-circuit voltage(V_(OC))of 1.314 V and a fill factor of 83.32%.Moreover,4-ATpHCl modified device exhibited significant improved stability as compared with control one.The target device maintained 80%of its initial efficiency after 519 h of maximum power output(MPP)tracking under 1 sun illumination,however,the control device showed a rapid decrease in efficiency after 267 h.Finally,an efficiency of 27.38%of the champion 4-terminal all-perovskite tandem solar cell was achieved by mechanically stacking this wide-bandgap top subcell with a 1.25-eV low-bandgap perovskite bottom subcell.
基金financially supported by the National Natural Science Foundation of China(52330004)the Fundamental Research Funds for the Central Universities(WUT:2023IVA075 and 2023IVB009)+3 种基金the financial support from RISE project Grant(Q-CDBK)Start-up Fund for RAPs under the Strategic Hiring Scheme(PoluU)(1-BD1H)PRI Strategic Grant(1-CD7X)RI-iWEAR Strategic Supporting Scheme(1-CD94)。
文摘Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily caused by surface defects.In this study,we present a novel method for modifying surfaces using the multifunctional S-ethylisothiourea hydrobromide(SEBr),which can passivate both Pb^(-1)and FA^(-1)terminated surfaces,Moreover,the SEBr upshifted the Fermi level at the perovskite interface,thereby promoting carrier collection.This proposed method was effective for both 1.67 and 1.77 eV WBG PSCs,achieving power conversion efficiencies(PCEs)of 22.47%and 19.90%,respectively,with V_(OC)values of 1.28 and 1.33 V,along with improved film and device stability.With this advancement,we were able to fabricate monolithic all-perovskite tandem solar cells with a champion PCE of 27.10%,This research offers valuable insights for passivating the surface trap states of WBG perovskite through rational multifunctional molecular engineering.
基金the National Natural Science Foundation of China(Grant No.62274018)the Xinjiang Construction Corps Key Areas of Science and Technology Research Project(Grant No.2023AB029)the Key Project of Chongqing Overseas Students Returning to China Entrepreneurship and Innovation Support Plan(Grant No.cx2023006).
文摘Wide-bandgap(WB)mixed-halide perovskite solar cells(PSCs)play a crucial role in perovskite-based tandem solar cells(TSCs),enabling them to exceed the Shockley-Queisser limits of single-junction solar cells.Nonetheless,the lack of stability in WB perovskite films due to photoinduced phase segregation undermines the stability of WB PSCs and their TSCs,thus impeding the commercialization of perovskite-based TSCs.Many efforts have been made to suppress photoinduced phase segregation in WB perovskite films and significant progresses have been obtained.In this review,we elaborate the mechanisms behind photoinduced phase segregation and its impact on the photovoltaic performance and stability of devices.The importance role of advanced characterization techniques in confirming the photoinduced phase segregation are comprehensively summarized.Beyond that,the effective strategies to alleviate photoinduced phase segregation in WB mixed halide PSCs are systematically assessed.Finally,the prospects for developing highly efficient and stable WB PSCs in tandem application are also presented.
基金supported by the National Natural Science Foundation of China(Grant Nos.22375163,52203338,52172101,52103286)the Shaanxi Science and Technology Innovation Team(Grant No.2023-CX-TD-44)+1 种基金Shaanxi Key R&D Program(Grant No.2022KWZ-07)Shccig-Qinling Program.
文摘Wide-bandgap perovskite solar cells(WBG PSCs)have garnered significant research attention for their potential in tandem solar cells.However,they face challenges such as high open-circuit voltage losses and severe phase instability.These issues are primarily owing to the formation of defects,ion migration,and energy level mismatches at the interface of WBG perovskite devices.Meanwhile,inverted PSCs demonstrate superior stability potential and compatibility with tandem devices,making them the most promising application for WBG perovskite materials.Consequently,interface modulation for such devices has become imperative.In this review,from the perspective of applicability in tandem devices,we first provided a concise overview of WBG perovskite research and its efficiency progress in inverted devices.We further discussed interface carrier dynamics and the potential impact of interfaces on such device performance.Afterward,we presented a comprehensive summary of interface engineering in inverted WBG perovskite(1.60 eV-1.80 eV)solar cells.The research particularly explored both the upper and buried interfaces of WBG absorbers in the inverted PSCs,thoroughly investigating interface design strategies and outlining promising research directions.Finally,this review provides insight into the future development of interface engineering for high-performance and large-area WBG PSCs.
基金support from the 111 Project(B21005)the National Natural Science Foundation of China(Grant No.62174103)the National University Research Fund(GK202103108)。
文摘Perovskite-based tandem solar cells have attracted increasing interest because of its great potential to surpass the Shockley-Queisser limit set for single-junction solar cells.In the tandem architectures,the wide-bandgap(WBG)perovskites act as the front absorber to offer higher open-circuit voltage(VOC)for reduced thermalization losses.Taking advantage of tunable bandgap of the perovskite materials,the WBG perovskites can be easily obtained by substituting halide iodine with bromine,and substituting organic ions FA and MA with Cs.To date,the most concerned issues for the WBG perovskite solar cells(PSCs)are huge VOC deficit and severe photo-induced phase separation.Reducing VOC loss and improving photostability of the WBG PSCs are crucial for further efficiency breakthrough.Recently,scientists have made great efforts to overcome these key issues with tremendous progresses.In this review,we first summarize the recent progress of WBG perovskites from the aspects of compositions,additives,charge transport layers,interfaces and preparation methods.The key factors affecting efficiency and stability are then carefully discussed,which would provide decent guidance to develop highly efficient and stable WBG PSCs for tandem application.
基金supported by the National Natural Science Foundation of China(22179037)Shanghai pilot program for Basic Research(22TQ1400100-1)+3 种基金Shanghai Municipal Science and Technology Major Project(2018SHZDZX03,21JC1401700)the Programmer of Introducing Talents of Discipline to Universities(B16017)the Fundamental Research Funds for the Central Universitiessupport from Royal Society of Chemistry(R23-0749928359)。
文摘Wide-bandgap mixed-halide perovskite solar cells(WBG-PSCs)are promising top cells for efficient tandem photovoltaics to achieve high power conversion efficiency(PCE)at low cost.However,the open-circuit voltage(V_(OC))of WBG-PSCs is still unsatisfactory as the V_(OC)-deficit is generally larger than 0.45 V.Herein,we report a buried interface engineering strategy that substantially improves the V_(OC)of WBG-PSCs by inserting amphiphilic molecular hole-selective materials featuring with a cyanovinyl phosphonic acid(CPA)anchoring group between the perovskite and substrate.The assembly and redistribution of CPA-based amphiphilic molecules at the perovskite-substrate buried interface not only promotes the growth of a low-defect crystalline perovskite thin film,but also suppresses the photo-induced halide phase separation.The energy level alignment between wide-bandgap perovskite and the hole-selective layer is further improved by modulating the substituents on the triphenylamine donor moiety(methoxyls for MPA-CPA,methyls for Me PA-CPA,and bare TPA-CPA).Using a 1.68 e V bandgap perovskite,the Me PA-CPA-based devices achieved an unprecedentedly high V_(OC)of 1.29 V and PCE of 22.3%under standard AM 1.5 sunlight.The V_(OC)-deficit(<0.40 V)is the lowest value reported for WBG-PSCs.This work not only provides an effective approach to decreasing the V_(OC)-deficit of WBG-PSCs,but also confirms the importance of energy level alignment at the charge-selective layers in PSCs.
基金the National Natural Science Foundation of China (No. 61574120)the Guangdong province Natural Science Foundation of China (No. 2015A030313001)the Hong Kong Innovation and Technology Commission (No. ITS/186/16).
文摘Wide-bandgap perovskites are recently drawing tremendous attention in the community for high-efficiency all-perovskite tandem solar cells.However,the formamidinium (FA^+) and methylammonium (MA^+) based wide-bandgap mixed halide perovskites suffered from high density of traps and pin-holes,respectively.Fundamental understanding on the crystallization and film formation processes are keys to overcome those challenges but not yet clearly understood.In this study,an in-situ photoluminescence technique was used to investigate the perovskite crystallization during the thermal annealing process.It is found that the crystallization of a mixed halide perovskite with bromide (Br^-) and iodine (I^-) ions following the Ostward ripening crystal growth.Interestingly,it is found that the initial nucleation reaction is quickly completed in the first few seconds,however,leaving the small crystals with inhomogeneous composition.The different aggregation affinities of such inhomogeneous small crystals provoke the formation of pin-holes during the thermal annealing process.By engineering the precursor solution to control the nucleation rate,the chemical composition of the small crystals has become homogenous.Uniform pin-hole free high Br-composited wide-bandgap MA0.9Cs0.1Pb(I0.6Br0.4)3 perovskite films with bandgap energy of 1.8 eV have been realized.The corresponding photovoltaic devices have achieved an encouraging device efficiency of 15.1% with superb photostability.
基金financially supported by the National Natural Science Funds for Excellent Young Scholar(No.21322402)the National Natural Science Foundation of China(Nos.21274064,61475074,21504041 and 61136003)+3 种基金University of Jiangsu Province Natural Science Foundation Project(No.14KJB510027)Natural Science Foundation of Jiangsu Province(No.BM2012010)Excellent Science and Technology Innovation Team of Jiangsu Higher Education Institutions,Synergetic Innovation Center for Organic Electronics and Information Displays,Natural Science of the Education Committee of Jiangsu Province(No.15KJB430019)Jiangsu Planned Projects for Postdoctoral Research Funds(No.1501019B)
文摘Molecular bulks are favorable for the thermal and morphological stability in organic wide-bandgap semiconducting polymers with potential applications in both information and energy electronics. In this review, we present our progress in the design of fluorene-based bulky semiconductors with a fractal four-element pattern. Firstly, we established one-pot methods to spirofluorenes, especially spiro[fluorene-9,9'-xanthene] (SFX) serving as the next-generation spiro-based semiconductors. Secondly, we observed the supramolecular forces at the bulky groups and discovered the supramolecular steric hindrance (SSH) effect on polymorphisms, nanocrystals as well as device performance. Thus, a synergistically molecular attractor-repulsor theory (SMART) was proposed for the control of nanocrystal morphology, thin film phase and morphology. Thirdly, the third possible type of defects has been identified to generate green band (g-band) emission in wide- bandgap semiconductors by the introduction of molecular strain design of cyclofluorene. Finally, the first bulky polydiarylfluorene with highly crystalline and β conformation was achieved by an attractor-repulsor design of tadpole-shape monomer, which offered an effective platform to fabricate stable wide-bandgap semiconducting devices. All the discoveries offer the solid basis to break through bottlenecks of organic/polymer wide-bandgap semiconductors by the improvements of overall performances.
基金financially supported by the Natural Science Foundation of China(91833304 and 51972172)Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars,China(BK20200034)the Young 1000 Talents Global Recruitment Program of China。
文摘Wide-bandgap(WBG)perovskites have emerged as promising materials for the construction of perovskite/silicon tandem solar cells.However,poor long-term operational stability due to the notorious photo-induced halide segregation is commonly observed.Here,we report the synthesis of stable~1.73 eV MA-based mixed I/Br WBG perovskites by ionic liquid solvent,methylammonium acetate(MAAc).The special internal hydrogen bond(N–H…I and N–H…Br)environment in the ionic liquid MAAc solvent over traditional N,N-dimethylformamide/dimethyl sulfoxide solvent stabilizes the diffusion of halide ions.This allows the suppression of the halide segregation in the mixed I/Br WBG perovskite film,which is previously suggested to be difficult.The hydrogen bonds also enable excellent decoupling of the crystal nucleation and growth process.Finally,a champion device efficiency of 20.59%is achieved,which is one of the highest reports,with improved ambient air,heat,and light stability.
基金Supported by Industrial Prospective and Key Core Technology Funding of Jiangsu Province(BE2019113).
文摘Emerging wide-bandgap(WBG)devices,such as silicon carbide(SiC)MOSFETs and gallium nitride(GaN)high-electron-mobility transistors(HEMTs)provide new opportunities to realize high efficiency,high power density,and high reliability in several kHz,1 kV input,and several kW output applications.However,the performance comparison between SiC MOSFETs and GaN HEMTs in high-voltage,high-frequency,medium-high-power DC conversion applications have not yet been investigated thoroughly.Two 1 kV,3 kW LLC prototypes with GaN and SiC devices are built to perform a careful comparison of the prototypes in terms of parameters,power density,zero voltage switch realization,and overall efficiency.This provides guidance for the appropriate evaluation of WBG devices in high-voltage,high-frequency,and medium-high-power applications.
基金the Central Universities,Grant/Award Numbers:GK202103108,GK202103113National Natural Science Foundation of China,Grant/Award Number:62174103+2 种基金National University Research Fund,Grant/Award Number:2020TS105Overseas Talent Recruitment Project,Grant/Award Number:B14041111 Project,Grant/Award Number:B21005。
文摘Wide-bandgap(≥1.68 eV)inverted perovskite solar cells(PSCs)have been recognized as promising top component cells on the commercial crystalline silicon cell to surpass its Shockley-Queisser efficiency limit.However,the power conversion efficiency(PCE)is dramatically limited by the huge open-circuit voltage(V_(OC))loss.Herein,we propose a proton-transfer-induced in situ defect passivation strategy to reduce the nonradiative recombination to minimize the VOC loss.Specifically,a liquid-form neutral amine,3,4,5-trifluorobenzylamine(TFBA)was added into ethyl acetate(EA)as anti-solvent for the film preparation,which induces proton-transfer from the formamidinium(FA)and methylammonium(MA)in the perovskite precursors to the TFBA.The protonated TFBA exhibits a gradient distribution near the surface of the perovskite film,achieving in situ defect passivation.As a result,TFBA-based 1.68 eV-bandgap inverted PSCs afforded a PCE of 20.39%,one of the highest for cells with this bandgap.Meanwhile,due to the strong interaction between TFBA and the perovskite film,the mixed-halide perovskites demonstrate much better photostability.Our findings offer an effective strategy to passivate defects in PSCs.
文摘By means of density functional theory computations, we predicted two novel two-dimensional (2D) nanolnaterials, namely P2X (X=C, Si) monolayers with pentagonal configurations. Their structures, stabilities, intrinsic electronic, and optical properties as well as the effect of external strain to the elec- tronic properties have been systematically examined. Our computations showed that these P2C and P2Si monolayers have rather high thermodynamic, kinetic, and thermal stabilities, and are indirect semiconductors with wide bandgaps (2.76 eV and 2.69 eV, respectively) which can be tuned by an external strain. These monolayers exhibit high absorptions in the UV region, but behave as almost transparent layers for visible light in the electromagnetic spectrum. Their high stabilities and excep- tional electronic and optical properties suggest them as promising candidates for future applications in UV-light shielding and antireflection layers in solar cells.
基金supported in part by the National Key Research and Development Program of China under Grant 2022YFB3604400in part by the Youth Innovation Promotion Association of Chinese Academy Sciences (CAS)+4 种基金in part by the CAS-Croucher Funding Scheme under Grant CAS22801in part by National Natural Science Foundation of China under Grant 62334012, Grant 62074161, Grant 62004213, Grant U20A20208, and Grant 62304252in part by the Beijing Municipal Science and Technology Commission project under Grant Z201100008420009 and Grant Z211100007921018in part by the University of CASin part by the IMECAS-HKUST-Joint Laboratory of Microelectronics
文摘In this work,a novel one-time-programmable memory unit based on a Schottky-type p-GaN diode is proposed.During the programming process,the junction switches from a high-resistance state to a low-resistance state through Schottky junction breakdown,and the state is permanently preserved.The memory unit features a current ratio of more than 10^(3),a read voltage window of 6 V,a programming time of less than 10^(−4)s,a stability of more than 108 read cycles,and a lifetime of far more than 10 years.Besides,the fabrication of the device is fully compatible with commercial Si-based GaN process platforms,which is of great significance for the realization of low-cost read-only memory in all-GaN integration.
基金the talent project of ZJU-Hangzhou Global Scientific and Technological Innovation Center(No.02170000-K02013017)project of National Natural Science Foundation of China(No.61721005)
文摘Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-dominant crystalline silicon(c-Si)is particularly attractive;simple estimates based on the bandgap matching indicate that the efficiency limit in such tandem device is as high as 46%.However,state-of-the-art perovskite/c-Si TSCs only achieve an efficiency of~32.5%,implying significant challenges and also rich opportunities.In this review,we start with the operating mechanism and efficiency limit of TSCs,followed by systematical discussions on wide-bandgap perovskite front cells,interface selective contacts,and electrical interconnection layer,as well as photon management for highly efficient perovskite/c-Si TSCs.We highlight the challenges in this field and provide our understanding of future research directions toward highly efficient and stable large-scale wide-bandgap perovskite front cells for the commercialization of perovskite/c-Si TSCs.
基金supported by the National Natural Science Foundation of China(Grants No.11991060,No.12088101,No.U2230402,and No.12304006)the Natural Science Foundation of WIUCAS(Grants No.WIUCASQD2023004)。
文摘The choices of proper dopants and doping sites significantly influence the doping efficiency.In this work,using doping in Al N as an example,we discuss how to choose dopants and doping sites in semiconductors to create shallow defect levels.By comparing the defect properties of C_(N),O_(N),Mg_(Al),and Si_(Al)in AlN and analyzing the pros and cons of different doping approaches from the aspects of size mismatch between dopant and host elements,electronegativity difference and perturbation to the band edge states after the substitution,we propose that Mg_(Al)and Si_(Al)should be the best dopants and doping sites for p-type and n-type doping,respectively.Further first-principles calculations verify our predictions as these defects present lower formation energies and shallower defect levels.The defect charge distributions also show that the band edge states,which mainly consist of N-s and p orbitals,are less perturbed when Al is substituted,therefore,the derived defect states turn out to be delocalized,opposite to the situation when N is substituted.This approach of analyzing the band structure of the host material and choosing dopants and doping sites to minimize the perturbation on the host band structure is general and can provide reliable estimations for finding shallow defect levels in semiconductors.