AIM:To evaluate scleral buckling(SB)surgery using a noncontact wide-field viewing system and 23-gauge intraocular illumination for the treatment of rhegmatogenous retinal detachment in silicone oil(SO)-filled eyes.MET...AIM:To evaluate scleral buckling(SB)surgery using a noncontact wide-field viewing system and 23-gauge intraocular illumination for the treatment of rhegmatogenous retinal detachment in silicone oil(SO)-filled eyes.METHODS:Totally 9 patients(9 eyes)with retinal detachment in SO-filled eyes were retrospectively analyzed.All patients underwent non-contact wide-field viewing system-assisted buckling surgery with 23-gauge intraocular illumination.SO was removed at an appropriate time based on recovery.The patients were followed up for at least 3mo after SO removal.Retinal reattachment,complications,visual acuity and intraocular pressure(IOP)before and after surgery were observed.RESULTS:Patients were followed up for a mean of 8.22mo(3-22mo)after SO removal.All patients had retinal reattachment.At the final follow-up,visual acuity showed improvement for 8 patients,and no change for 1 patient.The IOP was high in 3 patients before surgery,but it stabilized after treatment;it was not affected in the other patients.None of the patients had infections,hemorrhage,anterior ischemia,or any other complication.CONCLUSION:This new non-contact wide-field viewing system-assisted SB surgery with 23-gauge intraocular illumination is effective and safe for retinal detachment in SO-filled eyes.展开更多
In an effort to reduce the shale gas exploration risks and costs, we applied the wide-field electromagnetic method (WFEM), because of its strong anti-interference capability, high resolution, ability to conduct expl...In an effort to reduce the shale gas exploration risks and costs, we applied the wide-field electromagnetic method (WFEM), because of its strong anti-interference capability, high resolution, ability to conduct exploration at large depths, and high efficiency, to the Bayan Syncline in the South Huayuan block, Hunan Province. We collected rock samples and analyzed their resistivity and induced polarization (IP) and built A series of two-dimensional models for geological conditions to investigate the applicability of WFEM to different geological structures. We also analyzed the correlation between TOC of shale and the resistivity and IP ratio to determine the threshold for identifying target formations. We used WFEM to identify the underground structures and determine the distribution, depth, and thickness of the target strata. Resistivity, IP, and total organic carbon were used to evaluate the shale gas prospects and select favorable areas (sweet spots) for exploration and development. Subsequently, drilling in these areas proved the applicability of WFEM in shale gas exploration.展开更多
The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 H...The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 Hz often exhibit upward warping in data,making geophysical inversion and interpretation challenging.The cumulative error of the crystal oscillator in signal transmission and acquisition contributes to an upturned apparent resistivity curve.To address this,a high-frequency information extraction method is proposed based on time-domain signal reconstruction,which helps to record a complete current data sequence;moreover,it helps estimate the crystal oscillator error for the transmitted signal.Considering the recorded error,a received signal was corrected using a set of reconstruction algorithms.After processing,the high-frequency component of the wide-field electromagnetic data was not upturned,while accurate high-frequency information was extracted from the signal.Therefore,the proposed method helped effectively extract high-frequency components of all wide-field electromagnetic data.展开更多
The Anjialing No. 1 Coal Mine in Shanxi Province, China, contains a complicated old goaf and an unknown water distribution that hold high potential for serious water hazards. Due to poor detection resolution, previous...The Anjialing No. 1 Coal Mine in Shanxi Province, China, contains a complicated old goaf and an unknown water distribution that hold high potential for serious water hazards. Due to poor detection resolution, previous attempts have failed to determine the scope of the old goal and the water distribution in the mine by separate use of various exploration methods such as seismic method, direct current resistivity, audio magnetotellurics, controlled-source audio-frequency magnetotellurics, and transient electromag-netics. To solve this difficult problem, a combination of the wide-field electromagnetic method and the flow field fitting method with three-dimensional resistivity data inversion was applied to determine the precise scope of the goal and the locations where water is present, and to identify the hydraulic con- nection between the water layers so as to provide reliable technical support for safe coal production. Reasonable results were achieved, with all these goals being met. As a result, a mining area of nearly 4 km^2 has been released for operation.展开更多
We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microsco...We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microscope with full suppression of the non-resonant background. This technique is based on the unique ability of recovering the phase of the generated CARS signal based on holographic recording. By capturing the phase distributions of the generated CARS field from the sample and from the environment under resonant illumination, we demonstrate the retrieval of imaginary components in the CARS microscope and achieve background free coherent Raman imaging.展开更多
We characterize the current crowding effect for microwave radiation on a chip surface based on a quantum wide-field microscope combining a wide-field reconstruction technique. A swept microwave signal with the power o...We characterize the current crowding effect for microwave radiation on a chip surface based on a quantum wide-field microscope combining a wide-field reconstruction technique. A swept microwave signal with the power of 0–30 d Bm is supplied to a dumbbell-shaped microstrip antenna, and the significant differences in microwave magnetic-field amplitudes attributed to the current crowding effect are experimentally observed in a 2.20 mm ×1.22 mm imaging area. The normalized microwave magnetic-field amplitude along the horizontal geometrical center of the image area further demonstrates the feasibility of the characterization of the current crowding effect. The experiments indicate the proposal can be qualified for the characterization of the anomalous area of the radio-frequency chip surface.展开更多
Metasurfaces have demonstrated unprecedented capabilities in manipulating light with ultrathin and flat architectures.Although great progress has been made in the metasurface designs and function demonstrations,most m...Metasurfaces have demonstrated unprecedented capabilities in manipulating light with ultrathin and flat architectures.Although great progress has been made in the metasurface designs and function demonstrations,most metalenses still only work as a substitution of conventional lenses in optical settings,whose integration advantage is rarely manifested.We propose a highly integrated imaging device with silicon metalenses directly mounted on a complementary metal oxide semiconductor image sensor,whose working distance is in hundreds of micrometers.The imaging performances including resolution,signal-to-noise ratio,and field of view(FOV)are investigated.Moreover,we develop a metalens array with polarization-multiplexed dual-phase design for a wide-field microscopic imaging.This approach remarkably expands the FOV without reducing the resolution,which promises a non-limited space-bandwidth product imaging for wide-field microscopy.As a result,we demonstrate a centimeter-scale prototype for microscopic imaging,showing uniqueness of meta-design for compact integration.展开更多
Microscopy is very important in research and industry,yet traditional optical microscopy suffers from the limited field-of-view(FOV)and depth-of-field(DOF)in high-resolution imaging.We demonstrate a simultaneous large...Microscopy is very important in research and industry,yet traditional optical microscopy suffers from the limited field-of-view(FOV)and depth-of-field(DOF)in high-resolution imaging.We demonstrate a simultaneous large FOV and DOF microscope imaging technology based on a chip-scale metalens device that is implemented by a SiNxmetalens array with a co-and cross-polarization multiplexed dual-phase design and dispersive spectrum zoom effect.A 4-mm×4-mm FOV is obtained with a resolution of 1.74μm and DOF of200μm within a wavelength range of 450 to 510 nm,which definitely exceeds the performance of traditional microscopes with the same resolution.Moreover,it is realized in a miniaturized compact prototype,showing an overall advantage for portable and convenient microscope technology.展开更多
High-speed ophthalmic optical coherence tomography(OCT)systems are of interest because they allow rapid,motion-free,and wide-field retinal imaging.Space-division multiplexing optical coherence tomography(SDMOCT)is a h...High-speed ophthalmic optical coherence tomography(OCT)systems are of interest because they allow rapid,motion-free,and wide-field retinal imaging.Space-division multiplexing optical coherence tomography(SDMOCT)is a high-speed imaging technology that takes advantage of the long coherence length of micro electro mechanical vertical cavity surface emitting laser sources to multiplex multiple images along a single imaging depth.We demonstrate wide-field retinal OCT imaging,acquired at an effective A-scan rate of 800,000 A-scans/s with volumetric images covering up to 12.5 mm×7.4 mm on the retina and captured in less than 1 s.A clinical feasibility study was conducted to compare the ophthalmic SDM-OCT with commercial OCT systems,illustrating the high-speed capability of SDM-OCT in a clinical setting.展开更多
Detecting and tracking multiple targets simultaneously for space-based surveillance requires multiple cameras,which leads to a large system volume and weight. To address this problem, we propose a wide-field detection...Detecting and tracking multiple targets simultaneously for space-based surveillance requires multiple cameras,which leads to a large system volume and weight. To address this problem, we propose a wide-field detection and tracking system using the segmented planar imaging detector for electro-optical reconnaissance. This study realizes two operating modes by changing the working paired lenslets and corresponding waveguide arrays: a detection mode and a tracking mode. A model system was simulated and evaluated using the peak signal-to-noise ratio method. The simulation results indicate that the detection and tracking system can realize wide-field detection and narrow-field, multi-target, high-resolution tracking without moving parts.展开更多
Spatial frequency shift(SFS) microscopy with evanescent wave illumination shows intriguing advantages, including large field of view(FOV), high speed, and good modularity. However, a missing band in the spatial freque...Spatial frequency shift(SFS) microscopy with evanescent wave illumination shows intriguing advantages, including large field of view(FOV), high speed, and good modularity. However, a missing band in the spatial frequency domain hampers the SFS superresolution microscopy from achieving resolution better than 3 folds of the Abbe diffraction limit. Here, we propose a novel tunable large-SFS microscopy, making the resolution improvement of a linear system no longer restricted by the detection numerical aperture(NA). The complete wide-range detection in the spatial frequency domain is realized by tuning the illumination spatial frequency actively and broadly through an angle modulation between the azimuthal propagating directions of two evanescent waves. The vertical spatial frequency is tuned via a sectional saturation effect, and the reconstructed depth information can be added to the lateral superresolution mask for 3D imaging. A lateral resolution of λ/9, and a vertical localization precision of ~λ/200(detection objective NA = 0.9) are realized with a gallium phosphide(GaP) waveguide. Its unlimited resolution enhancing capability is demonstrated by introducing a designed metamaterial chip with an unusual large refractive index. Besides the great resolution enhancement, this method shows better anti-noise capability than classical structured illumination microscopy without SFS tunability. This method is chip-compatible and can potentially provide a massproducible illumination chip module achieving the fast, large-FOV, and deep-subwavelength 3D nanoscopy.展开更多
Three-dimensional(3D)artificial compound eyes(ACEs)are helpful for wide field-o-fview imaging and sensing system applications.However,existing batch preparation methods are technically challenging.A bio-inspired,simpl...Three-dimensional(3D)artificial compound eyes(ACEs)are helpful for wide field-o-fview imaging and sensing system applications.However,existing batch preparation methods are technically challenging.A bio-inspired,simple,and high-efficiency batch preparation method is proposed,which involves bonding a sticky microlens array(MLA)polydimethylsiloxane(PDMS)film to an elastic PDMS hemisphere under pressure,followed by abrupt pressure removal.Characterizations from a scanning electron microscope and laser scanning confocal microscope show that 3D ACEs prepared using the proposed method have high numbers of uniformly distributed ommatidia with a high-quality finish.Furthermore,optical imaging investigations demonstrate that the proposed preparation method can achieve clear,distortionfree imaging with a wide field-of-view(up to 140.2°).展开更多
基金Supported by National Natural Science Foundation of China(No.81700884)Scientific Research Foundation of National Health and Health Commission(No.WKJ-ZJ-2037)+1 种基金Zhejiang Public Welfare Technology Application Project(No.LGF21H120005)Science and Technology Project of Wenzhou(No.Y20190649).
文摘AIM:To evaluate scleral buckling(SB)surgery using a noncontact wide-field viewing system and 23-gauge intraocular illumination for the treatment of rhegmatogenous retinal detachment in silicone oil(SO)-filled eyes.METHODS:Totally 9 patients(9 eyes)with retinal detachment in SO-filled eyes were retrospectively analyzed.All patients underwent non-contact wide-field viewing system-assisted buckling surgery with 23-gauge intraocular illumination.SO was removed at an appropriate time based on recovery.The patients were followed up for at least 3mo after SO removal.Retinal reattachment,complications,visual acuity and intraocular pressure(IOP)before and after surgery were observed.RESULTS:Patients were followed up for a mean of 8.22mo(3-22mo)after SO removal.All patients had retinal reattachment.At the final follow-up,visual acuity showed improvement for 8 patients,and no change for 1 patient.The IOP was high in 3 patients before surgery,but it stabilized after treatment;it was not affected in the other patients.None of the patients had infections,hemorrhage,anterior ischemia,or any other complication.CONCLUSION:This new non-contact wide-field viewing system-assisted SB surgery with 23-gauge intraocular illumination is effective and safe for retinal detachment in SO-filled eyes.
基金financially supported by the Thirteenth Five-Year-Plan Major Project "Marine Shale Gas Exploration and Evaluation over Laifengxianfeng and Hefeng Block"(No.2016ZX05034004-004)China Huadian Engineering Co.,LTD(No.CHEC-KJ-2014-Z10)
文摘In an effort to reduce the shale gas exploration risks and costs, we applied the wide-field electromagnetic method (WFEM), because of its strong anti-interference capability, high resolution, ability to conduct exploration at large depths, and high efficiency, to the Bayan Syncline in the South Huayuan block, Hunan Province. We collected rock samples and analyzed their resistivity and induced polarization (IP) and built A series of two-dimensional models for geological conditions to investigate the applicability of WFEM to different geological structures. We also analyzed the correlation between TOC of shale and the resistivity and IP ratio to determine the threshold for identifying target formations. We used WFEM to identify the underground structures and determine the distribution, depth, and thickness of the target strata. Resistivity, IP, and total organic carbon were used to evaluate the shale gas prospects and select favorable areas (sweet spots) for exploration and development. Subsequently, drilling in these areas proved the applicability of WFEM in shale gas exploration.
基金Project(42004056)supported by the National Natural Science Foundation of ChinaProject(ZR2020QD052)supported by the Natural Science Foundation of Shandong Province,ChinaProject(2019YFC0604902)supported by the National Key Research and Development Program of China。
文摘The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 Hz often exhibit upward warping in data,making geophysical inversion and interpretation challenging.The cumulative error of the crystal oscillator in signal transmission and acquisition contributes to an upturned apparent resistivity curve.To address this,a high-frequency information extraction method is proposed based on time-domain signal reconstruction,which helps to record a complete current data sequence;moreover,it helps estimate the crystal oscillator error for the transmitted signal.Considering the recorded error,a received signal was corrected using a set of reconstruction algorithms.After processing,the high-frequency component of the wide-field electromagnetic data was not upturned,while accurate high-frequency information was extracted from the signal.Therefore,the proposed method helped effectively extract high-frequency components of all wide-field electromagnetic data.
文摘The Anjialing No. 1 Coal Mine in Shanxi Province, China, contains a complicated old goaf and an unknown water distribution that hold high potential for serious water hazards. Due to poor detection resolution, previous attempts have failed to determine the scope of the old goal and the water distribution in the mine by separate use of various exploration methods such as seismic method, direct current resistivity, audio magnetotellurics, controlled-source audio-frequency magnetotellurics, and transient electromag-netics. To solve this difficult problem, a combination of the wide-field electromagnetic method and the flow field fitting method with three-dimensional resistivity data inversion was applied to determine the precise scope of the goal and the locations where water is present, and to identify the hydraulic con- nection between the water layers so as to provide reliable technical support for safe coal production. Reasonable results were achieved, with all these goals being met. As a result, a mining area of nearly 4 km^2 has been released for operation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174019,61322509 and 11121091the National Basic Research Program of China under Grant No 2013CB921904
文摘We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microscope with full suppression of the non-resonant background. This technique is based on the unique ability of recovering the phase of the generated CARS signal based on holographic recording. By capturing the phase distributions of the generated CARS field from the sample and from the environment under resonant illumination, we demonstrate the retrieval of imaginary components in the CARS microscope and achieve background free coherent Raman imaging.
基金supported by the National Natural Science Foundation of China (Nos.51821003,52275551,and 51922009)Shanxi Scholarship Council of China (No.2021–117)。
文摘We characterize the current crowding effect for microwave radiation on a chip surface based on a quantum wide-field microscope combining a wide-field reconstruction technique. A swept microwave signal with the power of 0–30 d Bm is supplied to a dumbbell-shaped microstrip antenna, and the significant differences in microwave magnetic-field amplitudes attributed to the current crowding effect are experimentally observed in a 2.20 mm ×1.22 mm imaging area. The normalized microwave magnetic-field amplitude along the horizontal geometrical center of the image area further demonstrates the feasibility of the characterization of the current crowding effect. The experiments indicate the proposal can be qualified for the characterization of the anomalous area of the radio-frequency chip surface.
基金The authors acknowledge the financial support from the National Key R&D Program of China(Nos.2016YFA0202103 and 2017YFA0303701)the National Natural Science Foundation of China(Nos.91850204 and 11674167)Tao Li thanks the Dengfeng Project B of Nanjing University for the support.The authors declare that they have no conflicts of interest.
文摘Metasurfaces have demonstrated unprecedented capabilities in manipulating light with ultrathin and flat architectures.Although great progress has been made in the metasurface designs and function demonstrations,most metalenses still only work as a substitution of conventional lenses in optical settings,whose integration advantage is rarely manifested.We propose a highly integrated imaging device with silicon metalenses directly mounted on a complementary metal oxide semiconductor image sensor,whose working distance is in hundreds of micrometers.The imaging performances including resolution,signal-to-noise ratio,and field of view(FOV)are investigated.Moreover,we develop a metalens array with polarization-multiplexed dual-phase design for a wide-field microscopic imaging.This approach remarkably expands the FOV without reducing the resolution,which promises a non-limited space-bandwidth product imaging for wide-field microscopy.As a result,we demonstrate a centimeter-scale prototype for microscopic imaging,showing uniqueness of meta-design for compact integration.
基金financial support from the National Key R&D Program of China(2017YFA0303701)the National Natural Science Foundation of China(91850204 and 12174186)support from the Dengfeng Project B of Nanjing University。
文摘Microscopy is very important in research and industry,yet traditional optical microscopy suffers from the limited field-of-view(FOV)and depth-of-field(DOF)in high-resolution imaging.We demonstrate a simultaneous large FOV and DOF microscope imaging technology based on a chip-scale metalens device that is implemented by a SiNxmetalens array with a co-and cross-polarization multiplexed dual-phase design and dispersive spectrum zoom effect.A 4-mm×4-mm FOV is obtained with a resolution of 1.74μm and DOF of200μm within a wavelength range of 450 to 510 nm,which definitely exceeds the performance of traditional microscopes with the same resolution.Moreover,it is realized in a miniaturized compact prototype,showing an overall advantage for portable and convenient microscope technology.
基金National Science Foundation(DBI-1455613,IIP-1623823,IIP-1640707)National Institutes of Health(R01-EB025209)。
文摘High-speed ophthalmic optical coherence tomography(OCT)systems are of interest because they allow rapid,motion-free,and wide-field retinal imaging.Space-division multiplexing optical coherence tomography(SDMOCT)is a high-speed imaging technology that takes advantage of the long coherence length of micro electro mechanical vertical cavity surface emitting laser sources to multiplex multiple images along a single imaging depth.We demonstrate wide-field retinal OCT imaging,acquired at an effective A-scan rate of 800,000 A-scans/s with volumetric images covering up to 12.5 mm×7.4 mm on the retina and captured in less than 1 s.A clinical feasibility study was conducted to compare the ophthalmic SDM-OCT with commercial OCT systems,illustrating the high-speed capability of SDM-OCT in a clinical setting.
基金supported by the Foundation of Youth Innovation Promotion Association,Chinese Academy of Sciences(No.20150192)
文摘Detecting and tracking multiple targets simultaneously for space-based surveillance requires multiple cameras,which leads to a large system volume and weight. To address this problem, we propose a wide-field detection and tracking system using the segmented planar imaging detector for electro-optical reconnaissance. This study realizes two operating modes by changing the working paired lenslets and corresponding waveguide arrays: a detection mode and a tracking mode. A model system was simulated and evaluated using the peak signal-to-noise ratio method. The simulation results indicate that the detection and tracking system can realize wide-field detection and narrow-field, multi-target, high-resolution tracking without moving parts.
基金the National Natural Science Foundation of China(Grant Nos.61735017,61822510,62020106002,61905097,and 62005250)the Zhejiang Provincial Natural Science of China(Grant No.LR17F050002)the Zhejiang University Education Foundation Global Partnership Fund.
文摘Spatial frequency shift(SFS) microscopy with evanescent wave illumination shows intriguing advantages, including large field of view(FOV), high speed, and good modularity. However, a missing band in the spatial frequency domain hampers the SFS superresolution microscopy from achieving resolution better than 3 folds of the Abbe diffraction limit. Here, we propose a novel tunable large-SFS microscopy, making the resolution improvement of a linear system no longer restricted by the detection numerical aperture(NA). The complete wide-range detection in the spatial frequency domain is realized by tuning the illumination spatial frequency actively and broadly through an angle modulation between the azimuthal propagating directions of two evanescent waves. The vertical spatial frequency is tuned via a sectional saturation effect, and the reconstructed depth information can be added to the lateral superresolution mask for 3D imaging. A lateral resolution of λ/9, and a vertical localization precision of ~λ/200(detection objective NA = 0.9) are realized with a gallium phosphide(GaP) waveguide. Its unlimited resolution enhancing capability is demonstrated by introducing a designed metamaterial chip with an unusual large refractive index. Besides the great resolution enhancement, this method shows better anti-noise capability than classical structured illumination microscopy without SFS tunability. This method is chip-compatible and can potentially provide a massproducible illumination chip module achieving the fast, large-FOV, and deep-subwavelength 3D nanoscopy.
基金This study was supported by the National Science Foundation of China(NSFC)(61805179,61905180)the Science Foundation of Zhejiang(LY19F050013).
文摘Three-dimensional(3D)artificial compound eyes(ACEs)are helpful for wide field-o-fview imaging and sensing system applications.However,existing batch preparation methods are technically challenging.A bio-inspired,simple,and high-efficiency batch preparation method is proposed,which involves bonding a sticky microlens array(MLA)polydimethylsiloxane(PDMS)film to an elastic PDMS hemisphere under pressure,followed by abrupt pressure removal.Characterizations from a scanning electron microscope and laser scanning confocal microscope show that 3D ACEs prepared using the proposed method have high numbers of uniformly distributed ommatidia with a high-quality finish.Furthermore,optical imaging investigations demonstrate that the proposed preparation method can achieve clear,distortionfree imaging with a wide field-of-view(up to 140.2°).