期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
Assessing Wind Erosion: A Review of Recent Measurement Techniques
1
作者 Hetti Hewage Suranjith Ariyasena Xuerui Gao +2 位作者 Sohail Ahmad Jiaqiong Zhang Xining Zhao 《Open Journal of Soil Science》 2024年第9期499-529,共31页
Wind erosion represents a formidable environmental challenge and has serious negative impacts on soil health and agricultural productivity, particularly in arid and semi-arid areas. The complex dynamics of wind erosio... Wind erosion represents a formidable environmental challenge and has serious negative impacts on soil health and agricultural productivity, particularly in arid and semi-arid areas. The complex dynamics of wind erosion make its large-scale monitoring and quantification a daunting task. To facilitate the monitoring and quantification of wind erosion, various scientific approaches and methods have been employed. These include sophisticated wind erosion equations and models, wind tunnel experiments, and the application of radionuclides. Additionally, researchers have assessed soil physicochemical properties, used anemometers for wind speed measurement, and deployed dust collectors for particle capture. Remote sensing technologies, wind erosion monitoring stations, and evaluations of wind barriers have also been utilized. Recently, the adoption of machine learning methods has gained popularity. Despite their value, each of these techniques has limitations in capturing the full spectrum of the wind erosion process. This paper examines these limitations and assesses the effectiveness of each method in the context of wind erosion studies. It also outlines directions for future research and suggests pathways that could enhance the understanding and management of wind erosion. 展开更多
关键词 wind erosion wind erosion Models Remote Sensing Machine Learning
下载PDF
Study on the Wind Erosion Resistance of Desert Soil Induced by Bacillus Megaterium
2
作者 Jingyuan Yin 《Journal of Architectural Research and Development》 2024年第6期63-69,共7页
With the intensification of global climate change and the worsening of land degradation,desertification has emerged as a significant global issue threatening ecosystems and human activities.The technique of Microbial ... With the intensification of global climate change and the worsening of land degradation,desertification has emerged as a significant global issue threatening ecosystems and human activities.The technique of Microbial Induced Calcium Carbonate Precipitation(MICP)has been widely applied in soil stabilization and engineering geology in recent years.This study conducts experiments using Bacillus megaterium to solidify desert sand via MICP,aiming to explore its feasibility as a novel ecological method for desert protection.Experimental results indicate that desert sand treated with MICP exhibits a significant enhancement in wind erosion resistance,providing a potential solution for desert management and land restoration. 展开更多
关键词 MICP Soil stabilization wind erosion resistance
下载PDF
Analysis on Status and Development Trend of Wind Erosion in Black Earth Region of Northeast China 被引量:2
3
作者 刘铁军 珊丹 +2 位作者 郭建英 高天明 赵显波 《Agricultural Science & Technology》 CAS 2011年第12期1925-1928,共4页
In this paper,areas and main factors of wind erosion in black earth region of Northeast China were systematically analyzed,as well as the development trend of wind erosion in black earth region of Northeast China.In a... In this paper,areas and main factors of wind erosion in black earth region of Northeast China were systematically analyzed,as well as the development trend of wind erosion in black earth region of Northeast China.In addition,development trend of wind erosion in black earth region of Northeast China was analyzed from the aspects of the geographic position,climatic change law in recent 40 years and effects of northeast sand land desertification on wind erosion in black earth region,which had provided references for the research and prevention of wind erosion in soil of black earth region of Northeast China. 展开更多
关键词 Black earth region of Northeast China wind erosion Water loss and soil erosion wind erosion factors
下载PDF
Research on wind erosion processes and controlling factors based on wind tunnel test and 3D laser scanning technology
4
作者 YAN Ping WANG Xiaoxu +2 位作者 ZHENG Shucheng WANG Yong LI Xiaomei 《Journal of Arid Land》 SCIE CSCD 2022年第9期1009-1021,共13页
The study of wind erosion processes is of great importance to the prevention and control of soil wind erosion.In this study,three structurally intact soil samples were collected from the steppe of Inner Mongolia Auton... The study of wind erosion processes is of great importance to the prevention and control of soil wind erosion.In this study,three structurally intact soil samples were collected from the steppe of Inner Mongolia Autonomous Region,China and placed in a wind tunnel where they were subjected to six different wind speeds(10,15,17,20,25,and 30 m/s)to simulate wind erosion in the wind tunnel.After each test,the soil surfaces were scanned by a 3D laser scanner to create a high-resolution Digital Elevation Model(DEM),and the changes in wind erosion mass and microtopography were quantified.Based on this,we performed further analysis of wind erosion-controlling factors.The study results showed that the average measurement error between the 3D laser scanning method and weighing method was 6.23%for the three undisturbed soil samples.With increasing wind speed,the microtopography on the undisturbed soil surface first became smooth,and then fine stripes and pits gradually developed.In the initial stage of wind erosion processes,the ability of the soil to resist wind erosion was mainly affected by the soil hardness.In the late stage of wind erosion processes,the degree of soil erosion was mainly affected by soil organic matter and CaCO_(3)content.The results of this study are expected to provide a theoretical basis for soil wind erosion control and promote the application of 3D laser scanners in wind erosion monitoring. 展开更多
关键词 3D laser scanning technology wind erosion wind tunnel test wind erosion depth MICROTOPOGRAPHY soil hardness
下载PDF
Interactive effects of wind speed,vegetation coverage and soil moisture in controlling wind erosion in a temperate desert steppe,Inner Mongolia of China 被引量:23
5
作者 MENG Zhongju DANG Xiaohong +3 位作者 GAO Yong REN Xiaomeng DING Yanlong WANG Meng 《Journal of Arid Land》 SCIE CSCD 2018年第4期534-547,共14页
The rapid desertification of grasslands in Inner Mongolia of China poses a significant ecological threaten to northern China. The combined effects of anthropogenic disturbances (e.g., overgrazing) and biophysical pr... The rapid desertification of grasslands in Inner Mongolia of China poses a significant ecological threaten to northern China. The combined effects of anthropogenic disturbances (e.g., overgrazing) and biophysical processes (e.g., soil erosion) have led to vegetation degradation and the consequent acceleration of regional desertification. Thus, mitigating the accelerated wind erosion, a cause and effect of grassland desertification, is critical for the sustainable management of grasslands. Here, a combination of mobile wind tunnel experiments and wind erosion model was used to explore the effects of different levels of vegetation coverage, soil moisture and wind speed on wind erosion at different positions of a slope inside an enclosed desert steppe in the Xilamuren grassland of Inner Mongolia. The results indicated a significant spatial difference in wind erosion intensities depending on the vegetation coverage, with a strong decreasing trend from the top to the base of the slope. Increasing vegetation coverage resulted in a rapid decrease in wind erosion as explained by a power function correlation. Vegetation coverage was found to be a dominant control on wind erosion by increasing the surface roughness and by lowering the threshold wind velocity for erosion. The critical vegetation coverage required for effectively controlling wind erosion was found to be higher than 60%. Further, the wind erosion rates were negatively correlated with surface soil moisture and the mass flux in aeolian sand transport increased with increasing wind speed. We developed a mathematical model of wind erosion based on the results of an orthogonal array design. The results from the model simulation indicated that the standardized regression coefficients of the main effects of the three factors (vegetation coverage, soil moisture and wind speed) on the mass flux in aeolian sand transport were in the following order: wind speed〉vegetation coverage〉soil moisture. These three factors had different levels of interactive effects on the mass flux in aeolian sand transport. Our results will improve the understanding of the interactive effects of wind speed, vegetation coverage and soil moisture in controlling wind erosion in desert steppes, and will be helpful for the design of desertification control programs in future. 展开更多
关键词 desert steppe wind erosion DESERTIFICATION aeolian process sand transport Xilamuren grassland
下载PDF
Characteristics of Wind Erosion and Deposition in Oasis-desert Ecotone in Southern Margin of Tarim Basin,China 被引量:7
6
作者 MAO Donglei LEI Jiaqiang +3 位作者 ZENG Fanjiang RAHMUTULLA Zaynulla WANG Cui ZHOU Jie 《Chinese Geographical Science》 SCIE CSCD 2014年第6期658-673,共16页
The oasis-desert ecotone is a fragile ecological zone that is affected both by oasis and desert conditions. To understand the impact of the differences in wind power, and the influence of wind erosion and deposition o... The oasis-desert ecotone is a fragile ecological zone that is affected both by oasis and desert conditions. To understand the impact of the differences in wind power, and the influence of wind erosion and deposition on the ecotone, meteorological data and con- temporaneous wind erosion and deposition data were collected on the southern margin of Tarim Basin with serious sand-blown hazards. The wind velocity, average wind velocity, sand drift potential (DP), resultant sand drift potential (RDP), and sand transportation rate decrease significantly and successively across four landscape types with increasing vegetation coverage (VC). Flat surfaces and areas of shifting sandy ground experience intense wind erosion with fast movement of mobile sand dunes; semi-fixed sand areas experience ex- tensive wind deposition but only slight wind erosion; and fixed sand areas experience only slight wind erosion and deposition. Volume of wind erosion on bare newly reclaimed farmland is up to 6.96 times that of bare shifting sandy ground. Wind erosion volume per unit area and VC follow an exponential function relationship in natural conditions, while wind deposition volume per unit area does not conform to any functions which has close relationship with vary topography and arrangement patterns of vegetation besides for VC. The results indicate that the volume of wind erosion has a close correlation with VC, and different types and distribution patterns of topog- raphy and vegetation also profoundly influence the wind deposition volume in the field, and underground water tables in different land- scape types control the plant community distribution. Keywords: wind erosion; wind deposition; oasis-desert ecotone; vegetation coverage (VC); topography; Cele County 展开更多
关键词 wind erosion wind deposition oasis-desert ecotone vegetation coverage (VC) TOPOGRAPHY Cele County
下载PDF
Impact factors of soil wind erosion in the center of Taklimakan Desert 被引量:8
7
作者 Qing HE XingHua YANG +1 位作者 Ali Mamtimin ShiHao TANG 《Journal of Arid Land》 SCIE 2011年第1期9-14,共6页
The development and progress of soil wind erosion are influenced by the factors of climate, terrain, soil and vegetation, etc. This paper, taking Tazhong region, a town in the centre of the Taklimakan Desert, as an ex... The development and progress of soil wind erosion are influenced by the factors of climate, terrain, soil and vegetation, etc. This paper, taking Tazhong region, a town in the centre of the Taklimakan Desert, as an example and using comparative and quantitative methods, discussed the effects of climate, surface roughness (including vegetation cover) and surface soil properties on soil wind erosion. The results showed that the climate factor index C of annual wind erosion is 28.3, while the maximum of C is 13.9 in summer and it is only 0.7 in winter. The value of C has a very good exponential relationship with the wind speed. In Tazhong region, the surface roughness height is relatively small with a mean of 6.32 x 10 Sm, which is in favor of soil wind erosion. The wind erosion is further enhanced by its sandy soil types, soil particle size, lacking of vegetation and low soil moisture content. The present situation of soil wind erosion is the result of concurrent effects of climate, vegetation and surface soil properties. 展开更多
关键词 Taklimakan Desert ROUGHNESS particle size soil moisture content soil wind erosion
下载PDF
Experimental study on mitigating wind erosion of calcareous desert sand using spray method for microbially induced calcium carbonate precipitation 被引量:6
8
作者 Monika Dagliya Neelima Satyam +1 位作者 Meghna Sharma Ankit Garg 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1556-1567,共12页
Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e.allergies a... Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e.allergies and respiratory diseases, due to the presence of harmful contaminants, bacteria, and pollens.The present study evaluates the feasibility of microbially induced calcium carbonate precipitation(MICP)technique to mitigate wind-induced erosion of calcareous desert sand(Thar desert of Rajasthan province in India). The temperature during biotreatment was kept at 36℃ to stimulate the average temperature of the Thar desert. The spray method was used for bioaugmentation of Sporosarcina(S.) pasteurii and further treatment using chemical solutions. The chemical solution of 0.25 pore volume was sprayed continuously up to 5 d, 10 d, 15 d, and 20 d, using two different concentration ratios of urea and calcium chloride dihydrate viz 2:1 and 1:1. The biotreated samples were subjected to erosion testing(in the wind tunnel) at different wind speeds of 10 m/s, 20 m/s, and 30 m/s. The unconfined compressive strength of the biocemented crust was measured using a pocket penetrometer. The variation in calcite precipitation and microstructure(including the presence of crystalline minerals) of untreated as well as biotreated sand samples were determined through calcimeter, scanning electron microscope(SEM), and energydispersive X-ray spectroscope(EDX). The results demonstrated that the erosion of untreated sand increases with an increase in wind speeds. When compared to untreated sand, a lower erosion was observed in all biocemented sand samples, irrespective of treatment condition and wind speed. It was observed that the sample treated with 1:1 cementation solution for up to 5 d, was found to effectively resist erosion at a wind speed of 10 m/s. Moreover, a significant erosion resistance was ascertained in15 d and 20 d treated samples at higher wind speeds. The calcite content percentage, thickness of crust,bulk density, and surface strength of biocemented sand were enhanced with the increase in treatment duration. The 1:1 concentration ratio of cementation solution was found effective in improving crust thickness and surface strength as compared to 2:1 concentration ratio of cementation solution. The calcite crystals formation was observed in SEM analysis and calcium peaks were observed in EDX analysis for biotreated sand. 展开更多
关键词 Control wind erosion Microbially induced calcium carbonate precipitation(MICP) Surface strength wind tunnel Calcite precipitation
下载PDF
Effects of sand sedimentation and wind erosion around sand barrier:Numerical simulation and wind tunnel test studies 被引量:5
9
作者 ZHANG Kai ZHANG Hai-long +3 位作者 DENG Yu-hui QU Jian-jun WANG Zheng-hui LI Sheng 《Journal of Mountain Science》 SCIE CSCD 2023年第4期962-978,共17页
Based on numerical simulations,this study highlights the sedimentation and erosion problems around a sand barrier through the relationship between the shear stress of the surface around the sand barrier and the critic... Based on numerical simulations,this study highlights the sedimentation and erosion problems around a sand barrier through the relationship between the shear stress of the surface around the sand barrier and the critical shear stress of sand grains.The numerical simulation results were verified using data measured by the wind tunnel test.The results showed that when the porosity was the same,the size and position of the vortex on the leeward side of the sand barrier were related to the inlet wind speed.As the wind speed increased,the vortex volume increased and the positions of the separation and reattachment points moved toward the leeward side.When the porosity of the sand barrier was 30%,the strength of the acceleration zone above the sand barrier was the highest,and the strength of the acceleration zone was negatively correlated with the porosity.Sand erosion and sedimentation distance were related to wind speed.With an increase in wind speed,the sand grain forward erosion or reverse erosion areas on the leeward side of the sand barrier gradually replaced the sedimentation area.With an increase in porosity,the sand sedimentation distance on the leeward side of the sand barrier gradually shortened,and the sand erosion area gradually disappeared.The sand sedimentation distance on the leeward side of the sand barrier with 30%porosity was the longest.The numerical simulation results were in good agreement with the wind tunnel test results.Based on the sand erosion and sedimentation results of the numerical simulation and wind tunnel test,when the porosity was 30%,the protection effect of the High Density Polyethylene(HDPE)board sand barrier was best. 展开更多
关键词 Sand sedimentation wind erosion Numerical simulation wind tunnel test
下载PDF
Vertical distribution of soil moisture and surface sandy soil wind erosion for different types of sand dune on the southeastern margin of the Mu Us Sandy Land,China 被引量:3
10
作者 ChaoFeng Fu JingBo Zhao +2 位作者 FanMin Mei TianJie Shao Jun Zuo 《Research in Cold and Arid Regions》 CSCD 2015年第6期675-686,共12页
Soil moisture is a critical state affecting a variety of land surface and subsurface processes. We report investigation results of the factors controlling vertical variation of soil moisture and sand transport rate of... Soil moisture is a critical state affecting a variety of land surface and subsurface processes. We report investigation results of the factors controlling vertical variation of soil moisture and sand transport rate of three types of dunes on the south- eastern margin of the Mu Us Sandy Land. Samples were taken from holes drilled to a depth of 4 m at different topographic sites on the dunes, and were analyzed for soil moisture, grain-size distribution and surface sediment discharge. The results show that: (1) The average soil moisture varies in different types of dunes, with the following sequences ordered from highest to lowest: in the shrubs-covered dunes and the trees-covered dunes the sequence is from inter-dunes lowland to windward slope to leeward slope. The average moisture in the bare-migratory sand dunes is sequenced from inter-dunes lowland to leeward slope to windward slope. (2) Vegetation form and surface coverage affect the range of soil moisture of different types of dunes in the same topographic position. The coefficient of variation of soil moisture for shrubs-covered dunes is higher than that of other types of dune. (3) The effect of shrubs on dune soil moisture is explained in terms of the greater ability of shrubs to trap fine-grained atmospheric dust and hold moisture. (4) The estimated sand transport rates over sand dunes with sparse shrubs are less than those over bare-migratory dunes or sand dunes with sparse trees, indicating that shrubs are more effective in inhibiting wind erosion in the sandy land area. 展开更多
关键词 soil moisture surface sandy soil wind erosion vegetation form micro-geomorphology sand dunes deserti-fication control
下载PDF
Numerical simulation on flow field,wind erosion and sand sedimentation patterns over railway subgrades 被引量:2
11
作者 ZHANG Kai ZHAO Li-ming +3 位作者 ZHANG Hai-long GUO Ao-jun YANG Bo LI Sheng 《Journal of Mountain Science》 SCIE CSCD 2022年第10期2968-2986,共19页
The railway subgrades in the sandy areas act as an obstacle interfering wind-blown sand,causing sand erosion and sedimentation,which can disrupt the safe and stable operation of the railway system.Most previous studie... The railway subgrades in the sandy areas act as an obstacle interfering wind-blown sand,causing sand erosion and sedimentation,which can disrupt the safe and stable operation of the railway system.Most previous studies mainly focus on the flow field around railway subgrades,however,the real erosion and sedimentation patterns are rarely studied.This study aims to analyze the erosion and sand sedimentation patterns of wind-blown sand over the subgrades with different heights and steel rails using the ratio of the wall shear stress to the critical value of erosion shear stress.Results show that wind erosion near the top of the upwind slope of the embankment and the shoulder on the upwind side are more severe,and the severity increases with an increase in the height of the embankment.With the increase of wind velocity,sand sedimentation both on the windward and leeside of the subgrade decreases and wind erosion by reverse flow occur.This study indicates that railways in sandy areas should be constructed with a moderate subgrade height(4 m). 展开更多
关键词 Numerical simulation Flow field wind erosion Sand sedimentation Railway subgrades Subgrade height
下载PDF
Spatio-temporal Variation of Wind Erosion in Inner Mongolia of China Between 2001 and 2010 被引量:11
12
作者 JIANG Ling XIAO Yi +1 位作者 ZHENG Hua OUYANG Zhiyun 《Chinese Geographical Science》 SCIE CSCD 2016年第2期155-164,共10页
Using Geographic Information System(GIS), based on wind speed, precipitation, topographic, soil, vegetation coverage and land use data of Inner Mongolia between 2001 and 2010, we applied the revised wind erosion equat... Using Geographic Information System(GIS), based on wind speed, precipitation, topographic, soil, vegetation coverage and land use data of Inner Mongolia between 2001 and 2010, we applied the revised wind erosion equation(RWEQ) model to simulate wind erosion intensity. The results showed that an area of approximately 47.8 × 10~4 km^2 experienced wind erosion in 2010, 23.2% of this erosion could be rated as severe, and 46.0% as moderate. Both the area and the intensity of wind erosion had decreased from 2001 to 2010, the wind erosion area reduced 10.1%, and wind erosion intensity decreased by 29.4%. Precipitation, wind speed, population size and urbanization in rural areas, and gross domestic product of primary industry(GDP1) were the main factors influencing wind erosion. Overall, these factors accounted for 88.8% of the wind erosion. These results indicated that the decrease in wind erosion over the past decade related to the increase in precipitation and the decrease in the number of windy days, while modest urban development and optimization of the economic structure might partially reduced the level of ecological pressure, highlighting the importance of human activities in controlling wind erosion. 展开更多
关键词 wind erosion revised wind erosion equation(RWEQ) driving factor
下载PDF
Application of a new wind driving force model in soil wind erosion area of northern China 被引量:2
13
作者 ZOU Xueyong LI Huiru +5 位作者 LIU Wei WANG Jingpu CHENG Hong WU Xiaoxu ZHANG Chunlai KANG Liqiang 《Journal of Arid Land》 SCIE CSCD 2020年第3期423-435,共13页
The shear stress generated by the wind on the land surface is the driving force that results in the wind erosion of the soil.It is an independent factor influencing soil wind erosion.The factors related to wind erosiv... The shear stress generated by the wind on the land surface is the driving force that results in the wind erosion of the soil.It is an independent factor influencing soil wind erosion.The factors related to wind erosivity,known as submodels,mainly include the weather factor(WF)in revised wind erosion equation(RWEQ),the erosion submodel(ES)in wind erosion prediction system(WEPS),as well as the drift potential(DP)in wind energy environmental assessment.However,the essential factors of WF and ES contain wind,soil characteristics and surface coverings,which therefore results in the interdependence between WF or ES and other factors(e.g.,soil erodible factor)in soil erosion models.Considering that DP is a relative indicator of the wind energy environment and does not have the value of expressing wind to induce shear stress on the surface.Therefore,a new factor is needed to express accurately wind erosivity.Based on the theoretical basis that the soil loss by wind erosion(Q)is proportional to the shear stress of the wind on the soil surface,a new model of wind driving force(WDF)was established,which expresses the potential capacity of wind to drive soil mass in per unit area and a period of time.Through the calculations in the typical area,the WDF,WF and DP are compared and analyzed from the theoretical basis,construction goal,problem-solving ability and typical area application;the spatial distribution of soil wind erosion intensity was concurrently compared with the spatial distributions of the WDF,WF and DP values in the typical area.The results indicate that the WDF is better to reflect the potential capacity of wind erosivity than WF and DP,and that the WDF model is a good model with universal applicability and can be logically incorporated into the soil wind erosion models. 展开更多
关键词 soil wind erosion wind driving force weather factor drift potential WDF(wind driving force)model
下载PDF
Soil Loss by Wind Erosion for Three Different Textured Soils Treated with Polyacrylamide and Crude Oil, Iraq 被引量:2
14
作者 Mushtak Talib Jabbar Faculty of Earth Resources, China University of Geosciences, Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2001年第2期113-116,共4页
The study is conducted to estimate the resistance of three soils (EL Hartha clay loam, Barjisiya sandy loam and the soil near the sand dunes in Sheikh sa'ad area sandy soil) to wind erosion, it is also aimed at g... The study is conducted to estimate the resistance of three soils (EL Hartha clay loam, Barjisiya sandy loam and the soil near the sand dunes in Sheikh sa'ad area sandy soil) to wind erosion, it is also aimed at getting full acquaintance of the relationship between the soil loss and the physical and chemical features of soil. In addition to the experiment of some soil stabilizers, polyacrylamide (PAM) concentration of 0.2 % and crude oil in concentration of 1 % in order to reduce or prevent wind erosion. The study shows that the amendment increased the dry soil aggregate >1 mm, mean weight diameter and soil moisture. It is clear that polyacrylamide had greater effect than that of crude oil, besides the great effectiveness of these amendments in decreasing bulk density and relations of soil loss. 展开更多
关键词 three location in Iraq STABILIZERS wind erosion soil physical properties.
下载PDF
An estimation method of soil wind erosion in Inner Mongolia of China based on geographic information system and remote sensing 被引量:6
15
作者 Yi ZHOU Bing GUO +1 位作者 ShiXin WANG HePing TAO 《Journal of Arid Land》 SCIE CSCD 2015年第3期304-317,共14页
Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been c... Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been conducted to estimate the intensity of large-scale wind erosion in Inner Mongolia,China.In the present study,a new model based on five factors including the number of snow cover days,soil erodibility,aridity,vegetation index and wind field intensity was developed to quantitatively estimate the amount of wind erosion.The results showed that wind erosion widely existed in Inner Mongolia.It covers an area of approximately 90×104 km2,accounting for 80% of the study region.During 1985–2011,wind erosion has aggravated over the entire region of Inner Mongolia,which was indicated by enlarged zones of erosion at severe,intensive and mild levels.In Inner Mongolia,a distinct spatial differentiation of wind erosion intensity was noted.The distribution of change intensity exhibited a downward trend that decreased from severe increase in the southwest to mild decrease in the northeast of the region.Zones occupied by barren land or sparse vegetation showed the most severe erosion,followed by land occupied by open shrubbery.Grasslands would have the most dramatic potential for changes in the future because these areas showed the largest fluctuation range of change intensity.In addition,a significantly negative relation was noted between change intensity and land slope.The relation between soil type and change intensity differed with the content of Ca CO3 and the surface composition of sandy,loamy and clayey soils with particle sizes of 0–1 cm.The results have certain significance for understanding the mechanism and change process of wind erosion that has occurred during the study period.Therefore,the present study can provide a scientific basis for the prevention and treatment of wind erosion in Inner Mongolia. 展开更多
关键词 wind erosion estimation model soil erodibility snow cover days aridity Inner Mongolia
下载PDF
A field investigation of wind erosion in the farming–pastoral ecotone of northern China using a portable wind tunnel: a case study in Yanchi County 被引量:1
16
作者 nan ling dong zhibao +5 位作者 xiao weiqiang li chao xiao nan song shaopeng xiao fengjun du lingtong 《Journal of Arid Land》 SCIE CSCD 2018年第1期27-38,共12页
The farming-pastoral ecotone in northern China is an extremely fr@e ecological zone where wind erosion of cropland and rangeland is easy to occur. In this study, using a portable wind tunnel as a wind simulator, we co... The farming-pastoral ecotone in northern China is an extremely fr@e ecological zone where wind erosion of cropland and rangeland is easy to occur. In this study, using a portable wind tunnel as a wind simulator, we conducted field simulated wind erosion experiments combined with laboratory analysis to investigate wind erosion of soils in trampled rangeland, non-tilled cropland and tilled cropland in Yanchi County, China. The results showed that compared with rangeland, the cropland had a higher soil water holding capacity and lower soil bulk density. The wind erosion rate of trampled rangeland was much higher than those of non-tilled cropland and tilled cropland. For cropland, the wind erosion rate of the soil after tilling was surprisingly less than that of the soil before tilling. With increasing of wind speed, the volume mean diameter of the eroded sediment collected by the trough in the wind tunnel generally increased while the clay and silt content decreased for all soils. The temporal variation in wind erosion of the trampled rangeland indicated that particle entrainment and dust emission decreased exponentially with erosion time through the successive wind erosion events due to the exhaustion of erodible particles. 展开更多
关键词 wind erosion rate wind tunnel eroded sediment soil particle size CROPLAND RANGELAND semi-arid region
下载PDF
Spatial distribution of wind erosion and its driving factors in China 被引量:1
17
作者 ZHANG Guo-ping~1, ZHANG Zeng-xiang~1, LIU Ji-yuan~2 (1. Institute of Remote Sensing Application, CAS, Beijing 100101, China 2. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China) 《Journal of Geographical Sciences》 SCIE CSCD 2001年第2期127-139,共13页
Based on remote sensing and geographic information system, the spatial distribution of nation-wide wind erosion is studied, and the 1∶100 000 national map of soil erosion by wind in China is made. Wind speed, soil dr... Based on remote sensing and geographic information system, the spatial distribution of nation-wide wind erosion is studied, and the 1∶100 000 national map of soil erosion by wind in China is made. Wind speed, soil dryness,NDVI, soil texture and the slope of land surface are the key factors to wind erosion. The relations between wind erosion and each factor are discussed. The method of principal component is used to pick up the information included in the five factors, and the wind erosion dynamic index (WEDI) is established. Its comparison with theRS/GIS derived data shows thatWEDI can reflect the potential capacity of soil erosion by wind. The dynamic process of the wind erosion is studied to reveal the distribution of the most intense wind erosion regions and the dominant factors in these regions. All these studies may greatly help the mitigation of wind erosion of soil. 展开更多
关键词 remote sensing geographic information system wind erosion of soil desertification control in China WEDI
下载PDF
Physical principle of wind erosion on sandy land surface in southern Beijing 被引量:1
18
作者 YUE Depeng LIU Yongbing +2 位作者 WANG diping LI Hailong CUI Weijia 《Journal of Geographical Sciences》 SCIE CSCD 2006年第4期487-494,共8页
The endangerment of aeolian sand is one of the most serious eco-environmental problems facing the southern suburb of Beijing. To control wind erosion is thus a matter of great urgency. This paper chooses typical land-... The endangerment of aeolian sand is one of the most serious eco-environmental problems facing the southern suburb of Beijing. To control wind erosion is thus a matter of great urgency. This paper chooses typical land-use types, i.e., cultivated land, wild grassland, drifting sandy land, etc. based on the fixed experimental observation and quantitative analysis, to conduct studies on the principles and characteristics of aeolian activities and measures controlling wind erosion in Daxing District of Beijing, The results show that: the near ground wind velocity yielded the logarithmic distribution with height; there are significant differences among different ground cover roughness; there are significant differences in the corresponding friction velocities caused by different properties of the underlying surface; there are differences in the threshold wind velocities speed in different land .use types; and there are minus exponential relations between the sediment discharge percentage and the height at a range of 0-20 cm air flow layer, Different land use types result in various degrees of coarse component. There is a significant exponential relation between sediment transport concentration and wind velocity. 展开更多
关键词 BEIJING wind erosion physical principle comprehensive tackle of Sandy land
下载PDF
Wind Tunnel Study of Multiple Factors Affecting Wind Erosion from Cropland in Agro-pastoral Area of Inner Mongolia,China 被引量:4
19
作者 HE Ji-jun CAI Qiang-guo CAO Wen-qing 《Journal of Mountain Science》 SCIE CSCD 2013年第1期68-74,共7页
In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture c... In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture content.The results showed that the modulus of soil wind erosion increases with an increase of wind speed.When the wind speed exceeds a critical value,the soil wind erosion suddenly increases.The critical speed for both kinds of soil is within the range of 7-8m·s-1.For a constant wind speed,the rate of soil wind erosion changes from increasing to falling at a critical soil slope.The critical slope of loam soil and sandy loam soil is 20° and 10°,respectively.Soil moisture content has a significant effect on wind erosion.Soil wind erosion of both soils decreases with an increase of the soil water content in two treatments,however,for treatment two,the increasing trends of wind erosion for two soils with the falling of soil water content are no significant,especially for the loam soil,and in the same soil water content,the wind erosion of two soils in treatment one is significantly higher than treatment two,this indicates reducing the disturbance of soil surface can evidently control the soil wind erosion. 展开更多
关键词 Agro-pastoral area Soil wind erosion Critical slope wind tunnel experiment
下载PDF
Theoretical expressions for soil particle detachment rate due to saltation bombardment in wind erosion 被引量:1
20
作者 XuYang Liu WenXiao Ning ZhenTing Wang 《Research in Cold and Arid Regions》 CSCD 2020年第4期234-241,共8页
Saltation bombardment is a dominate dust emission mechanism in wind erosion.For loose surfaces,splash entrainment has been well understood theoretically.However,the mass loss predictions of cohesive soils are generall... Saltation bombardment is a dominate dust emission mechanism in wind erosion.For loose surfaces,splash entrainment has been well understood theoretically.However,the mass loss predictions of cohesive soils are generally empirical in most wind erosion models.In this study,the soil particle detachment of a bare,smooth,dry,and uncrusted soil surface caused by saltation bombardment is modeled by means of classical mechanics.It is shown that detachment rate can be analytically expressed in terms of the kinetic energy or mass flux of saltating grains and several common mechanical parameters of soils,including Poisson's ratio,Young's modulus,cohesion and friction angle.The novel expressions can describe dust emission rate from cohesive surfaces and are helpful to quantify the anti-erodibility of soil.It is proposed that the mechanical properties of soils should be appropriately included in physically-based wind erosion models. 展开更多
关键词 wind erosion saltation bombardment cohesive soil anti-erodibility
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部