China has made many strides in large-scale development and centralized integration of wind power in recent years.The wind power penetration of some regions has reached a high level,which brings significant challenges ...China has made many strides in large-scale development and centralized integration of wind power in recent years.The wind power penetration of some regions has reached a high level,which brings significant challenges for power system dispatch due to the inherent variability and uncertainty of wind resources.To increase the dispatch capabilities of wind power generation,the spatial smoothing effect among adjacent wind farms needs to be fully utilized.This paper presents the concept of hierarchical coordinated dispatch for wind power based on a new concept of a virtual power generator.The spatial smoothing effect of wind power is analyzed first.Next,the virtual power generator method of a wind farm cluster is defined and established.Then,the hierarchical coordinated dispatch mode is compared with an existing wind power dispatch mode for individual wind farms.Finally,the proposed concept is implemented on a simulation case to demonstrate applicability and effectiveness.展开更多
The use of wind power is rapidly growing worldwide as a means of reducing carbon emissions for the energy sector.China has the world’s largest wind power installation and multiple large-scale wind farm clusters,each ...The use of wind power is rapidly growing worldwide as a means of reducing carbon emissions for the energy sector.China has the world’s largest wind power installation and multiple large-scale wind farm clusters,each comprising dozens of wind farms.For the planning and operation of the power system,it is important to understand the power fluctuation characteristics of wind farm clusters.Several studies demonstrate that the relative power fluctuation of a wind farm cluster is less than that of a single wind farm.Is this decreasing trend a random occurrence or does it have a regular pattern?This scientific question is addressed by investigating the mechanism of the cumulative effect of a wind farm cluster.In this study,a cumulative model is proposed by examining the spatiotemporal relationships of wind power variations and wind farm dispersion.Structural gain function and critical cumulative frequency are defined as the foundations to analytically describing the cumulative effect.By investigating the cumulative effect mechanism,the relationship between power fluctuation and spatiotemporal parameters of the wind farm cluster are revealed.The power fluctuation of a cluster can be predicted using the cumulative model even before it is completely built.The mechanism of the cumulative effect is validated on the basis of the data of two actual wind farm clusters.展开更多
海上风电场将朝深远海、集群化方向发展,多端柔性直流输电技术(voltage source converter based multi-terminal direct current,VSC-MTDC)对远距离、大规模海上风电接入系统表现出明显优势,因此有必要对海上风电场集群VSC-MTDC组网优...海上风电场将朝深远海、集群化方向发展,多端柔性直流输电技术(voltage source converter based multi-terminal direct current,VSC-MTDC)对远距离、大规模海上风电接入系统表现出明显优势,因此有必要对海上风电场集群VSC-MTDC组网优化进行研究。考虑到风电场集群出力的聚集效应会影响电气设备的容量配置,以及陆上电网的公共连接点(point of common coupling,PCC)电压稳定性对大规模风电接入容量的影响。文中推导了PCC点电压稳定性指标,并引入了“N+”原则对电气设备进行容量配置,提出一种计及“N+”原则和PCC点电压稳定性的海上风电场集群VSC-MTDC组网优化方法。采用改进的NSGAⅡ算法对海上风电场集群VSC-MTDC系统进行分析。算例结果表明,按“N+”原则进行容量配置可以更好提高收益,考虑PCC点电压稳定性虽然会增加投资成本,但能够提高PCC点电压稳定性。展开更多
集电系统拓扑优化是大型海上风电场规划建设的核心问题,本质上是一个涉及多约束、多目标的复杂混合整数优化问题。针对该问题,提出了一种基于大语言模型(large language model,LLM)辅助的大型海上风电场集电系统拓扑优化方法。首先,基...集电系统拓扑优化是大型海上风电场规划建设的核心问题,本质上是一个涉及多约束、多目标的复杂混合整数优化问题。针对该问题,提出了一种基于大语言模型(large language model,LLM)辅助的大型海上风电场集电系统拓扑优化方法。首先,基于大语言模型辅助对风电机组群进行聚类,通过链式提示法使LLM理解优化目标,并利用LLM将大型海上风电场分割为若干小型区域,以降低优化问题维度,提升求解速度和质量。然后,构建集电系统拓扑优化模型,基于混合整数线性规划求解器,获得海上风电场的最优集电系统拓扑设计方案。最后,利用1个含有75台风电机组的大型海上风电场系统进行方法性能验证,仿真结果表明:与传统优化技术相比,所提方法获得的聚类风机数量更加均衡,在考虑拓扑功率损耗的同时,生成的拓扑方案经济性最优。LLM在集电系统拓扑辅助优化中具有较高的有效性,为海上风电场集电系统拓扑设计优化提供了一种新思路。展开更多
基金supported in part by Chinese National Key Technologies R&D Program(2013BAA01B03)National Natural Science Foundation of China(51190101)industrial project of State Grid Corporation of China(No.NY71-13-043).
文摘China has made many strides in large-scale development and centralized integration of wind power in recent years.The wind power penetration of some regions has reached a high level,which brings significant challenges for power system dispatch due to the inherent variability and uncertainty of wind resources.To increase the dispatch capabilities of wind power generation,the spatial smoothing effect among adjacent wind farms needs to be fully utilized.This paper presents the concept of hierarchical coordinated dispatch for wind power based on a new concept of a virtual power generator.The spatial smoothing effect of wind power is analyzed first.Next,the virtual power generator method of a wind farm cluster is defined and established.Then,the hierarchical coordinated dispatch mode is compared with an existing wind power dispatch mode for individual wind farms.Finally,the proposed concept is implemented on a simulation case to demonstrate applicability and effectiveness.
基金This work was supported by the Smart Grid Joint Foundation Program of National Natural Science Foundation of China and State Grid Corporation of China(U1766204).
文摘The use of wind power is rapidly growing worldwide as a means of reducing carbon emissions for the energy sector.China has the world’s largest wind power installation and multiple large-scale wind farm clusters,each comprising dozens of wind farms.For the planning and operation of the power system,it is important to understand the power fluctuation characteristics of wind farm clusters.Several studies demonstrate that the relative power fluctuation of a wind farm cluster is less than that of a single wind farm.Is this decreasing trend a random occurrence or does it have a regular pattern?This scientific question is addressed by investigating the mechanism of the cumulative effect of a wind farm cluster.In this study,a cumulative model is proposed by examining the spatiotemporal relationships of wind power variations and wind farm dispersion.Structural gain function and critical cumulative frequency are defined as the foundations to analytically describing the cumulative effect.By investigating the cumulative effect mechanism,the relationship between power fluctuation and spatiotemporal parameters of the wind farm cluster are revealed.The power fluctuation of a cluster can be predicted using the cumulative model even before it is completely built.The mechanism of the cumulative effect is validated on the basis of the data of two actual wind farm clusters.
文摘海上风电场将朝深远海、集群化方向发展,多端柔性直流输电技术(voltage source converter based multi-terminal direct current,VSC-MTDC)对远距离、大规模海上风电接入系统表现出明显优势,因此有必要对海上风电场集群VSC-MTDC组网优化进行研究。考虑到风电场集群出力的聚集效应会影响电气设备的容量配置,以及陆上电网的公共连接点(point of common coupling,PCC)电压稳定性对大规模风电接入容量的影响。文中推导了PCC点电压稳定性指标,并引入了“N+”原则对电气设备进行容量配置,提出一种计及“N+”原则和PCC点电压稳定性的海上风电场集群VSC-MTDC组网优化方法。采用改进的NSGAⅡ算法对海上风电场集群VSC-MTDC系统进行分析。算例结果表明,按“N+”原则进行容量配置可以更好提高收益,考虑PCC点电压稳定性虽然会增加投资成本,但能够提高PCC点电压稳定性。
文摘集电系统拓扑优化是大型海上风电场规划建设的核心问题,本质上是一个涉及多约束、多目标的复杂混合整数优化问题。针对该问题,提出了一种基于大语言模型(large language model,LLM)辅助的大型海上风电场集电系统拓扑优化方法。首先,基于大语言模型辅助对风电机组群进行聚类,通过链式提示法使LLM理解优化目标,并利用LLM将大型海上风电场分割为若干小型区域,以降低优化问题维度,提升求解速度和质量。然后,构建集电系统拓扑优化模型,基于混合整数线性规划求解器,获得海上风电场的最优集电系统拓扑设计方案。最后,利用1个含有75台风电机组的大型海上风电场系统进行方法性能验证,仿真结果表明:与传统优化技术相比,所提方法获得的聚类风机数量更加均衡,在考虑拓扑功率损耗的同时,生成的拓扑方案经济性最优。LLM在集电系统拓扑辅助优化中具有较高的有效性,为海上风电场集电系统拓扑设计优化提供了一种新思路。