期刊文献+
共找到96,837篇文章
< 1 2 250 >
每页显示 20 50 100
Wind-induced vibration control of bridges using liquid column damper 被引量:3
1
作者 薛素铎 高赞明 徐幼麟 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第2期271-280,共10页
The potential application of tuned liquid column damper (TLCD) for suppressing wind-induced vibration of long span bridges is explored in this paper.By installing the TLCD in the bridge deck,a mathematical model for t... The potential application of tuned liquid column damper (TLCD) for suppressing wind-induced vibration of long span bridges is explored in this paper.By installing the TLCD in the bridge deck,a mathematical model for the bridge-TLCD system is established.The governing equations of the system are developed by considering all three displacement components of the deck in vertical,lateral,and torsional vibrations,in which the interactions between the bridge deck,the TLCD,the aeroelastic forces,and the aerodynamic forces are fully reflected.Both buffeting and flutter analyses are carried out.The buffeting analysis is performed through random vibration approach,and a critical flutter condition is identified from flutter analysis.A numerical example is presented to demonstrate the control effectiveness of the damper and it is shown that the TLCD can be an effective device for suppressing wind-induced vibration of long span bridges,either for reducing the buffeting response or increasing the critical flutter wind velocity of the bridge. 展开更多
关键词 long span bridge bridge deck wind-induced vibration vibration control FLUTTER BUFFETING tuned liquid column damper TLCD-bridge interaction mathematical model
下载PDF
Wind-Induced Vibration Control for Substation Frame on Viscous Damper 被引量:1
2
作者 Bingji Lan Kanghao Yan 《Computers, Materials & Continua》 SCIE EI 2020年第3期1303-1315,共13页
In order to study the wind-induced vibration control effect of the viscous damper on the large-scale substation frame,this paper takes the large-scale 1000 kV substation frame of western Inner Mongolia as an example.T... In order to study the wind-induced vibration control effect of the viscous damper on the large-scale substation frame,this paper takes the large-scale 1000 kV substation frame of western Inner Mongolia as an example.The time-history sample of pulsating wind load is simulated by harmonic superposition method based on Matlab software.6 kinds of viscous damper arrangement schemes have been designed,and SAP2000 finite element software is used for fine modeling and input wind speed time history load for nonlinear time history analysis.The displacement and acceleration of a typical node are the indicators of wind vibration control.The wind-induced vibration control effects of different schemes under different damping parameters have compared,and the damping parameters are analyzed for the optimal layout scheme.The results show that a viscous damper has installed in the lower layers of the substation;a viscous damper is placed between the ground column and the lattice beam.It is an integrated optimal solution.The wind-induced vibration control effect of the optimal scheme is sensitive to the viscous damper parameters,and the control effect does not increase linearly with the increase of the damping index and the damping coefficient.Corresponding to different damping indexes,the damping coefficient has a better range of values. 展开更多
关键词 Viscous damper wind-induced vibration control arrangement plan damping coefficient damping index
下载PDF
Wind-induced vibration control of long-span power transmission towers 被引量:1
3
作者 尹鹏 《Journal of Chongqing University》 CAS 2009年第2期112-124,共13页
We investigated wind-induced vibration control of long-span power transmission towers based on a case study of the Jingdongnan-Nanyang-Jingmen 1 000 kV transmission line project in P. R. China. The height of the cup t... We investigated wind-induced vibration control of long-span power transmission towers based on a case study of the Jingdongnan-Nanyang-Jingmen 1 000 kV transmission line project in P. R. China. The height of the cup tower is 181 m with a ground elevation of 47 m, which makes it a super flexible and wind-sensitive structure. Therefore, we should analyze the wind- resistant capacity of the system. We simulated applicable transverse fluctuating wind velocity field, developed a lead-rubber damper (LRD) for controlling wind-induced vibration of long-span transmission towers, deduced LRD calculation model parameter, and researched the best layout scheme and installation method of LRD. To calculate the wind-induced response of tower-line coupling system in seven layout schemes, we used the time history analysis method, and obtained the efficiencies of wind-induced vibration control. LRD deformation research proved that the damp of all LRDs was efficient under the designed wind velocity when they were laid along the edge of tower heads. We studied the controlling efficiency resulting fTom only applying stiffness to the tower polos where the dampers used to be laid under the designed wind velocity. The results show that the controlling efficiency was not ideal when the stiffness is increased on the poles only. Therefore, LRD should conlxibute to both the stiffness and damp of a structure to effectively reduce the dynamic response of a tower-line coupling system under strong winds. We also discussed the controlling efficiency of LRD under static winds. The results show that there was little difference between displacements derived by the finite clement time history method and those obtained by static wind method conducted by a design institute. This means the simulation on space relevant wind velocity field was accurate and reasonable. 展开更多
关键词 transmission towers lead-rubber damper wind-induced vibration control
下载PDF
Case Study of Wind-Induced Vibration of a Cooling Tower Under Typhoon Environment
4
作者 XING Yuan ZHAO Lin +1 位作者 CHEN Xu GE Yaojun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第1期108-119,共12页
As high-rise cooling towers are constantly emerging,wind effects on this kind of wind-sensitive structures have attracted more and more attention,especially in typhoon prone areas.Terrain Type B turbulent flow fields ... As high-rise cooling towers are constantly emerging,wind effects on this kind of wind-sensitive structures have attracted more and more attention,especially in typhoon prone areas.Terrain Type B turbulent flow fields under the normal wind and typhoon are simulated by active wind tunnel technology,and rigid-pressure-measurement model and aero-elastic-vibration-measurement model of a large cooling tower are built.The stagnation point,peak suction point,separation point and leeward point of the throat position shell are selected to analyze pressure coefficient,probability distribution,peak factor,power spectral density and dynamic amplification factor under normal wind and typhoon.It is clarified that there exists a significant non-Gaussian characteristic under typhoon condition,which also exists in structural response level.Resonance response ratio of the total response is higher during typhoon condition.The maximum value of dynamic amplification coefficient under typhoon field is up to 1.18 times over that under normal wind.The findings of this study are expected to be of interest and practical use to professional and researchers involved in the wind-resistant designs of super-large cooling towers in typhoon prone regions. 展开更多
关键词 cooling towers active wind tunnel non-Gaussian characteristic wind-induced vibration dynamic amplification coefficient
下载PDF
Wind-induced vibration of single-layer reticulated shell structures
5
作者 张建胜 武岳 沈世钊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第4期494-498,共5页
Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-w... Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-way grid single-layer cylindrical reticulated shell structures were performed with the random simulation method in time domain,including geometric parameters,structural parameters and aerodynamic parameters.Moreover,a wind-induced vibration coefficient was obtained,which can be a reference to the wind-resistance design of reticulated shell structures.The results indicate that the geometric parameters are the most important factor influencing wind-induced responses of the reticulated shell structures;the wind-induced vibration coeffi-cient is 3.0-3.2 for the spherical reticulated shell structures and that is 2.8-3.0 for the cylindrical reticula-ted shell structures,which shows that the wind-induced vibration coefficients of these two kinds of space frames are well-proportioned. 展开更多
关键词 reticulated shell structures wind-induced response random simulation method in time domain wind-induced vibration coefficient
下载PDF
Wind tunnel study on wind-induced vibration of middle pylon of Taizhou Bridge
6
作者 Ma Rujin Zhang Zhen Chen Airong 《Engineering Sciences》 EI 2012年第3期77-80,92,共5页
Full aero-elastic model tests are carried out to investigate wind-induced vibration of middle steel pylon of Taizhou Bridge. Model of the pylon under different construction periods is tested in both uniform and turbul... Full aero-elastic model tests are carried out to investigate wind-induced vibration of middle steel pylon of Taizhou Bridge. Model of the pylon under different construction periods is tested in both uniform and turbulent flow field. And the yaw angle of wind changes from transverse to longitudinal. Through full aero-elastic model testing, wind-induced vibration is checked, which includes vortex resonance, buffeting and galloping. Vortex resonance is observed and further studies are carried out by changing damping ratio. Based on wind tunnel testing results, wind-resistance of middle pylon is evaluated and some suggestions are given for middle pylon's construction. 展开更多
关键词 wind tunnel test aero-elastic modeL wind-induced vibration middle pylon
下载PDF
Calculation model and mechanism analysis for rain-wind-induced vibration of stay cable 被引量:1
7
作者 谢桂华 刘荣桂 +1 位作者 蔡东升 陈蓓 《Journal of Central South University》 SCIE EI CAS 2014年第3期1107-1114,共8页
Rain-wind-induced vibration of cable was studied based on previous research achievements. According to the quasi-steady assumption, the governing equation of vertical motion of the cable was derived and the criterion ... Rain-wind-induced vibration of cable was studied based on previous research achievements. According to the quasi-steady assumption, the governing equation of vertical motion of the cable was derived and the criterion for unstable motion and occurrence mechanism was studied. A comparison was performed between the oscillation responses of the stay cable obtained from calculated model and previous results. The results indicate that the analysis model can reflect the main characteristics of wind-rain-induced vibrationt of the cable which is amplitude- and velocity-restricted, and it is probably related with the periodic vortex shedding of wake flow. It is essential for the occurrence of rain-wind-induced or wind-induced vibration of cable that the derivative of lift coefficient with respect to transient angle of attack is less than zero. When rain-wind-induced vibration occurs, the aerodynamic force has a dual function for the vibration, and the maximum amplitude of stayed-cable is determined by the relative value of aerodynamic exciting force and aerodynamic damping force. 展开更多
关键词 rain-wind-induced vibration stay cable governing equation STABILITY vortex shedding
下载PDF
A Monitoring Method for Transmission Tower Foots Displacement Based on Wind-Induced Vibration Response
8
作者 Zhicheng Liu Long Zhao +2 位作者 Guanru Wen Peng Yuan Qiu Jin 《Structural Durability & Health Monitoring》 EI 2023年第6期541-555,共15页
The displacement of transmission tower feet can seriously affect the safe operation of the tower,and the accuracy of structural health monitoring methods is limited at the present stage.The application of deep learnin... The displacement of transmission tower feet can seriously affect the safe operation of the tower,and the accuracy of structural health monitoring methods is limited at the present stage.The application of deep learning method provides new ideas for structural health monitoring of towers,but the current amount of tower vibration fault data is restricted to provide adequate training data for Deep Learning(DL).In this paper,we propose a DT-DL based tower foot displacement monitoring method,which firstly simulates the wind-induced vibration response data of the tower under each fault condition by finite element method.Then the vibration signal visualization and Data Transfer(DT)are used to add tower fault data samples to solve the problem of insufficient actual data quantity.Subsequently,the dynamic response test is carried out under different tower fault states,and the tower fault monitoring is carried out by the DL method.Finally,the proposed method is compared with the traditional online monitoring method,and it is found that this method can significantly improve the rate of convergence and recognition accuracy in the recognition process.The results show that the method can effectively identify the tower foot displacement state,which can greatly reduce the accidents that occurred due to the tower foot displacement. 展开更多
关键词 Tower online monitoring wind-induced response continuous wavelet transform CNN multi sensor information fusion
下载PDF
Statistical extremes and peak factors in wind-induced vibration of tall buildings 被引量:4
9
作者 Ming-feng HUANG Chun-man CHAN +1 位作者 Wen-juan LOU Kenny Chung-Siu KWOK 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第1期18-32,共15页
In the structural design of tall buildings, peak factors have been widely used to predict mean extreme responses of tall buildings under wind excitations. Vanmarcke's peak factor is directly related to an explicit me... In the structural design of tall buildings, peak factors have been widely used to predict mean extreme responses of tall buildings under wind excitations. Vanmarcke's peak factor is directly related to an explicit measure of structural reliability against a Gaussian response process. We review the use of this factor for time-variant reliability design by comparing it to the conven- tional Davenport's peak factor. Based on the asymptotic theory of statistical extremes, a new closed-form peak factor, the so-called Gamma peak factor, can be obtained for a non-Gaussian resultant response characterized by a Rayleigh distribution process. Using the Gamma peak factor, a combined peak factor method was developed for predicting the expected maximum resultant responses of a building undergoing lateral-torsional vibration. The effects of the standard deviation ratio of two sway components and the inter-component correlation on the evaluation of peak resultant response were also investigated. Utilizing wind tunnel data derived from synchronous multi-pressure measurements, we carried out a wind-induced time history response analysis of the Common- wealth Advisory Aeronautical Research Council (CAARC) standard tall building to validate the applicability of the Gamma peak factor to the prediction of the peak resultant acceleration. Results from the building example indicated that the use of the Gamma peak factor enables accurate predictions to be made of the mean extreme resultant acceleration responses for dynamic service- ability performance design of modem tall buildings. 展开更多
关键词 Level-crossing rate (LCR) wind-induced vibration Mean extreme response Combined resultant process Peakfactor method
原文传递
Experimental study and finite element analysis of wind-induced vibration of modal car based on fluid-structure interaction 被引量:1
10
作者 TAO Li-li DU Guang-sheng +2 位作者 LIU Li-ping LIU Yong-hui SHAO Zhu-feng 《Journal of Hydrodynamics》 SCIE EI CSCD 2013年第1期118-124,共7页
The wind-induced vibration of the front windshield concerns the traffic safety and the aerodynamic characteristics of cars. In this paper, the numerical simulation and the experiment are combined to study the wind-ind... The wind-induced vibration of the front windshield concerns the traffic safety and the aerodynamic characteristics of cars. In this paper, the numerical simulation and the experiment are combined to study the wind-induced vibrations of the front windshield at different speeds of a van-body model bus. The Fluid-Structure Interaction (FSI) model is used for the finite element analysis of the vibration characteristics of the front windshield glass in the travelling process, and the wind-induced vibration response characteristics of the glass is obtained. A wind-tunnel experiment with an eddy current displacement sensor is carried out to study the deformation of the windshield at different wind speeds, and to verify the numerical simulation results. It is shown that the windshield of the model bus windshield undergoes a noticeable deformation as the speed changes, and from the deformation curve obtained, it is seen that in the accelerating process, the deformation of the glass increases as the speed increases, and with the speed being stablized, it also tends to a certain value. The results of this study can provide a scientific basis for the safety design of the windshield and the body. 展开更多
关键词 Fluid-Structure Interaction (FSI) wind-induced vibration numerical simulation
原文传递
Nanostructured ZnO/BiVO_(4)I-scheme heterojunctions for piezocatalytic degradation of organic dyes via harvesting ultrasonic vibration energy
11
作者 Yiling Li Xiaoyao Yu +2 位作者 Yingjie Zhou Yao Lin Ying Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期488-497,共10页
BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degradi... BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degrading Rhodamine B(RhB)unde mechanical vibrations,they exhibit superior activity compared to pure ZnO.The 40wt%ZnO/BiVO_(4)heterojunction composite displayed the highest activity,along with good stability and recyclability.The enhanced piezoelectric catalytic activity can be attributed to the form ation of an I-scheme heterojunction structure,which can effectively inhibit the electron-hole recombination.Furthermore,hole(h+)and superoxide radical(·O_(2)^(-))are proved to be the primary active species.Therefore,ZnO/BiVO_(4)stands as an efficient and stable piezoelectric catalyst with broad potential application in the field of environmental water pollution treatment. 展开更多
关键词 piezoelectric catalytic HETEROJUNCTION dye degradation ultrasonic vibration
下载PDF
Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems
12
作者 Sabrina Meddah Sid Ahmed Tadjer +3 位作者 Abdelhakim Idir Kong Fah Tee Mohamed Zinelabidine Doghmane Madjid Kidouche 《Structural Durability & Health Monitoring》 EI 2025年第1期77-103,共27页
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp... Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry. 展开更多
关键词 Rotary drilling systems mechanical vibrations structural durability dynamic interaction analysis field data analysis
下载PDF
Vibration safety assessment and parameter analysis of buried oil pipelines based on vibration isolation holes under strong surface impact
13
作者 Wang Guobo Mei Hua +4 位作者 Wang Jianning He Wei Yin Yao Zhai Yuxin Zuo Pengfei 《Earthquake Engineering and Engineering Vibration》 2025年第1期69-82,共14页
Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numeri... Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numerical parameter analysis is conducted on the key influencing factors of the vibration isolation hole(VIH),which include hole diameter,hole net spacing,hole depth,hole number,hole arrangement,and soil parameters.The results indicate that a smaller ratio of net spacing to hole diameter,the deeper the hole,the multi-row hole,the hole adoption of staggered arrangements,and better site soil conditions can enhance the efficiency of the VIH barrier.The average maximum vibration reduction efficiency within the vibration isolation area can reach 42.2%.The vibration safety of adjacent oil pipelines during a dynamic compaction projection was evaluated according to existing standards,and the measurement of the VIH was recommended to reduce excessive vibration.The single-row vibration isolation scheme and three-row staggered arrangement with the same hole parameters are suggested according to different cases.The research findings can serve as a reference for the vibration safety analysis,assessment,and control of adjacent underground facilities under the influence of strong surface impact loads. 展开更多
关键词 vibration isolation hole buried oil pipeline strong surface impact vibration velocity vibration safety assessment
下载PDF
Vibration response of Euler-Bernoulli-damped beam with appendages subjected to a moving mass
14
作者 Raed AlSaleh Ayman Nasir Nour Atieh 《Earthquake Engineering and Engineering Vibration》 2025年第1期223-234,共12页
This paper addresses the problem of a viscoelastic Euler-Bernoulli beam under the influence of a constant velocity moving mass and different types of appendages.Four types of boundary conditions are considered:pinned-... This paper addresses the problem of a viscoelastic Euler-Bernoulli beam under the influence of a constant velocity moving mass and different types of appendages.Four types of boundary conditions are considered:pinned-pinned,fixed-pinned,fixed-free(or cantilever),and fixed-fixed.Appendages considered include lumped masses,dampers,and springs.The modal decomposition method is employed to derive the equation of motion of the beam,for which an analytical closed-form expression of the dynamic vibration response is generated.The proposed method enables the study of the effect of a single appendage or a combination of the three types of appendages on the non-dimensional dynamic response of the beam.Numerical examples are presented to illustrate the effects of these appendages and compare them to the reference cases of a beam with no appendages.The results demonstrate the importance of considering these parameters in the design of structures.The proposed method is compared to other techniques in the literature and found to be advantageous due to its direct approach.The method also offers a versatile tool for investigating various configurations,aiding in engineering design and structural analysis for which establishing a precise prediction of beam vibrations is crucial. 展开更多
关键词 Euler-Bernoulli beam modal decomposition vibration response APPENDAGES
下载PDF
Analysis of vibration response characteristics of subway station and superstructure with hard combination
15
作者 Jia Jinglong Xu Weiping +1 位作者 Liu Xu Wei Yong 《Earthquake Engineering and Engineering Vibration》 2025年第1期271-281,共11页
The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with... The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with a hard combination,a numerical model is developed in this study.The indoor model test verified the accuracy of the numerical model.The influence laws of different hard combinations,train operating speeds and modes were studied and evaluated accordingly.The results show that the frequency corresponding to the peak vibration acceleration level of each floor of the superstructure property is concentrated at 10–20 Hz.The vibration response decreases in the high-frequency parts and increases in the lowfrequency parts with increasing distance from the source.Furthermore,the factors,such as train operating speed,operating mode,and hard combination type,will affect the vibration of the superstructure.The vibration response under the reversible operation of the train is greater than that of the unidirectional operation.The operating speed of the train is proportional to its vibration response.The vibration amplification area appears between the middle and the top of the superstructure at a higher train speed.Its vibration acceleration level will exceed the limit value of relevant regulations,and vibration-damping measures are required.Within the scope of application,this study provides some suggestions for constructing subway stations and superstructures. 展开更多
关键词 subway station SUPERSTRUCTURE vibration response hard combination
下载PDF
Wind Turbine Composite Blades:A Critical Review of Aeroelastic Modeling and Vibration Control
16
作者 Tingrui Liu Qinghu Cui Dan Xu 《Fluid Dynamics & Materials Processing》 2025年第1期1-36,共36页
With the gradual increase in the size and flexibility of composite blades in large wind turbines,problems related toaeroelastic instability and blade vibration are becoming increasingly more important.Given their impa... With the gradual increase in the size and flexibility of composite blades in large wind turbines,problems related toaeroelastic instability and blade vibration are becoming increasingly more important.Given their impact on thelifespan of wind turbines,these subjects have become important topics in turbine blade design.In this article,firstaspects related to the aeroelastic(structural and aerodynamic)modeling of large wind turbine blades are summarized.Then,two main methods for blade vibration control are outlined(passive control and active control),including the case of composite blades.Some improvement schemes are proposed accordingly,with a specialfocus on the industry’s outstanding suppression scheme for stall-induced nonlinear flutter and a new high-frequencymicro-vibration control scheme.Finally,future research directions are indicated based on existingresearch. 展开更多
关键词 Aeroelastic instability vibration control composite blade stall-induced nonlinear flutter high-frequency microvibration
下载PDF
Software Practicalization for Analysis of Wind-Induced Vibrations of Large Span Roof Structures 被引量:2
17
作者 张婀娜 杨维国 +1 位作者 甄伟 那向谦 《Tsinghua Science and Technology》 SCIE EI CAS 2005年第3期354-358,共5页
Wind loads are key considerations in the structural design of large-span structures since wind loads can be more important than earthquake loads, especially for large flexible structures. The analysis of wind loads on... Wind loads are key considerations in the structural design of large-span structures since wind loads can be more important than earthquake loads, especially for large flexible structures. The analysis of wind loads on large span roof structures (LSRS) requires large amounts of calculations. Due to the com- bined effects of horizontal and vertical winds, the wind-induced vibrations of LSRS are analyzed in this pa- per with the frequency domain method as the first application of method for the analysis of the wind re- sponse of LSRS. A program is developed to analyze the wind-induced vibrations due to a combination of wind vibration modes. The program, which predicts the wind vibration coefficient and the wind pressure act- ing on the LSRS, interfaces with other finite element software to facilitate analysis of wind loads in the de- sign of LSRS. The effectiveness and accuracy of the frequency domain method have been verified by nu- merical analyses of practical projects. 展开更多
关键词 wind vibration coefficient vertical wind frequency domain analysis vibration modes large span roof structures (LSRS)
原文传递
Wind-induced vibration control of Hefei TV tower with fluid viscous damper
18
作者 Zhiqiang ZHANG Aiqun LI +1 位作者 Jianping HE Jianlei WANG 《Frontiers of Structural and Civil Engineering》 SCIE EI 2009年第3期249-254,共6页
The Hefei TV tower is taken as an analytical case to examine the control method with a fluid viscous damper under wind load fluctuation.Firstly,according to the random vibration theory,the effect of fluctuating wind o... The Hefei TV tower is taken as an analytical case to examine the control method with a fluid viscous damper under wind load fluctuation.Firstly,according to the random vibration theory,the effect of fluctuating wind on the tower can be modeled as a 19-dimensional correlated random process,and the wind-induced vibration analysis of the tower subjected to dynamic wind load was further obtained.On the basis of the others'works,a bi-model dynamic model is proposed.Finally,a dynamic model is proposed to study the wind-induced vibration control analysis using viscous fluid dampers,and the optimal damping coefficient is obtained regarding the wind-induced response of the upper turret as optimization objectives.Analysis results show that the maximum peak response of the tower under dynamic wind load is far beyond the allowable range of the code.The wind-induced responses and the wind vibration input energy of the tower are decreased greatly by using a fluid viscous damper,and the peak acceleration responses of the upper turret is reduced by 43.4%. 展开更多
关键词 high-rise structure wind-induced response fluid viscous damper vibration control
原文传递
A Review on Vibration Control of Multiple Cylinders Subjected to FlowInduced Vibrations 被引量:1
19
作者 XU Wan-hai MA Ye-xuan 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期183-197,共15页
The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of ... The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of many cylindrical structures.Many active and passive control methods have been employed for the vibration suppression of an isolated cylinder undergoing vortex-induced vibrations(VIV).The FIV suppression methods are mainly extended to the multiple cylinders from the vibration control of the isolated cylinder.Due to the mutual interference between the multiple cylinders,the FIV mechanism is more complex than the VIV mechanism,which makes a great challenge for the FIV suppression.Some efforts have been devoted to vibration suppression of multiple cylinder systems undergoing FIV over the past two decades.The control methods,such as helical strakes,splitter plates,control rods and flexible sheets,are not always effective,depending on many influence factors,such as the spacing ratio,the arrangement geometrical shape,the flow velocity and the parameters of the vibration control devices.The FIV response,hydrodynamic features and wake patterns of the multiple cylinders equipped with vibration control devices are reviewed and summarized.The FIV suppression efficiency of the vibration control methods are analyzed and compared considering different influence factors.Further research on the FIV suppression of multiple cylinders is suggested to provide insight for the development of FIV control methods and promote engineering applications of FIV control methods. 展开更多
关键词 flow-induced vibration vibration control multiple cylinders TANDEM side-by-side staggered
下载PDF
Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink 被引量:4
20
作者 Hongyan CHEN Youcheng ZENG +2 位作者 Hu DING Siukai LAI Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期389-406,共18页
With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymm... With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymmetric tristable design is proposed to improve the vibration suppression efficiency of nonlinear energy sinks(NESs)for the first time.The proposed asymmetric tristable NES(ATNES)is composed of a pair of oblique springs and a vertical spring.Then,the three stable states,symmetric and asymmetric,can be achieved by the adjustment of the distance and stiffness asymmetry of the oblique springs.The governing equations of a linear oscillator(LO)coupled with the ATNES are derived.The approximate analytical solution to the coupled system is obtained by the harmonic balance method(HBM)and verified numerically.The vibration suppression efficiency of three types of ATNES is compared.The results show that the asymmetric design can improve the efficiency of vibration reduction through comparing the chaotic motion of the NES oscillator between asymmetric steady states.In addition,compared with the symmetrical tristable NES(TNES),the ATNES can effectively control smaller structural vibrations.In other words,the ATNES can effectively solve the threshold problem of TNES failure to weak excitation.Therefore,this paper reveals the vibration reduction mechanism of the ATNES,and provides a pathway to expand the effective excitation amplitude range of the NES. 展开更多
关键词 ASYMMETRIC nonlinear energy sink(NES) tristable vibration control po-tential barrier
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部