The dynamic behavior of a bridge-erecting machine, carrying a moving mass suspended by a wire rope, is investigated. The bridge-erecting machine is modelled by a simply supported uniform beam, and a massless equivale...The dynamic behavior of a bridge-erecting machine, carrying a moving mass suspended by a wire rope, is investigated. The bridge-erecting machine is modelled by a simply supported uniform beam, and a massless equivalent "spring-damper" system with an effective spring constant and an effective damping coefficient is used to model the moving mass suspended by the wire rope. The suddenly applied load is represented by a unitary Dirac Delta function. With the expansion method, a simple closed-form solution for the equation of motion with the replaced spring-damper-mass system is formulated. The characters of the rope are included in the derivation of the differential equation of motion for the system. The numerical examples show that the effects of the damping coefficient and the spring constant of the rope on the deflection have significant variations with the loading frequency. The effects of the damping coefficient and the spring constant under different beam lengths are also examined. The obtained results validate the presented approach, and provide significant references in the design process of bridgeerecting machines.展开更多
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte...The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.展开更多
Wire electric discharge machining(WEDM)process is used for precision manufacturing.The accuracy of machining is function of various parameters like current,voltage,wire speed,gap between wire and work piece,wire oscil...Wire electric discharge machining(WEDM)process is used for precision manufacturing.The accuracy of machining is function of various parameters like current,voltage,wire speed,gap between wire and work piece,wire oscillation,work material,wire material,etc.Once the process parameters are selected,it is important that the wire vibrations are less to obtain a good surface finish.Due to the importance of wire vibration in obtaining the surface finish,it is necessary to study the wire vibration.This paper discusses different models of wire vibration presented in the literature and simulates a closed form solution of wire vibration using MATLAB.The transverse vibration of wire is analysed as forced vibration of moving wire with excitation due to the sparks during machining.The resulting partial differential equation is solved by using finite difference method and vibration is also simulated in the finite element package‘ANSYS’.The wire behaviour is investigated under different operating conditions and results of the two methods are展开更多
The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for so...The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for some traction application so as to enhance torque density,improve efficiency,decrease vibration and weaken noise,etc.In this paper,based on the complex process craft and the electromagnetic performance,a comprehensive and systematical overview on the rectangular wire windings AC electrical machine is introduced.According to the process craft,the different type of the rectangular wire windings,the different inserting direction of the rectangular wire windings and the insulation structure have been compared and analyzed.Furthermore,the detailed rectangular wire windings connection is researched and the general design guideline has been concluded.Especially,the performance of rectangular wire windings AC machine has been presented,with emphasis on the measure of improving the bigger AC copper losses at the high speed condition due to the distinguished proximity and skin effects.Finally,the future trend of the rectangular wire windings AC electrical machine is prospected.展开更多
In this study,we improved the dispersibility of the stocks in the headbox of an inclined wire machine to produce a distinct paper,and analyzed some factors affecting paper formation in the production of multiply paper...In this study,we improved the dispersibility of the stocks in the headbox of an inclined wire machine to produce a distinct paper,and analyzed some factors affecting paper formation in the production of multiply paper.We used FLUENT6.3 to analyze the flow of the stocks in the headbox and select the structure of the diffusion part required for improving the dispersibility of fibers.Moreover,based on a simulation experiment,the optimal rational angle of the diffusion part(g)was found to be approximately 8°~10°,and it improved the paper formation in the case of usage of two plates.Using the equation for the formation of paper layers in the headbox of an inclined wire machine,we obtained a paper with the given basic weight by controlling the inclined angle of the wire(a),initial height of water(H),and concentration of the stocks.We considered the effect of a and H of the stocks in the headbox on the fiber distribution,and according to the results,a should be set as approximately 20°~30°and H should be maximally high.When producing multi-ply paper by a wire,the line pressure of the couch roll should be maintained at 1.8~2.0 kN/m to avoid the damage to the paper sheets.In addition,we found the optimal structure parameter of the dehydrated roll was as follows:hole ratio of approximately 30%of the dehydrated roll surface area,width of 1.5~2.0 mm,slot pitch of 5~6 mm,slot depth of 2~3 mm,and inclined angle of diffusion part(b)of 5°.展开更多
A machining platform of micro wire electrical discharge machining (MWEDM) was developed. The key technology of MWEDM mainly includes granite basement, micro energy pulse generator, detection and servo control system, ...A machining platform of micro wire electrical discharge machining (MWEDM) was developed. The key technology of MWEDM mainly includes granite basement, micro energy pulse generator, detection and servo control system, constant tension winding system and V-block guide wire mechanism. Utilizing micro wire electrode with 30μm in diameter, the MWEDM can machine the micro slot with the minimum size of 38μm wide, and the surface roughness is smaller than 0.1μm, the machining precision is less than 0.5μm, the white layer is no more than 2μm with main cut. All kinds of complex micro parts, such as micro gear, micro bearing bracket and micro shaped holes, can also be machined by using this platform.展开更多
The influence of different technological parameter on material remove rate and surface quality of ZrO2 ceramics is studied using the cutting machining method of electroplate diamond wire saw with ultrasonic vibration....The influence of different technological parameter on material remove rate and surface quality of ZrO2 ceramics is studied using the cutting machining method of electroplate diamond wire saw with ultrasonic vibration.Experimental results show that,compared with the same experiment condition without ultrasonic vibration,this cutting method has the advantages of high material remove rate,good surface quality,little brokenness and so on.展开更多
Ti Ni shape memory alloys(SMAs) have been normally used as the competent elements in large part of the industries due to outstanding properties, such as super elasticity and shape memory effects. However, traditiona...Ti Ni shape memory alloys(SMAs) have been normally used as the competent elements in large part of the industries due to outstanding properties, such as super elasticity and shape memory effects. However, traditional machining of SMAs is quite complex due to these properties. Hence, the wire electric discharge machining(WEDM) characteristics of Ti Ni SMA was studied. The experiments were planned as per L27 orthogonal array to minimize the experiments, each experiment was performed under different conditions of pulse duration, pulse off time, servo voltage, flushing pressure and wire speed. A multi-response optimization method using Taguchi design with utility concept has been proposed for simultaneous optimization. The analysis of means(ANOM) and analysis of variance(ANOVA) on signal to noise(S/N) ratio were performed for determining the optimal parameter levels. Taguchi analysis reveals that a combination of 1 μs pulse duration, 3.8 μs pulse off time, 40 V servo voltage, 1.8×105 Pa flushing pressure and 8 m/min wire speed is beneficial for simultaneously maximizing the material removal rate(MRR) and minimizing the surface roughness. The optimization results of WEDM of Ti Ni SMA also indicate that pulse duration significantly affects the material removal rate and surface roughness. The discharged craters, micro cracks and recast layer were observed on the machined surface at large pulse duration.展开更多
The machine tool is one of the new products developed and produced by the Shanghai No.8 Machine Tool Plant. It adopts a lift adjustable wiretrame and molybdenum filament tensioning mechanism with large cutting thickne...The machine tool is one of the new products developed and produced by the Shanghai No.8 Machine Tool Plant. It adopts a lift adjustable wiretrame and molybdenum filament tensioning mechanism with large cutting thickness and high machining precision. It is equipped with an advanced IBM-PC 386 microcomputer-controlled system, with strong performance and CRT display. Man/展开更多
The present work discusses the experimental study on wire-cut electric discharge machining of hot-pressed boron carbide.The effects of machining parameters,such as pulse on time(TON),peak current(IP),flushing pressure...The present work discusses the experimental study on wire-cut electric discharge machining of hot-pressed boron carbide.The effects of machining parameters,such as pulse on time(TON),peak current(IP),flushing pressure(FP) and spark voltage on material removal rate(MRR)and surface roughness(R_a) of the material,have been evaluated.These parameters are found to have an effect on the surface integrity of boron carbide machined samples.Wear rate of brass wire increases with rise in input energy in machining of hot-pressed boron carbide.The surfaces of machined samples were examined using scanning electron microscopy(SEM).The influence of machining parameters on mechanism of MRR and R_a was described.It was demonstrated that higher TON and peak current deteriorate the surface finish of boron carbide samples and result in the formation of large craters,debris and micro cracks.The generation of spherical particles was noticed and it was attributed to surface tension of molten material.Macro-ridges were also observed on the surface due to protrusion of molten material at higher discharge energy levels.展开更多
In the verification of wire electrical discharge machining (EDM), the motion and the performance of the wire-EDM system are analyzed. The maximum inclining angle of the wire is calculated. The relevant judgment meth...In the verification of wire electrical discharge machining (EDM), the motion and the performance of the wire-EDM system are analyzed. The maximum inclining angle of the wire is calculated. The relevant judgment methods are used for the collision between the wire, the fixture, and the machining table. In the wire-EDM simulation, the generated solid model can he used to investigate programming results and to check the machining accuracy. The generation algorithm for the solid model in the simulation is solved based on Boolean operations. The wire swept volume for each cutting step is united to form the entire wire swept volume. Through Boolean subtraction between the stock model and the entire wire swept volume, the solid model in the wire-EDM simulation is generated. The method is also suitable for the wire path intersection occurred in cutting cone-shaped models. Finally, experiments are given to prove the method.展开更多
Shape memory alloys (SMAs) are the developing advanced materials due to their versatile specific properties such as pseudoelasticity, shape memory effect (SME), biocompatibility, high specific strength, high corro...Shape memory alloys (SMAs) are the developing advanced materials due to their versatile specific properties such as pseudoelasticity, shape memory effect (SME), biocompatibility, high specific strength, high corrosion resistance, high wear resistance and high anti-fatigue property. Therefore, the SMAs are used in many applications such as aerospace, medical and automobile. However, the conventional machining of SMAs causes serious tool wear, time consuming and less dimensional deformity due to severe strain hardening and pseudoelasticity. These materials can be machined using non-conventional methods such as laser machining, water jet machining (WJM) and electrochemical machining (ECM), but these processes are limited to complexity and mechanical properties of the component. Electrical discharge machining (EDM) and wire EDM (WEDM) show high capability to machine SMAs of complex shapes with precise dimensions. The aim of this work is to present the consolidated references on the machining of SMAs using EDM and WEDM and subsequently identify the research gaps. In support to these research gaps, this work has also evolved the future research directions.展开更多
Based on impulse and vibration machining theories,a mathematical model of cutting force for the electroplated diamond ultrasonic wire saw was established using superposition principle.The differences between the cutti...Based on impulse and vibration machining theories,a mathematical model of cutting force for the electroplated diamond ultrasonic wire saw was established using superposition principle.The differences between the cutting forces with and without ultrasonic effect were analyzed theoretically and experimentally.The results indicate that the cutting force of diamond wire increases along with the spindle speed decrease and the lateral pressure increase.The force in ultrasonic vibration cutting is about 20% to 30% less than that in conventional cutting.Also,the cutting trajectory of single diamond grit in sawing process is simulated,and the reason that the ultrasonic vibration can reduce the cutting force is explained further.展开更多
The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studi...The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studied.Eight experiments were carried out in a wire EDM machine by varying pulse on time and wire tension.It is found that the material removal rate increases with the increase of pulse on time though the wire tension does not affect the material removal rate.It seems that the higher wire tension facilitates steady machining process,which generates low wear in wire electrode and better surface finish.The surface roughness does not change notably with the variation of pulse on time.The appearance of the machined surfaces is very similar under all the machining conditions.The machined surface contains solidified molten material,splash of materials and blisters.The increase of the pulse on time increases the wear of wire electrode due to the increase of heat input.The wear of wire electrode generates tapered slot which has higher kerf width at top side than that at bottom side.The higher electrode wear introduces higher taper.展开更多
A deformation measurement method of interframe displacement was proposed in this paper. By online monitoring the shape di- mensions of both the deformation zone and its adjacent zone by machine vision, the initial and...A deformation measurement method of interframe displacement was proposed in this paper. By online monitoring the shape di- mensions of both the deformation zone and its adjacent zone by machine vision, the initial and terminative positions of deformation were dynamically identified during dieless drawing, and the global monitoring and online closed-loop control of the deformation zone were achieved. The dieless drawing process was systematically carried out on NiTi shape memory alloy wires. It is shown that the deformation measurement method of interframe displacement can track the axial displacement of the wires, but this cannot be achieved by traditional machine vision. The initial and terminative positions of deformation can be accurately identified by this method. The proposed rectifying control technology can effectively decrease the wire diameter fluctuation during dieless drawing, that is, the standard deviation of the wire diameter fluctuation could be decreased fi'om 0.30 to 0.08 mm after three passes of dieless drawing, indicating that the control system has a good rectifying ability.展开更多
Caterpillar construction machines play an important part in many fields such as hydraulic and electric engineering, the construction of highway, for its particular of structure. The walking system of caterpillar const...Caterpillar construction machines play an important part in many fields such as hydraulic and electric engineering, the construction of highway, for its particular of structure. The walking system of caterpillar construction machines is always under the condition of three-body abrasive wear. The abrasive wear of walking system is very severe, which always results in damages of components or structures of walking system of caterpillar construction machines. It is very important to repair the walking system by cladding technique. The abrasive wear properties of four kinds coatings produced by the shielded flux-cored wire surfacing for the repair of the damaged components of walking system of caterpillar construction machines have been studied experimentally on an MLS-23 type wet sand rubber wheel abrasive tester. The surfaces morphologies of the abrasively worn specimens and their microstructures are investigated by transmitting electron microscopy (TEM) after wear testing. Results show that the wear mechanism of cladding metals of the flux-cored wire No.1 and the No.2 is micro-cutting while that of the No.3 and the No.4 is micro-ploughing. The four kinds of flux-cored wire coatings present great potential applications for the repairing of caterpillar construction machines in the Three Gorges Engineering.展开更多
Grains in the slurry can be brought into cutting zone by steel wire with a certain speed to achieve the purpose of removing the workpiece material in the free abrasive wire sawing machining. Because its own of multi- ...Grains in the slurry can be brought into cutting zone by steel wire with a certain speed to achieve the purpose of removing the workpiece material in the free abrasive wire sawing machining. Because its own of multi- strands characteristics, we use it to replace the steel wire to do slicing experiment. In this paper, multi-strands wire is made by seven metal wires and has many grooves on its surface. Compared with steel wire, it can carry more grains into cutting zone which is conducive to improving the slicing efficiency. We do some comparative slic- ing experimcnts by applying multi-strands wire (~b0.25 mm) and steel wire (~b0.25 mm) to cut optical glass (K9). The results show that slicing efficiency and the surface roughness of the workpiece sliced by using multi-strands wire are better than that by using steel wire. but the kerf width of the former is wider than that of the latter in the same experimental conditions.展开更多
基金supported by the National Natural Science Foundation of China(No.11472179)
文摘The dynamic behavior of a bridge-erecting machine, carrying a moving mass suspended by a wire rope, is investigated. The bridge-erecting machine is modelled by a simply supported uniform beam, and a massless equivalent "spring-damper" system with an effective spring constant and an effective damping coefficient is used to model the moving mass suspended by the wire rope. The suddenly applied load is represented by a unitary Dirac Delta function. With the expansion method, a simple closed-form solution for the equation of motion with the replaced spring-damper-mass system is formulated. The characters of the rope are included in the derivation of the differential equation of motion for the system. The numerical examples show that the effects of the damping coefficient and the spring constant of the rope on the deflection have significant variations with the loading frequency. The effects of the damping coefficient and the spring constant under different beam lengths are also examined. The obtained results validate the presented approach, and provide significant references in the design process of bridgeerecting machines.
基金Provincial Key Laboratory of Precision and Micro-Manufacturing Technology of Jiangsu,China(No.Z0601-052-02).
文摘The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.
文摘Wire electric discharge machining(WEDM)process is used for precision manufacturing.The accuracy of machining is function of various parameters like current,voltage,wire speed,gap between wire and work piece,wire oscillation,work material,wire material,etc.Once the process parameters are selected,it is important that the wire vibrations are less to obtain a good surface finish.Due to the importance of wire vibration in obtaining the surface finish,it is necessary to study the wire vibration.This paper discusses different models of wire vibration presented in the literature and simulates a closed form solution of wire vibration using MATLAB.The transverse vibration of wire is analysed as forced vibration of moving wire with excitation due to the sparks during machining.The resulting partial differential equation is solved by using finite difference method and vibration is also simulated in the finite element package‘ANSYS’.The wire behaviour is investigated under different operating conditions and results of the two methods are
基金This work was supported by the National Nature Science Foundation of China(NSFC)under Project 51607079.
文摘The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for some traction application so as to enhance torque density,improve efficiency,decrease vibration and weaken noise,etc.In this paper,based on the complex process craft and the electromagnetic performance,a comprehensive and systematical overview on the rectangular wire windings AC electrical machine is introduced.According to the process craft,the different type of the rectangular wire windings,the different inserting direction of the rectangular wire windings and the insulation structure have been compared and analyzed.Furthermore,the detailed rectangular wire windings connection is researched and the general design guideline has been concluded.Especially,the performance of rectangular wire windings AC machine has been presented,with emphasis on the measure of improving the bigger AC copper losses at the high speed condition due to the distinguished proximity and skin effects.Finally,the future trend of the rectangular wire windings AC electrical machine is prospected.
文摘In this study,we improved the dispersibility of the stocks in the headbox of an inclined wire machine to produce a distinct paper,and analyzed some factors affecting paper formation in the production of multiply paper.We used FLUENT6.3 to analyze the flow of the stocks in the headbox and select the structure of the diffusion part required for improving the dispersibility of fibers.Moreover,based on a simulation experiment,the optimal rational angle of the diffusion part(g)was found to be approximately 8°~10°,and it improved the paper formation in the case of usage of two plates.Using the equation for the formation of paper layers in the headbox of an inclined wire machine,we obtained a paper with the given basic weight by controlling the inclined angle of the wire(a),initial height of water(H),and concentration of the stocks.We considered the effect of a and H of the stocks in the headbox on the fiber distribution,and according to the results,a should be set as approximately 20°~30°and H should be maximally high.When producing multi-ply paper by a wire,the line pressure of the couch roll should be maintained at 1.8~2.0 kN/m to avoid the damage to the paper sheets.In addition,we found the optimal structure parameter of the dehydrated roll was as follows:hole ratio of approximately 30%of the dehydrated roll surface area,width of 1.5~2.0 mm,slot pitch of 5~6 mm,slot depth of 2~3 mm,and inclined angle of diffusion part(b)of 5°.
文摘A machining platform of micro wire electrical discharge machining (MWEDM) was developed. The key technology of MWEDM mainly includes granite basement, micro energy pulse generator, detection and servo control system, constant tension winding system and V-block guide wire mechanism. Utilizing micro wire electrode with 30μm in diameter, the MWEDM can machine the micro slot with the minimum size of 38μm wide, and the surface roughness is smaller than 0.1μm, the machining precision is less than 0.5μm, the white layer is no more than 2μm with main cut. All kinds of complex micro parts, such as micro gear, micro bearing bracket and micro shaped holes, can also be machined by using this platform.
基金Sponsored by Department of Education University Research Project of Liaoning Province(LN566)
文摘The influence of different technological parameter on material remove rate and surface quality of ZrO2 ceramics is studied using the cutting machining method of electroplate diamond wire saw with ultrasonic vibration.Experimental results show that,compared with the same experiment condition without ultrasonic vibration,this cutting method has the advantages of high material remove rate,good surface quality,little brokenness and so on.
文摘Ti Ni shape memory alloys(SMAs) have been normally used as the competent elements in large part of the industries due to outstanding properties, such as super elasticity and shape memory effects. However, traditional machining of SMAs is quite complex due to these properties. Hence, the wire electric discharge machining(WEDM) characteristics of Ti Ni SMA was studied. The experiments were planned as per L27 orthogonal array to minimize the experiments, each experiment was performed under different conditions of pulse duration, pulse off time, servo voltage, flushing pressure and wire speed. A multi-response optimization method using Taguchi design with utility concept has been proposed for simultaneous optimization. The analysis of means(ANOM) and analysis of variance(ANOVA) on signal to noise(S/N) ratio were performed for determining the optimal parameter levels. Taguchi analysis reveals that a combination of 1 μs pulse duration, 3.8 μs pulse off time, 40 V servo voltage, 1.8×105 Pa flushing pressure and 8 m/min wire speed is beneficial for simultaneously maximizing the material removal rate(MRR) and minimizing the surface roughness. The optimization results of WEDM of Ti Ni SMA also indicate that pulse duration significantly affects the material removal rate and surface roughness. The discharged craters, micro cracks and recast layer were observed on the machined surface at large pulse duration.
文摘The machine tool is one of the new products developed and produced by the Shanghai No.8 Machine Tool Plant. It adopts a lift adjustable wiretrame and molybdenum filament tensioning mechanism with large cutting thickness and high machining precision. It is equipped with an advanced IBM-PC 386 microcomputer-controlled system, with strong performance and CRT display. Man/
文摘The present work discusses the experimental study on wire-cut electric discharge machining of hot-pressed boron carbide.The effects of machining parameters,such as pulse on time(TON),peak current(IP),flushing pressure(FP) and spark voltage on material removal rate(MRR)and surface roughness(R_a) of the material,have been evaluated.These parameters are found to have an effect on the surface integrity of boron carbide machined samples.Wear rate of brass wire increases with rise in input energy in machining of hot-pressed boron carbide.The surfaces of machined samples were examined using scanning electron microscopy(SEM).The influence of machining parameters on mechanism of MRR and R_a was described.It was demonstrated that higher TON and peak current deteriorate the surface finish of boron carbide samples and result in the formation of large craters,debris and micro cracks.The generation of spherical particles was noticed and it was attributed to surface tension of molten material.Macro-ridges were also observed on the surface due to protrusion of molten material at higher discharge energy levels.
文摘In the verification of wire electrical discharge machining (EDM), the motion and the performance of the wire-EDM system are analyzed. The maximum inclining angle of the wire is calculated. The relevant judgment methods are used for the collision between the wire, the fixture, and the machining table. In the wire-EDM simulation, the generated solid model can he used to investigate programming results and to check the machining accuracy. The generation algorithm for the solid model in the simulation is solved based on Boolean operations. The wire swept volume for each cutting step is united to form the entire wire swept volume. Through Boolean subtraction between the stock model and the entire wire swept volume, the solid model in the wire-EDM simulation is generated. The method is also suitable for the wire path intersection occurred in cutting cone-shaped models. Finally, experiments are given to prove the method.
文摘Shape memory alloys (SMAs) are the developing advanced materials due to their versatile specific properties such as pseudoelasticity, shape memory effect (SME), biocompatibility, high specific strength, high corrosion resistance, high wear resistance and high anti-fatigue property. Therefore, the SMAs are used in many applications such as aerospace, medical and automobile. However, the conventional machining of SMAs causes serious tool wear, time consuming and less dimensional deformity due to severe strain hardening and pseudoelasticity. These materials can be machined using non-conventional methods such as laser machining, water jet machining (WJM) and electrochemical machining (ECM), but these processes are limited to complexity and mechanical properties of the component. Electrical discharge machining (EDM) and wire EDM (WEDM) show high capability to machine SMAs of complex shapes with precise dimensions. The aim of this work is to present the consolidated references on the machining of SMAs using EDM and WEDM and subsequently identify the research gaps. In support to these research gaps, this work has also evolved the future research directions.
基金Sponsored by Liaoning Innovation Team Fundation(2008T164)
文摘Based on impulse and vibration machining theories,a mathematical model of cutting force for the electroplated diamond ultrasonic wire saw was established using superposition principle.The differences between the cutting forces with and without ultrasonic effect were analyzed theoretically and experimentally.The results indicate that the cutting force of diamond wire increases along with the spindle speed decrease and the lateral pressure increase.The force in ultrasonic vibration cutting is about 20% to 30% less than that in conventional cutting.Also,the cutting trajectory of single diamond grit in sawing process is simulated,and the reason that the ultrasonic vibration can reduce the cutting force is explained further.
文摘The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studied.Eight experiments were carried out in a wire EDM machine by varying pulse on time and wire tension.It is found that the material removal rate increases with the increase of pulse on time though the wire tension does not affect the material removal rate.It seems that the higher wire tension facilitates steady machining process,which generates low wear in wire electrode and better surface finish.The surface roughness does not change notably with the variation of pulse on time.The appearance of the machined surfaces is very similar under all the machining conditions.The machined surface contains solidified molten material,splash of materials and blisters.The increase of the pulse on time increases the wear of wire electrode due to the increase of heat input.The wear of wire electrode generates tapered slot which has higher kerf width at top side than that at bottom side.The higher electrode wear introduces higher taper.
基金financially supported by the National Basic Research Priorities Program of China (No.2011CB606300)the National Natural Science Foundation of China (Nos.50634010 and 50674008)+1 种基金the Program for New Century Excellent Talents in Chinese Universities(No.NCET-06-0083)the Universities Fundamental Research Foundation of the Ministry of Education, China (No.FRF-TP-10-002B)
文摘A deformation measurement method of interframe displacement was proposed in this paper. By online monitoring the shape di- mensions of both the deformation zone and its adjacent zone by machine vision, the initial and terminative positions of deformation were dynamically identified during dieless drawing, and the global monitoring and online closed-loop control of the deformation zone were achieved. The dieless drawing process was systematically carried out on NiTi shape memory alloy wires. It is shown that the deformation measurement method of interframe displacement can track the axial displacement of the wires, but this cannot be achieved by traditional machine vision. The initial and terminative positions of deformation can be accurately identified by this method. The proposed rectifying control technology can effectively decrease the wire diameter fluctuation during dieless drawing, that is, the standard deviation of the wire diameter fluctuation could be decreased fi'om 0.30 to 0.08 mm after three passes of dieless drawing, indicating that the control system has a good rectifying ability.
文摘Caterpillar construction machines play an important part in many fields such as hydraulic and electric engineering, the construction of highway, for its particular of structure. The walking system of caterpillar construction machines is always under the condition of three-body abrasive wear. The abrasive wear of walking system is very severe, which always results in damages of components or structures of walking system of caterpillar construction machines. It is very important to repair the walking system by cladding technique. The abrasive wear properties of four kinds coatings produced by the shielded flux-cored wire surfacing for the repair of the damaged components of walking system of caterpillar construction machines have been studied experimentally on an MLS-23 type wet sand rubber wheel abrasive tester. The surfaces morphologies of the abrasively worn specimens and their microstructures are investigated by transmitting electron microscopy (TEM) after wear testing. Results show that the wear mechanism of cladding metals of the flux-cored wire No.1 and the No.2 is micro-cutting while that of the No.3 and the No.4 is micro-ploughing. The four kinds of flux-cored wire coatings present great potential applications for the repairing of caterpillar construction machines in the Three Gorges Engineering.
基金National Natural Science Foundation of China(No.51075367)Natural Science Foundation of Zhejiang Province(No.Y1090931)
文摘Grains in the slurry can be brought into cutting zone by steel wire with a certain speed to achieve the purpose of removing the workpiece material in the free abrasive wire sawing machining. Because its own of multi- strands characteristics, we use it to replace the steel wire to do slicing experiment. In this paper, multi-strands wire is made by seven metal wires and has many grooves on its surface. Compared with steel wire, it can carry more grains into cutting zone which is conducive to improving the slicing efficiency. We do some comparative slic- ing experimcnts by applying multi-strands wire (~b0.25 mm) and steel wire (~b0.25 mm) to cut optical glass (K9). The results show that slicing efficiency and the surface roughness of the workpiece sliced by using multi-strands wire are better than that by using steel wire. but the kerf width of the former is wider than that of the latter in the same experimental conditions.