The grain growth behavior of spray-formed Al-70wt.%Si alloys was studied in the semi-solid state. The specimens were isothermally heat-treated at various temperatures between the solidus and liquidus of Al-Si alloys a...The grain growth behavior of spray-formed Al-70wt.%Si alloys was studied in the semi-solid state. The specimens were isothermally heat-treated at various temperatures between the solidus and liquidus of Al-Si alloys and then quenched in water. The microstructure of reheated specimens was characterized using optical and scanning electron microscopies. The isothermal holding experiment was carried out to investigate grain growth behavior as a function of holding time and temperature in the semi-solid state. The coarsening mechanism and the effect of porosity on microstructure were also studied.展开更多
In the present study, the tested hypereutectic Al-21wt.%Si alloys were prepared by modifying the melt using different proportions of P and Ce, and then applying T6 heat treatment. The modification effects and mechanis...In the present study, the tested hypereutectic Al-21wt.%Si alloys were prepared by modifying the melt using different proportions of P and Ce, and then applying T6 heat treatment. The modification effects and mechanism of P+Ce complex modifier on the Si phase of hypereutectic Al-21wt.%Si alloy were studied, and the aging precipitation behavior after modification was characterized by means of tensile strength measurement, OM, SEM and TEM analysis. The results show that the massive primary silicon phase particles are significantly refined after modification, while the needle-like eutectic silicon crystals become fibrous and short. It was found that the mechanism of phosphorus modification on the primary silicon can be attributed to heterogeneous nucleation of AlP, while the modification mechanism of Ce can be explained by adsorbing-twinning theory. In the aged microstructure of the modified hypereutectic Al-21wt.%Si alloy, there existed some strengthening phases such as AI4Cu9, Al2Cu, AlCu3, and Al57Mn12. The P+Ce complex modifier not only affected the size of primary silicon and eutectic silicon, but also the aging behavior of alloys under the heat treatment process. When Al-21wt.%Si alloy was modified using 0.08%wt.P + 0.6wt.% Ce, the aging precipitates were dispersed uniformly in the alloy, and its mechanical properties at room and elevated temperatures are optimized (Rm = 287.6 MPa at RT, Rm = 210 MPa at 300 ℃).展开更多
To explore the corrosion properties of magnesium alloys, the chemical behavior of a high strength Mg_(97)Zn_(1)Y_(2)-1 wt.%Si C alloy in different corrosion environments was studied. Three solutions of 0.2 mol·L^...To explore the corrosion properties of magnesium alloys, the chemical behavior of a high strength Mg_(97)Zn_(1)Y_(2)-1 wt.%Si C alloy in different corrosion environments was studied. Three solutions of 0.2 mol·L^(-1) NaCl, Na_(2)SO_(4) and NaNO_(3) were selected as corrosion solutions. The microstructures, corrosion rate, corrosion potential, and mechanism were investigated qualitatively and quantitatively by optical microscopy(OM), scanning electron microscopy(SEM), immersion testing experiment, and electrochemical test. Microstructure observation shows that the Mg_(97) Zn_(1)Y_(2)-1 wt.%Si C alloy is composed of α-Mg matrix, LPSO(Mg_(12) ZnY) phase and Si C phase. The hydrogen evolution and electrochemical test results reflect that the Mg_(97)Zn_(1)Y_(2)-1 wt.%SiC in 0.2 mol·L^(-1) Na Cl solution has the fastest corrosion rate, followed by Na_(2)SO_(4) and NaNO_(3) solutions, and that the charge-transfer resistance presents the contrary trend and decreases in turn.展开更多
Hypereutectic Al-40 wt.%Si alloys were fabricated by the combination of gas atomization and spark plasma sintering(SPS) technology. The effects of holding time(15-60 min) on phase composition, microstructure, density,...Hypereutectic Al-40 wt.%Si alloys were fabricated by the combination of gas atomization and spark plasma sintering(SPS) technology. The effects of holding time(15-60 min) on phase composition, microstructure, density,mechanical properties of Al-Si alloys were investigated by XRD, SEM, a hydrostatic balance, an automatic micro hardness tester and a universal tensile testing machine. The results showed that homogenous distribution of ultrafine primary Si and high density of alloys can be obtained at holding time of 30 min. Compared with primary Si(3.7 μm)fabricated by gas atomization, the average size increased from 5.17 to 7.72 μm with the increase of holding time during SPS process. Overall, the relative density, maximum tensile strength and Vickers hardness of 94.9%, 205 MPa and HV;196.86 were achieved at holding time of 30 min, respectively. In addition, all the diffraction peaks were corresponded to α-Al or β-Si and no other phase can be detected. Finally, the densification process of SPS was also discussed.展开更多
The high efficiency of Ce addition in grain refinement ofδ-ferrite in a cast Fe–4 wt.%Si alloy was verified.In order to further understand the solute effect of Ce on the grain refinement of δ-ferrite,the convention...The high efficiency of Ce addition in grain refinement ofδ-ferrite in a cast Fe–4 wt.%Si alloy was verified.In order to further understand the solute effect of Ce on the grain refinement of δ-ferrite,the conventional directional solidification technique,which enabled to freeze the solid–liquid interface to room temperature,was used to investigate the interfacial morphology and solute redistribution in the liquid at the front of the interface,together with thermodynamic calculation of the equilibrium partition coefficients of Ce and Si in Fe–4 wt.%Si–Ce system using the Equilib module and the FsStel database in FactSage software system.Metallographic examination using a laser scanning confocal microscope showed a transition of the solid–liquid interface from planar to cellular in the Fe–4 wt.%Si alloy after adding 0.0260 wt.%Ce during the directional solidification experiment.Further,electron probe microanalysis revealed an enhanced segregation of Si solute in the liquid at the front of the solid–liquid interface due to the Ce addition.This solute segregation is considered as the cause of planar to cellular interface transition,which resulted from the creation of constitutional supercooling zone.Thermodynamic calculation indicated that Ce also segregated at the solid–liquid interface and the Ce addition had negligible effect on the equilibrium partition coefficient of Si.It is reasonable to consider that the contribution of Ce to the grain refinement ofδ-ferrite in the cast Fe–4 wt.%Si alloy as a solute was marginal.展开更多
Warm deformation behavior of the Fe-6.5wt.%Si alloy was studied by isothermal compression in the temperature range of 300-700℃.The results show that the influence of the ordered phases on the flow stress gradually we...Warm deformation behavior of the Fe-6.5wt.%Si alloy was studied by isothermal compression in the temperature range of 300-700℃.The results show that the influence of the ordered phases on the flow stress gradually weakens with increasing deformation temperature.The flow stress of the furnace-cooled sample with the high degree of order at 300℃is higher than that of the quenched sample with the low degree of order,and the flow stresses of both samples are nearly the same at 500-700℃.The hardness difference between two samples deformed at 500℃gradually decreases with increasing strain,accompanying with a reduction in hardness of the furnace-cooled sample,which indicates a work-softening behavior.The analyses of dislocation configurations and ordered structure suggest that the dynamic recovery and deformation-induced disorder result in the work-softening behavior.An appropriate deformation temperature window for improving the formability of the Fe-6.5wt.%Si alloy is about 500-600℃.展开更多
Large-scale Fe-6.5 wt.%Si ingot with excellent formability is required for a pilot line producing sheets through hot/cold rolling.The variation of the as-cast microstructure,ordered structures and the formability of t...Large-scale Fe-6.5 wt.%Si ingot with excellent formability is required for a pilot line producing sheets through hot/cold rolling.The variation of the as-cast microstructure,ordered structures and the formability of the Fe-6.5 wt.%Si alloy ingots with the cooling rate during casting was investigated.Under air-cooling condition,inhomogeneous microstructures with a low proportion of equiaxed grains were formed,but the formation of ordered structures was partially inhibited,especially DO3.Homogeneous microstructures with a high proportion of equiaxed grains were observed under the condition of furnace cooling,but the ordered structures were fully generated,and the degree of order is high.It is generally believed that high degree of order is the main factor of brittleness,but the homogeneous microstructure(including grain morphology and size)of the furnace-cooled sample helps to improve the formability.The influence of these two aspects on formability is contradictory.Therefore,the formability is tested through the flow stress during the compression and the microstructure after the compression.The results show that the furnace-cooled sample has better formability.For large-scale ingots,the control of as-cast microstructure becomes more significant than the control of degree of order.Slow cooling during casting is important for the large-scale ingots to have good formability meeting the requirements of direct hot rolling.展开更多
Tensile behavior of an equiaxed-grained Fe-6.5 wt.%Si alloy,which was deformed intoφ6 mm bar by hot rotary swaging,was investigated at various temperatures(300–400℃)and stretching rates(0.42–1 mm/min).The results ...Tensile behavior of an equiaxed-grained Fe-6.5 wt.%Si alloy,which was deformed intoφ6 mm bar by hot rotary swaging,was investigated at various temperatures(300–400℃)and stretching rates(0.42–1 mm/min).The results revealed an enhancement in the intermediate-temperature tensile ductility after heat treatments.Deformation twinning was found in the equiaxed-grained Fe-6.5 wt.%Si bars during the tensile test,and heat treatments can enhance the deformation twinning.More twins can be observed in the necking areas than other regions.The high Schmid factor values above 0.4 after heat treatments demonstrated that deformation twinning can easily occur in the equiaxed-grained Fe-6.5 wt.%Si alloy.Higher deformation temperatures,higher strain rates,and larger degree of order suppressed the formation of deformation twinning,while the grain sizes had little effect on the deformation twinning.The twinning stress of the Fe-6.5 wt.%Si alloy increased with the increasing grain size,which did not agree with the Hall–Petch type relationship.The deformation twinning resulted in the improved ductility of the Fe-6.5 wt.%Si alloy.展开更多
During the last two decades,many algorithms were developed to simulate the solidification process for different casting methods like ingots,continuous casting of steel and the direct chill cast of aluminum.Experiments...During the last two decades,many algorithms were developed to simulate the solidification process for different casting methods like ingots,continuous casting of steel and the direct chill cast of aluminum.Experiments performed under exactly known conditions and with the detailed knowledge of meso-and micro-structures are required for validating these simulations.The aim of this paper is to give a data set to validate these simulations.Unidirectional solidification experiments were performed by using a rotating magnetic field(RMF)to study the effect of melt flow on the solidified micro-and meso-structure of the Al-7wt.%Si binary alloy.The first and the third 1/3 parts of samples were solidified without magnetic stirring,and the second(middle)1/3 part was solidified by using magnetic stirring.The magnetic induction was 10 m T,the temperature gradient was~7 K/mm,and the sample movement velocity was 0.1 mm/s.On the longitudinal section of the sample,the columnar/equiaxed transition(CET),the equiaxed/columnar transition(ECT),the secondary dendrite arm spacing(SDAS),and the macrosegregation(concentration distribution and the amount of eutectic)were investigated.The primary dendrite arm spacing(PDAS)and the grain structure were studied on the cross-section after color etching.展开更多
The formation and aggravation of hydrogen damage in Fe-3 wt-% Si alloy during cathodic charging Were studied by means of Lange transmission X-ray topography.Results showed that hydrogen damage did not form in the spe...The formation and aggravation of hydrogen damage in Fe-3 wt-% Si alloy during cathodic charging Were studied by means of Lange transmission X-ray topography.Results showed that hydrogen damage did not form in the specimens charged in 0.5 mol/L H_2S0_4 so- lution without poison,and occurred with addition of 250 mg/L As_2O_3 even at very low charge current density.As charging at a certain current density,the size of the damage may enlarge up to a limit yet no more by prolonged time.The damage size increased with increase of charging current density,but not so apparent at high current density. An external tensile stress could promote the formation of hydrogen damage obviously. It seems that for charging in H_2SO_4 solution containing poison,the drop of hydrogen permeation curve against time prolongation is due to the formation of hydrogen damages.展开更多
Morphology and distribution of precipitates in the Fe-6.5Si-0.02B alloy were characterized, and these effects on room- temperature compression cracks were investigated. The results showed that the precipitate in the F...Morphology and distribution of precipitates in the Fe-6.5Si-0.02B alloy were characterized, and these effects on room- temperature compression cracks were investigated. The results showed that the precipitate in the Fe-6.5Si-0.02B alloy is FezB with body-centered tetragonal structure, and its nano-hardness is 15.0 GPa which is higher than that of the matrix (- 8.5 GPa). In the as-cast alloys, most of the intragranular precipitates are coarse lath-like with the length of 5-15 μm and width of 2-5 μm, and the precipitates formed at the grain boundaries are of about 2-3 μm in width. After oil quenching followed by heat treatment at 1100 ℃ for more than 30 min, the precipitates inside grains are refined with a size of several hundred nanometers and the precipitates at the grain boundaries are refined with a size of 〈 1 μm. After compression test, transgranular and intergranular cracks occur in the as-cast alloys with coarse precipitates. For the quenched alloys with fine precipitates, the number of cracks decreases significantly, and no transgranular cracks happen because some cracks are blocked or the propagation direction is changed by grain boundary.展开更多
文摘The grain growth behavior of spray-formed Al-70wt.%Si alloys was studied in the semi-solid state. The specimens were isothermally heat-treated at various temperatures between the solidus and liquidus of Al-Si alloys and then quenched in water. The microstructure of reheated specimens was characterized using optical and scanning electron microscopies. The isothermal holding experiment was carried out to investigate grain growth behavior as a function of holding time and temperature in the semi-solid state. The coarsening mechanism and the effect of porosity on microstructure were also studied.
基金funded by the National Natural Science Foundation of China(51371077)
文摘In the present study, the tested hypereutectic Al-21wt.%Si alloys were prepared by modifying the melt using different proportions of P and Ce, and then applying T6 heat treatment. The modification effects and mechanism of P+Ce complex modifier on the Si phase of hypereutectic Al-21wt.%Si alloy were studied, and the aging precipitation behavior after modification was characterized by means of tensile strength measurement, OM, SEM and TEM analysis. The results show that the massive primary silicon phase particles are significantly refined after modification, while the needle-like eutectic silicon crystals become fibrous and short. It was found that the mechanism of phosphorus modification on the primary silicon can be attributed to heterogeneous nucleation of AlP, while the modification mechanism of Ce can be explained by adsorbing-twinning theory. In the aged microstructure of the modified hypereutectic Al-21wt.%Si alloy, there existed some strengthening phases such as AI4Cu9, Al2Cu, AlCu3, and Al57Mn12. The P+Ce complex modifier not only affected the size of primary silicon and eutectic silicon, but also the aging behavior of alloys under the heat treatment process. When Al-21wt.%Si alloy was modified using 0.08%wt.P + 0.6wt.% Ce, the aging precipitates were dispersed uniformly in the alloy, and its mechanical properties at room and elevated temperatures are optimized (Rm = 287.6 MPa at RT, Rm = 210 MPa at 300 ℃).
基金Financially supported by the National Natural Science Foundation of China (51665012)the Jiangxi Province Science Foundation for Outstanding Scholarship (20171BCB23061,2018ACB21020)the Primary Research & Development Plan of Jiangxi Province (20192BBEL50019)。
文摘To explore the corrosion properties of magnesium alloys, the chemical behavior of a high strength Mg_(97)Zn_(1)Y_(2)-1 wt.%Si C alloy in different corrosion environments was studied. Three solutions of 0.2 mol·L^(-1) NaCl, Na_(2)SO_(4) and NaNO_(3) were selected as corrosion solutions. The microstructures, corrosion rate, corrosion potential, and mechanism were investigated qualitatively and quantitatively by optical microscopy(OM), scanning electron microscopy(SEM), immersion testing experiment, and electrochemical test. Microstructure observation shows that the Mg_(97) Zn_(1)Y_(2)-1 wt.%Si C alloy is composed of α-Mg matrix, LPSO(Mg_(12) ZnY) phase and Si C phase. The hydrogen evolution and electrochemical test results reflect that the Mg_(97)Zn_(1)Y_(2)-1 wt.%SiC in 0.2 mol·L^(-1) Na Cl solution has the fastest corrosion rate, followed by Na_(2)SO_(4) and NaNO_(3) solutions, and that the charge-transfer resistance presents the contrary trend and decreases in turn.
基金Project(18JS060) supported by the Shaanxi Key Laboratory of Nano-materials and Technology,ChinaProject(2018JQ5087) supported by Natural Science Basic Research Plan of Shaanxi Province,China。
文摘Hypereutectic Al-40 wt.%Si alloys were fabricated by the combination of gas atomization and spark plasma sintering(SPS) technology. The effects of holding time(15-60 min) on phase composition, microstructure, density,mechanical properties of Al-Si alloys were investigated by XRD, SEM, a hydrostatic balance, an automatic micro hardness tester and a universal tensile testing machine. The results showed that homogenous distribution of ultrafine primary Si and high density of alloys can be obtained at holding time of 30 min. Compared with primary Si(3.7 μm)fabricated by gas atomization, the average size increased from 5.17 to 7.72 μm with the increase of holding time during SPS process. Overall, the relative density, maximum tensile strength and Vickers hardness of 94.9%, 205 MPa and HV;196.86 were achieved at holding time of 30 min, respectively. In addition, all the diffraction peaks were corresponded to α-Al or β-Si and no other phase can be detected. Finally, the densification process of SPS was also discussed.
基金The authors are very grateful to the funding support from the National Natural Science Foundation of China(Grant Nos.51761034 and 51261018)the Natural Science Foundation of Inner Mongolia in China(Grant Nos.2017MS0512 and 2020BS05018).
文摘The high efficiency of Ce addition in grain refinement ofδ-ferrite in a cast Fe–4 wt.%Si alloy was verified.In order to further understand the solute effect of Ce on the grain refinement of δ-ferrite,the conventional directional solidification technique,which enabled to freeze the solid–liquid interface to room temperature,was used to investigate the interfacial morphology and solute redistribution in the liquid at the front of the interface,together with thermodynamic calculation of the equilibrium partition coefficients of Ce and Si in Fe–4 wt.%Si–Ce system using the Equilib module and the FsStel database in FactSage software system.Metallographic examination using a laser scanning confocal microscope showed a transition of the solid–liquid interface from planar to cellular in the Fe–4 wt.%Si alloy after adding 0.0260 wt.%Ce during the directional solidification experiment.Further,electron probe microanalysis revealed an enhanced segregation of Si solute in the liquid at the front of the solid–liquid interface due to the Ce addition.This solute segregation is considered as the cause of planar to cellular interface transition,which resulted from the creation of constitutional supercooling zone.Thermodynamic calculation indicated that Ce also segregated at the solid–liquid interface and the Ce addition had negligible effect on the equilibrium partition coefficient of Si.It is reasonable to consider that the contribution of Ce to the grain refinement ofδ-ferrite in the cast Fe–4 wt.%Si alloy as a solute was marginal.
基金This work is financially supported by the National Natural Science Foundation of China(51471031,U 1660115)the State Key Laboratory for Advanced Metals and Materials(2016Z-17).
文摘Warm deformation behavior of the Fe-6.5wt.%Si alloy was studied by isothermal compression in the temperature range of 300-700℃.The results show that the influence of the ordered phases on the flow stress gradually weakens with increasing deformation temperature.The flow stress of the furnace-cooled sample with the high degree of order at 300℃is higher than that of the quenched sample with the low degree of order,and the flow stresses of both samples are nearly the same at 500-700℃.The hardness difference between two samples deformed at 500℃gradually decreases with increasing strain,accompanying with a reduction in hardness of the furnace-cooled sample,which indicates a work-softening behavior.The analyses of dislocation configurations and ordered structure suggest that the dynamic recovery and deformation-induced disorder result in the work-softening behavior.An appropriate deformation temperature window for improving the formability of the Fe-6.5wt.%Si alloy is about 500-600℃.
基金National Natural Science Foundation of China(51471031,U1660115)the State Key Laboratory for Advanced Metals and Materials(2016Z-17)are gratefully acknowledged.
文摘Large-scale Fe-6.5 wt.%Si ingot with excellent formability is required for a pilot line producing sheets through hot/cold rolling.The variation of the as-cast microstructure,ordered structures and the formability of the Fe-6.5 wt.%Si alloy ingots with the cooling rate during casting was investigated.Under air-cooling condition,inhomogeneous microstructures with a low proportion of equiaxed grains were formed,but the formation of ordered structures was partially inhibited,especially DO3.Homogeneous microstructures with a high proportion of equiaxed grains were observed under the condition of furnace cooling,but the ordered structures were fully generated,and the degree of order is high.It is generally believed that high degree of order is the main factor of brittleness,but the homogeneous microstructure(including grain morphology and size)of the furnace-cooled sample helps to improve the formability.The influence of these two aspects on formability is contradictory.Therefore,the formability is tested through the flow stress during the compression and the microstructure after the compression.The results show that the furnace-cooled sample has better formability.For large-scale ingots,the control of as-cast microstructure becomes more significant than the control of degree of order.Slow cooling during casting is important for the large-scale ingots to have good formability meeting the requirements of direct hot rolling.
基金financially supported by the National Natural Science Foundation of China(Nos.51471031 and U1660115)the State Key Laboratory for Advanced Metals and Materials(No.2016Z-17)。
文摘Tensile behavior of an equiaxed-grained Fe-6.5 wt.%Si alloy,which was deformed intoφ6 mm bar by hot rotary swaging,was investigated at various temperatures(300–400℃)and stretching rates(0.42–1 mm/min).The results revealed an enhancement in the intermediate-temperature tensile ductility after heat treatments.Deformation twinning was found in the equiaxed-grained Fe-6.5 wt.%Si bars during the tensile test,and heat treatments can enhance the deformation twinning.More twins can be observed in the necking areas than other regions.The high Schmid factor values above 0.4 after heat treatments demonstrated that deformation twinning can easily occur in the equiaxed-grained Fe-6.5 wt.%Si alloy.Higher deformation temperatures,higher strain rates,and larger degree of order suppressed the formation of deformation twinning,while the grain sizes had little effect on the deformation twinning.The twinning stress of the Fe-6.5 wt.%Si alloy increased with the increasing grain size,which did not agree with the Hall–Petch type relationship.The deformation twinning resulted in the improved ductility of the Fe-6.5 wt.%Si alloy.
基金financially supported by the project entitled“Formation of as-solidified structure and macrosegregation during unidirectional solidification under controlled flow conditions”of the National Research Development,and Investigation Office(No.130946)。
文摘During the last two decades,many algorithms were developed to simulate the solidification process for different casting methods like ingots,continuous casting of steel and the direct chill cast of aluminum.Experiments performed under exactly known conditions and with the detailed knowledge of meso-and micro-structures are required for validating these simulations.The aim of this paper is to give a data set to validate these simulations.Unidirectional solidification experiments were performed by using a rotating magnetic field(RMF)to study the effect of melt flow on the solidified micro-and meso-structure of the Al-7wt.%Si binary alloy.The first and the third 1/3 parts of samples were solidified without magnetic stirring,and the second(middle)1/3 part was solidified by using magnetic stirring.The magnetic induction was 10 m T,the temperature gradient was~7 K/mm,and the sample movement velocity was 0.1 mm/s.On the longitudinal section of the sample,the columnar/equiaxed transition(CET),the equiaxed/columnar transition(ECT),the secondary dendrite arm spacing(SDAS),and the macrosegregation(concentration distribution and the amount of eutectic)were investigated.The primary dendrite arm spacing(PDAS)and the grain structure were studied on the cross-section after color etching.
基金This project is supported by National Natural Science of Foundation of China
文摘The formation and aggravation of hydrogen damage in Fe-3 wt-% Si alloy during cathodic charging Were studied by means of Lange transmission X-ray topography.Results showed that hydrogen damage did not form in the specimens charged in 0.5 mol/L H_2S0_4 so- lution without poison,and occurred with addition of 250 mg/L As_2O_3 even at very low charge current density.As charging at a certain current density,the size of the damage may enlarge up to a limit yet no more by prolonged time.The damage size increased with increase of charging current density,but not so apparent at high current density. An external tensile stress could promote the formation of hydrogen damage obviously. It seems that for charging in H_2SO_4 solution containing poison,the drop of hydrogen permeation curve against time prolongation is due to the formation of hydrogen damages.
基金This research was funded by the Major States Basic Research Development Program of China (973 Program, No. 2011CB606300) and China Postdoctoral Science Foundation (Nos. 2012M520263 and 2013T60110).
文摘Morphology and distribution of precipitates in the Fe-6.5Si-0.02B alloy were characterized, and these effects on room- temperature compression cracks were investigated. The results showed that the precipitate in the Fe-6.5Si-0.02B alloy is FezB with body-centered tetragonal structure, and its nano-hardness is 15.0 GPa which is higher than that of the matrix (- 8.5 GPa). In the as-cast alloys, most of the intragranular precipitates are coarse lath-like with the length of 5-15 μm and width of 2-5 μm, and the precipitates formed at the grain boundaries are of about 2-3 μm in width. After oil quenching followed by heat treatment at 1100 ℃ for more than 30 min, the precipitates inside grains are refined with a size of several hundred nanometers and the precipitates at the grain boundaries are refined with a size of 〈 1 μm. After compression test, transgranular and intergranular cracks occur in the as-cast alloys with coarse precipitates. For the quenched alloys with fine precipitates, the number of cracks decreases significantly, and no transgranular cracks happen because some cracks are blocked or the propagation direction is changed by grain boundary.