Although metal oxide-zeolite hybrid materials have long been known to achieve enhanced catalytic activity and selectivity in NO_(x)removal reactions through the inter-particle diffusion of intermediate species,their s...Although metal oxide-zeolite hybrid materials have long been known to achieve enhanced catalytic activity and selectivity in NO_(x)removal reactions through the inter-particle diffusion of intermediate species,their subsequent reaction mechanism on acid sites is still unclear and requires investigation.In this study,the distribution of Brønsted/Lewis acid sites in the hybrid materials was precisely adjusted by introducing potassium ions,which not only selectively bind to Brønsted acid sites but also potentially affect the formation and diffusion of activated NO species.Systematic in situ diffuse reflectance infrared Fourier transform spectroscopy analyses coupled with selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR)reaction demonstrate that the Lewis acid sites over MnO_(x)are more active for NO reduction but have lower selectivity to N_(2)than Brønsted acids sites.Brønsted acid sites primarily produce N_(2),whereas Lewis acid sites primarily produce N_(2)O,contributing to unfavorable N_(2)selectivity.The Brønsted acid sites present in Y zeolite,which are stronger than those on MnO_(x),accelerate the NH_(3)-SCR reaction in which the nitrite/nitrate species diffused from the MnO_(x)particles rapidly convert into the N_(2).Therefore,it is important to design the catalyst so that the activated NO species formed in MnO_(x)diffuse to and are selectively decomposed on the Brønsted acid sites of H-Y zeolite rather than that of MnO_(x)particle.For the physically mixed H-MnO_(x)+H-Y sample,the abundant Brønsted/Lewis acid sites in H-MnO_(x)give rise to significant consumption of activated NO species before their inter-particle diffusion,thereby hindering the enhancement of the synergistic effects.Furthermore,we found that the intercalated K+in K-MnO_(x)has an unexpected favorable role in the NO reduction rate,probably owing to faster diffusion of the activated NO species on K-MnO_(x)than H-MnO_(x).This study will help to design promising metal oxide-zeolite hybrid catalysts by identifying the role of the acid sites in two different constituents.展开更多
The development of passive NO_(x)adsorbers with cost-benefit and high NO_(x)storage capacity remains an on-going challenge to after-treatment technologies at lower temperatures associated with cold-start NO_(x)emissio...The development of passive NO_(x)adsorbers with cost-benefit and high NO_(x)storage capacity remains an on-going challenge to after-treatment technologies at lower temperatures associated with cold-start NO_(x)emissions.Herein,Cs_(1)Mg_(3)Al catalyst prepared by sol-gel method was cyclic tested in NO_(x)storage under 5 vol%water.At 100°C,the NO_(x)storage capacity(1219 μmol g^(-1))was much higher than that of Pt/BaO/Al_(2)O_(3)(610 μmol g^(-1)).This provided new insights for non-noble metal catalysts in low-temperature passive NO_(x)adsorption.The addition of Cs improved the mobility of oxygen species and thus improved the NO_(x)storage capacity.The XRD,XPS,IR spectra and in situ DRIFTs with NH3 probe showed an interaction between CsO_(x)and AlO_(x)sites via oxygen species formed on Cs_(1)Mg_(3)Al catalyst.The improved mobility of oxygen species inferred from O2-TPD was consistent with high NO_(x)storage capacity related to enhanced formation of nitrate and additional nitrite species by NO_(x)oxidation.Moreover,the addition of Mg might improve the stability of Cs_(1)Mg_(3)Al by stabilizing surface active oxygen species in cyclic experiments.展开更多
Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific c...Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific ca⁃pacity of MXene materials limit their further utilization.In this study,these issues are addressed using a heterostruc⁃ture strategy via a one-step selenization method to form Mo_(2)C@MoSe_(2).Synchrotron radiation X-ray spectroscopic and high-resolution transmission electron microscopy(HRTEM)characterizations revealed the heterostructure consisting of in-situ grown MoSe_(2)on Mo_(2)C MXene.Electrochemical tests proved the heterojunction electrode’s superior rate perfor⁃mance of 289.06 mAh·g^(-1)at a high current density of 5 A·g^(-1)and long cycling stability of 550 mAh·g^(-1)after 900 cycles at 1 A·g^(-1).This work highlights the useful X-ray spectroscopic analysis to directly elucidate the heterojunction structure,providing an effective reference method for probing heterostructures.展开更多
文摘Although metal oxide-zeolite hybrid materials have long been known to achieve enhanced catalytic activity and selectivity in NO_(x)removal reactions through the inter-particle diffusion of intermediate species,their subsequent reaction mechanism on acid sites is still unclear and requires investigation.In this study,the distribution of Brønsted/Lewis acid sites in the hybrid materials was precisely adjusted by introducing potassium ions,which not only selectively bind to Brønsted acid sites but also potentially affect the formation and diffusion of activated NO species.Systematic in situ diffuse reflectance infrared Fourier transform spectroscopy analyses coupled with selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR)reaction demonstrate that the Lewis acid sites over MnO_(x)are more active for NO reduction but have lower selectivity to N_(2)than Brønsted acids sites.Brønsted acid sites primarily produce N_(2),whereas Lewis acid sites primarily produce N_(2)O,contributing to unfavorable N_(2)selectivity.The Brønsted acid sites present in Y zeolite,which are stronger than those on MnO_(x),accelerate the NH_(3)-SCR reaction in which the nitrite/nitrate species diffused from the MnO_(x)particles rapidly convert into the N_(2).Therefore,it is important to design the catalyst so that the activated NO species formed in MnO_(x)diffuse to and are selectively decomposed on the Brønsted acid sites of H-Y zeolite rather than that of MnO_(x)particle.For the physically mixed H-MnO_(x)+H-Y sample,the abundant Brønsted/Lewis acid sites in H-MnO_(x)give rise to significant consumption of activated NO species before their inter-particle diffusion,thereby hindering the enhancement of the synergistic effects.Furthermore,we found that the intercalated K+in K-MnO_(x)has an unexpected favorable role in the NO reduction rate,probably owing to faster diffusion of the activated NO species on K-MnO_(x)than H-MnO_(x).This study will help to design promising metal oxide-zeolite hybrid catalysts by identifying the role of the acid sites in two different constituents.
基金supported by the National Natural Science Foundation of China(Grant No.51938014,Grant No.22176217,Grant No.22276215)the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China(No.22XNKJ28).
文摘The development of passive NO_(x)adsorbers with cost-benefit and high NO_(x)storage capacity remains an on-going challenge to after-treatment technologies at lower temperatures associated with cold-start NO_(x)emissions.Herein,Cs_(1)Mg_(3)Al catalyst prepared by sol-gel method was cyclic tested in NO_(x)storage under 5 vol%water.At 100°C,the NO_(x)storage capacity(1219 μmol g^(-1))was much higher than that of Pt/BaO/Al_(2)O_(3)(610 μmol g^(-1)).This provided new insights for non-noble metal catalysts in low-temperature passive NO_(x)adsorption.The addition of Cs improved the mobility of oxygen species and thus improved the NO_(x)storage capacity.The XRD,XPS,IR spectra and in situ DRIFTs with NH3 probe showed an interaction between CsO_(x)and AlO_(x)sites via oxygen species formed on Cs_(1)Mg_(3)Al catalyst.The improved mobility of oxygen species inferred from O2-TPD was consistent with high NO_(x)storage capacity related to enhanced formation of nitrate and additional nitrite species by NO_(x)oxidation.Moreover,the addition of Mg might improve the stability of Cs_(1)Mg_(3)Al by stabilizing surface active oxygen species in cyclic experiments.
基金National Key Research and Development Program of China(2020YFA0405800)National Natural Science Foundation of China(12322515,U23A20121,12225508)+2 种基金Youth Innovation Promotion Association of CAS(2022457)National Postdoctoral Program for Innovative Talents(BX20230346)China Postdoctoral Science Foundation(2023M743365)。
文摘Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific ca⁃pacity of MXene materials limit their further utilization.In this study,these issues are addressed using a heterostruc⁃ture strategy via a one-step selenization method to form Mo_(2)C@MoSe_(2).Synchrotron radiation X-ray spectroscopic and high-resolution transmission electron microscopy(HRTEM)characterizations revealed the heterostructure consisting of in-situ grown MoSe_(2)on Mo_(2)C MXene.Electrochemical tests proved the heterojunction electrode’s superior rate perfor⁃mance of 289.06 mAh·g^(-1)at a high current density of 5 A·g^(-1)and long cycling stability of 550 mAh·g^(-1)after 900 cycles at 1 A·g^(-1).This work highlights the useful X-ray spectroscopic analysis to directly elucidate the heterojunction structure,providing an effective reference method for probing heterostructures.