期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Methane Oxidation to Synthesis Gas Using Lattice Oxygen of La_(1-x)Sr_xMO_(3-λ)(M =Fe,Mn) Perovskite Oxides Instead of Molecular Oxygen 被引量:10
1
作者 LiRanjia YuChangchun ZhuGuangrong ShenShikong 《Petroleum Science》 SCIE CAS CSCD 2005年第1期19-23,共5页
In this paper, the partial oxidation of methane to synthesis gas using lattice oxygen of La1- SrxMO3-λ (M=Fe, x ... In this paper, the partial oxidation of methane to synthesis gas using lattice oxygen of La1- SrxMO3-λ (M=Fe, x Mn) perovskite oxides instead of molecular oxygen was investigated. The redox circulation between 11% O2/Ar flow and 11% CH4/He flow at 900℃ shows that methane can be oxidized to CO and H2 with a selectivity of over 90.7% using the lattice oxygen of La1- SrxFeO3-λ (x≤0.2) perovskite oxides in an appropriate reaction condition, while the lost lattice x oxygen can be supplemented by air re-oxidation. It is viable for the lattice oxygen of La1- SrxFeO3-λ (x≤0.2) perovskite x oxides instead of molecular oxygen to react with methane to synthesis gas in the redox mode. 展开更多
关键词 Partial oxidation METHANE synthesis gas lattice oxygen La1- xsrxfeo3-λperovskite oxides
下载PDF
Preparation and Characterization of Single-Phase Perovskite La_(0.6)Sr_(0.4)Co_(0.8)Fe_(0.2)O_(3-δ) 被引量:1
2
作者 Wenhui Yuan Xiaofang Hu Li Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第1期58-62,共5页
Single-phase perovskite La0.6Sr0.4Co0.8Fe0.2O3-δ has been successfully prepared by using citrate-EDTA complexation method at relatively low calcination temperature. The structure and thermal decomposition process of ... Single-phase perovskite La0.6Sr0.4Co0.8Fe0.2O3-δ has been successfully prepared by using citrate-EDTA complexation method at relatively low calcination temperature. The structure and thermal decomposition process of the complex precursor have been investigated by means of differential scanning calorimetry-thermal gravimetric analysis (DSC/TGA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopic (FT-IR) measurements. The precursor decomposed completely and started to form perovskite-type oxide above 420 ℃ according to the differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) results. Single-phase perovskite La0.6Sr0.4Co0.8Fe0.2O3-δ obtained has been confirmed from the XRD pattern, and no peak of SrCO3 was found by XRD of the oxides synthesized at a relatively low temperature of 800℃. The reducibility of La0.6Sr0.4Co0.8Fe0.2O3-δ was also characterized by the temperature programmed reduction (TPR) technique. Disk shaped dense La0.6Sr0.4Co0.8Fe0.2O3-δ membrane was prepared by the isostatical pressing method. The oxygen flux rate of dense La0.6Sr0.4Co0.8Fe0.2O3-δ membrane was (2.8-18)× 10^-8 mol/(cm^2.s) in the temperature range of 800-1000 ℃. 展开更多
关键词 perovskite La0.6Sr0.4Co0.8Fe0.2O3-δ oxygen permeation PREPARATION CHARACTERIZATION
下载PDF
Solid-state synthesis of Sr-and Co-doped LaMnO_3 perovskites 被引量:1
3
作者 马文会 谢刚 +1 位作者 陈书荣 崔衡 《中国有色金属学会会刊:英文版》 CSCD 2001年第6期904-907,共4页
The synthesis process for La 1- x Sr x Mn 1- y Co y O 3- δ ( x = 0.2, 0.3; y = 0.2, 0.8, designated as LSMC below) perovskite oxides prepared by solid state reaction was investigated using DSC/TG, XRD, EPMA and parti... The synthesis process for La 1- x Sr x Mn 1- y Co y O 3- δ ( x = 0.2, 0.3; y = 0.2, 0.8, designated as LSMC below) perovskite oxides prepared by solid state reaction was investigated using DSC/TG, XRD, EPMA and particle size analysis methods. It was found that LSMCs were all of single phase and the synthesis process might be divided into three stages: the decomposition of reactants, the formation of LaMn(Co)O 3 based oxides, and the formation of LSMC solid solution. Typical average and the peak value of particle size, and the specific surface area are 14.65?μm, 16.4?μm and 1.38?m 2/mL, respectively, for mixed reactants and are 23.81?μm, 32.11?μm and 0.5?m 2/mL, respectively, for powder synthesized at 1?200?℃ for 8?h in air. 展开更多
关键词 solid state reaction synthesis La 1- x Sr x Mn 1- y Co y O 3- δ perovskite intermediate temperature SOFCs
下载PDF
Cobalt-free gadolinium-doped perovskite Gd_xBa_(1-x)FeO_(3-δ) as high-performance materials for oxygen separation 被引量:1
4
作者 王艳杰 廖庆 +2 位作者 陈艳 庄丽彬 王海辉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第11期1763-1767,共5页
Cobalt-free oxides GdxBal-xFeO3-σas(0.01 _〈 x _〈 0.1 ) were achieved by a solid state reaction method. It is found that GdxBal-xFeO3-σas(0.025 _〈 x _〈 0.1) exhibits the cubic perovskite structure. Among GdxB... Cobalt-free oxides GdxBal-xFeO3-σas(0.01 _〈 x _〈 0.1 ) were achieved by a solid state reaction method. It is found that GdxBal-xFeO3-σas(0.025 _〈 x _〈 0.1) exhibits the cubic perovskite structure. Among GdxBal-xFeO3-σas (0.025 -〈 x -〈 0.1 ), the GdxBal-xFeO3-σas (GBF2.5) membrane shows the outstanding phase structure stability and the highest oxygen permeation, which can reach 1.44 ml. cm- 2. rain- 1 at 950 ℃ under air/He oxygen partial pressure gradient. The GBF2.5 membrane was successfully operated for more than 100 h at 800 ℃ and the oxygen permeation flux through the membrane is 0.62 ml. cm- 2. rain- 1. After 100 h oxygen permeation experiment at 800℃, X-ray diffraction (XRD) and energy dispersive X-ray spectrometer (EDXS) demonstrate that the GBF2.5 exhibits phase structure stability even at intermediate temoerature. 展开更多
关键词 perovskite Membranes Permeation BaFeO3-σxygen separation
下载PDF
Effects of Praseodymium Doping on Conductivity and Oxygen Permeability of Cobalt-Free Perovskite-Type Oxide BaFeO3-δ
5
作者 Bang-zheng Wei Yu Wang +2 位作者 Meng Liu Chen-xi Xu Ji-gui Cheng 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第2期191-196,245,246,共8页
Among the perovskite-type oxides with symmetrical structure applied in oxygen permeable membranes, cubic phase structure is the most favorable for oxygen permeation. In order to stabilize the cubic perovskite structur... Among the perovskite-type oxides with symmetrical structure applied in oxygen permeable membranes, cubic phase structure is the most favorable for oxygen permeation. In order to stabilize the cubic perovskite structure of BaFeO3-δ material at room temperature, iron was partially substituted by praseodymium. BaFe1-yPryO3-δ powders were synthesized by a solid state reaction method, and sintered samples were prepared from the synthesized BaFe1-yPryO3-δ powders. X-ray diffraction results reveal that the BaFe1-yPryO3-δ samples remain cubic structure at praseodymium substitution amount of y 0.05, 0.075, 0.1. Scanning electron microscope observation indicates that the sintered samples contain only a small amount of enclosed pores and the grain size of BaFe1-yPryO3-δ increase monotonically with the increase of the praseodymium doping amount, praseodymium doping promotes the grain size growth. Tests of electrical conductivity and oxygen permeation flux show that praseodymium doping improves the conduction properties of BaFe1-yPryO3-δ and BaFe0.9Pr0.1O3-δ composition has an electrical conductivity of 6.5 S/era and an oxygen permeation of 1.112 mL/(cm^2.min) at 900 ℃, respectively. High temperature XRD in- vestigation shows that the crystal structure of BaFe0.975Pr0.025O3-δ membrane completely transform to cubic phase at 700℃. The present test results have shown that partially substitution of Fe by praseodymium in BaFeO3 can stabilize the cubic structure and improve the properties. 展开更多
关键词 BaFe1-yPryO3-δ Praseodymium doping Cubic perovskite Oxygen perme-ability
下载PDF
Molten salt synthesis and supercapacitor properties of oxygen-vacancy LaMnO3-δ 被引量:1
6
作者 Ya-Li Song Zi-Chang Wang +6 位作者 Yong-De Yan Mi-Lin Zhang Gui-Ling Wang Tai-Qi Yin Yun Xue Fan Gao Min Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期173-181,共9页
Due to the unique structure of perovskite materials,their capacitance can be improved by introducing oxygen vacancy.In this paper,the LaMnO3-δ material containing oxygen vacancy was synthesized by molten salt method ... Due to the unique structure of perovskite materials,their capacitance can be improved by introducing oxygen vacancy.In this paper,the LaMnO3-δ material containing oxygen vacancy was synthesized by molten salt method in KNO3-NaNO3-NaNO2 melt.The La-Mn-O crystal grows gradually in molten salt with the increase of temperature.It was confirmed that LaMnO3-δ with perovskite structure and incomplete oxygen content were synthesized by molten salt method and presented a three-dimensional shape.LaMnO3-δ stores energy by redox reaction and adsorption of OH-in electrolyte simultaneously.In comparison with the stoichiometric LaMnO3 prepared by the sol-gel method,LaMnO3-δ prepared by molten salt method proffered higher capacitance and better performance.The galvanostatic charge-discharge curve showed specific capacitance of 973.5 F/g under current density of 1 A/g in 6 M KOH.The capacitance of LaMn03-δ was 82.7%under condition of 5 A/g compared with the capacitance at the current of 1A/g,and the specific capacitances of 648.0 and 310.0 F/g were obtained after 2000 and 5000 cycles of galvanostatic charging-discharging,respectively.Molten salt synthesis method is relatively simple and suitable for industrial scale,presenting a promising prospect in the synthesis of perovskite oxide materials. 展开更多
关键词 LaMnO3-δ perovskite oxide KNO3-NaNO3-NaNO2 MELT SUPERCAPACITOR MOLTEN salt synthesis
下载PDF
Cr-poisoning under open-circuit condition in LaNi_(0.6)Fe_(0.4)O_(3-δ)-based nano composite cathodes for solid oxide fuel cells prepared by infiltration process 被引量:1
7
作者 Yeong-Ju CHOE Jeong-Uk SEO +2 位作者 Kyoung-Jin LEE Min-Jin LEE Hae-Jin HWANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1367-1372,共6页
LaNi(0.6)Fe(0.4)O(3-δ) (LNF) powders were synthesized by the glycine-nitrate process and LNF-gadolinium-doped ceria (GDC) nanocomposite cathodes for solid oxide fuel cells (SOFCs) were fabricated by infil... LaNi(0.6)Fe(0.4)O(3-δ) (LNF) powders were synthesized by the glycine-nitrate process and LNF-gadolinium-doped ceria (GDC) nanocomposite cathodes for solid oxide fuel cells (SOFCs) were fabricated by infiltration from LNF porous backbones. Electrochemical properties and Cr-poisoning behavior of LNF-GDC cathodes were studied. Single phase perovskite LNF could be obtained at the glycine to nitrate molar ratio of 1:1. The polarization resistance of the LNF-GDC nanocomposite cathode was significantly decreased in comparison with the LNF. This phenomenon was associated with enhanced catalytic activity and enlarged triple-phase boundary (TPB) length by GDC nano particles. In addition, the nanocomposite cathode showed good Cr tolerance under open circuit condition. The LNF-GDC nanocomposite cathodes were expected for use as a potential cathode in intermediate- temperature solid oxide fuel cells (IT-SOFC). 展开更多
关键词 Cr-poisoning perovskite INFILTRATION solid oxide fuel cell LaNi0.6Fe0.4O3-δ
下载PDF
Introducing Ag in Ba_(0.9)La_(0.1)FeO_(3-δ):Combining cationic substitution with metal particle decoration
8
作者 Alessio Belotti Jiapeng Liu +5 位作者 Antonino Curcio Jian Wang Zheng Wang Emanuele Quattrocchi Mohammed BEffat Francesco Ciucci 《Materials Reports(Energy)》 2021年第2期77-89,共13页
BaFeO_(3-δ)-derived perovskites are promising cathodes for intermediate temperature solid oxide fuel cells.The activity of these perovskites depends on the number of oxygen vacancies in their lattice,which can be tun... BaFeO_(3-δ)-derived perovskites are promising cathodes for intermediate temperature solid oxide fuel cells.The activity of these perovskites depends on the number of oxygen vacancies in their lattice,which can be tuned by cationic substitution.Our first-principle calculations show that Ag is a promising substitute for the Fe site,resulting in a reduced oxygen vacancy formation energy compared with the pristine BaFeO_(3-δ).Ag has limited solubility in perovskites,and its introduction generates an Ag metal secondary phase,which influences the cathode performances.In this work,we investigate the matter,using a Ba0:9La0:1Fe_(1-x)AgxO_(3-δ)series of materials as a case study.Acknowledging the limited solubility of Ag in Ba0:9La0:1Fe_(1-x)AgxO_(3-δ),we aim to distinguish the effects of Ag substitution from those of the Ag secondary phase.We observed that Ag substitution increases the number of oxygen vacancies,confirming our calculations,and facilitates the oxygen incorporation.However,Ag substitution lowers the number of holes,in this way reducing the electronic p-type conductivity.On the other hand,Ag metal positively affects the electronic conductivity and helps the redistribution of the electronic charge at the cathode-electrolyte interface. 展开更多
关键词 Solid oxide fuel cells Mixed ionic electronic conductors Ag substitution Ag particles decoration BaFeO_(3-δ)-derived perovskites
下载PDF
Boosting the lithium-ion storage performance of perovskite Sr_(x)VO_(3-δ) via Sr cation and O anion deficient engineering
9
作者 Xiaolei Li Zifeng Lin +9 位作者 Na Jin Xiaojiao Yang Lei Sun Yuan Wang Lei Xie Xiping Chen Li Lei Patrick Rozier Patrice Simon Ying Liu 《Science Bulletin》 SCIE EI CAS CSCD 2022年第22期2305-2315,共11页
Perovskite SrVO_(3) has been investigated as a promising lithium storage anode where the V cation plays the role of the redox center,combining excellent cycle stability and safe operating potential versus Li metal pla... Perovskite SrVO_(3) has been investigated as a promising lithium storage anode where the V cation plays the role of the redox center,combining excellent cycle stability and safe operating potential versus Li metal plating,with limited capacity.Here,we demonstrate the possibility to boost the lithium storage properties,by reducing the non-redox active Sr cation content and fine-tuning the O anion vacancies while maintaining a non-stoichiometric Sr_(x)VO_(3-δ) perovskite structure.Theoretical investigations suggest that Sr vacancy can work as favorable Li^(+) storage sites and preferential transport channels for guest Li^(+) ions,contributing to the increased specific capacity and rate performance.In contrast,inducing O anion vacancy in Sr_(x)VO_(3-δ) can improve rate performance while compromising the specific capacity.Our experimental results confirm the enhancement of specific capacities by fine adjusting the Sr and O vacancies,with a maximum capacity of 444 mAh g^(-1) achieved with Sr_(0.63)VO_(3-δ),which is a 37%increase versus stoichiometric SrVO_(3).Although rich defects have been induced,Sr_(x)VO_(3-δ) electrodes maintain a stable perovskite structure during cycling versus a LiFePO_(4) cathode,and the full-cell could achieve more than 6000 discharge/charge cycles with 80%capacity retention.This result highlights the possibility to use the cation defective-based engineering approach to design high-capacity perovskite oxide anode materials. 展开更多
关键词 perovskite Sr vacancy Non-stoichiometric Sr_(x)VO_(3-δ) O vacancy Defective-based engineering
原文传递
Tungsten doping La_(0.6)Ca_(0.4)Fe_(0.8)Ni_(0.2)O_(3-δ)as electrode for highly efficient and stable symmetric solid oxide cells 被引量:1
10
作者 Xin-Yi Jiao Ao-Yan Geng +4 位作者 Yi-Yang Xue Xing-Bao Wang Fang-Jun Jin Yi-Han Ling Yun-Feng Tian 《Tungsten》 EI CSCD 2023年第4期598-606,共9页
Perovskite oxide La_(0.6)Ca_(0.4)Fe_(0.8)Ni_(0.2)O_(3-δ)(LCFN)has been used in symmetric solid oxide cells(SSOCs)to obtain good electrochemical performance in both fuel cells(SOFCs)and electrolysis cells(SOECs)modes.... Perovskite oxide La_(0.6)Ca_(0.4)Fe_(0.8)Ni_(0.2)O_(3-δ)(LCFN)has been used in symmetric solid oxide cells(SSOCs)to obtain good electrochemical performance in both fuel cells(SOFCs)and electrolysis cells(SOECs)modes.However,its structural stability still faces challenges and the electrocatalytic activity also needs to be further improved.Herein,tungsten-doped La_(0.6)Ca_(0.4)Fe_(0.7)Ni_(0.2)W_(0.1)0_(3-δ)(LCFNW)perovskite oxide material was synthesized which exhibits good structural stability under H_(2)and superior electrochemical performance as an electrode for SSOCs.In SOFCs mode,the cell achieved the maximum power density of 0.58 W·cm^(-2)with wet H_(2)as fuel at 850℃.In SOECs mode,the current density can reach 1.81 A·cm^(-2)for pure CO_(2)electrolysis at 2 V.Moreover,the SSOCs exhibits outstanding long-term stability in both SOFCs and SOECs modes,proving that doping W in perovskite oxide is an effective strategy to enhance the catalytic activity and stability of the electrode.The LCFNW material developed in this work shows promising prospect as an electrode candidate for SSOCs. 展开更多
关键词 Symmetric solid oxide cells perovskite oxide La_(0.6)Ca_(0.4)Fe_(0.8)Ni_(0.2)O_(3-δ) CO_(2)electrolysis Stability
原文传递
Synthesis and characterization of gallium-based perovskitetype dense membrane with oxygen semipermeability
11
作者 丛铀 邵宗平 +2 位作者 杨维慎 熊国兴 林励吾 《Science China Chemistry》 SCIE EI CAS 2001年第3期294-303,共10页
La0.15Sr0.85Ga0.3Fe0.7O3-δ (LSGFO) and La0.15Sr0.85Co0.3Fe0.7O3-δ (LSCFO) mixed oxygenion and electron conducting oxides were synthesized by using a combined EDTA and citrate complexing method, and the corresponding... La0.15Sr0.85Ga0.3Fe0.7O3-δ (LSGFO) and La0.15Sr0.85Co0.3Fe0.7O3-δ (LSCFO) mixed oxygenion and electron conducting oxides were synthesized by using a combined EDTA and citrate complexing method, and the corresponding dense membranes were fabricated. The properties of the oxide powders and membranes were characterized with combined SEM, XRD, H2-TPR, O2-TPD techniques, mechanical strength and oxygen permeation measurement. The results showed that LSGFO had much higher thermochemical stability than LSCFO due to the higher valence stability of Ga3+. After the temperature-programmed reduction by 5% H2 in Ar from 20°C to 1020°C, the basic perovskite structure of LSGFO was successfully preserved. LSGFO also favors the oxygen vacancy formation better than LSCFO. Oxygen permeation measurement demonstrated that LSGFO had higher oxygen permeation flux than LSCFO, but they had similar activation energy for oxygen transportation, with a value of 110 and 117 kJ · mol-1, respectively. The difference in oxygen permeation fluxes was correlated with the difference in oxygen vacancy concentrations for the two materials. 展开更多
关键词 perovskite GA2O3 OXYGEN separation MEMBRANE La0.15Sr0.85 Ga0.3Fe0.7O3-δ La0.15Sr0.85Co0.3Fe0.7O3-δ.
原文传递
Performance of Sm_(0.7)Sr_(0.3)CoO_(3-δ) dmembrane under CO_2-containing atmosphere
12
作者 Yu-Wen Zhang Fan-Lin Zeng +3 位作者 Chen-Chen Yu Cheng-Zhang Wu Wei-Zhong Ding Xiong-Gang Lu 《Rare Metals》 SCIE EI CAS CSCD 2016年第9期723-728,共6页
The permeability and stability of Sm_(0.7)Sr_(0.3)CoO_(3-δ)(SSCO) regarding the special requirements for carbon capture and storage(CCS) application were investigated.Pure CO_ was used as the sweep gas at 9... The permeability and stability of Sm_(0.7)Sr_(0.3)CoO_(3-δ)(SSCO) regarding the special requirements for carbon capture and storage(CCS) application were investigated.Pure CO_ was used as the sweep gas at 900 °C,leading to that the oxygen permeation flux decreases by about 34 %.Several cycles of changing the sweep gas between helium and CO_2 indicate the good reversibility of this degradation.Both carbonate formation and adsorption of CO_2 on the membrane surface are responsible for the degradation of the membrane performance.The better CO_2 resistance results from the substitution of Sm for Sr due to the higher acidity of Sm_2O_3(1.278) than that of Sr O(0.978) and a discontinuous layer of carbonate. 展开更多
关键词 Sm0.7Sr0.3CoO3-δ Oxygen permeation CO2 Carbonate perovskite
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部