Six kinds of galena with different impurities were synthesized and the effects of impurities on the floatability of galena were investigated. The thermodynamic and kinetic parameters on the galena surface were measure...Six kinds of galena with different impurities were synthesized and the effects of impurities on the floatability of galena were investigated. The thermodynamic and kinetic parameters on the galena surface were measured using microcalorimetry, and the adsorption configuration and energy of butyl xanthate on the surfaces of galena with different impurities were simulated by density functional theory. Flotation experiments showed that Ag and Bi significantly promoted the recovery of galena, while Zn, Sb, Mn, and Cu reduced the recovery of the flotation. Microthermokinetic results indicated that the absolute value of xanthate adsorption heat was directly proportional to the flotation recovery of galena. Adsorption heat and reaction rate coefficients of xanthate on galena containing Ag or Bi were larger than those on pure galena, but smaller on galena containing Cu or Sb. Additionally, the relationship between the heat of unsaturated adsorption of xanthate and the adsorption energy of impurity atom on galena surface was investigated.展开更多
The effects of galvanic interaction between galena and pyrite on their flotation and electrochemical characters were studied by electrochemical,adsorption,flotation and FTIR techniques,respectively.Electrochemical tes...The effects of galvanic interaction between galena and pyrite on their flotation and electrochemical characters were studied by electrochemical,adsorption,flotation and FTIR techniques,respectively.Electrochemical tests indicate that galena is electrochemically more active than pyrite and serves as an anode in galvanic combination with pyrite.The galvanic current density from a mixture of galena and pyrite is 4 times as high as the self corrosion current density of galena,which indicates that the corrosion rate of galena is accelerated.Adsorption tests show that the adsorption of butyl xanthate on galena surface is enhanced,and affected by a combination of pyrite-galena mixtures and conditioning time.Compared with individual mineral particles,galvanic interaction reduces the floatability difference between galena and pyrite.The flotation recovery of galena decreases while that of pyrite increases when two minerals are mixed together due to the influence of galvanic interaction on the formation of hydrophilic/hydrophobic product.The FTIR results show that the formation of dixanthogen on pyrite surface is depressed due to the galvanic interaction.展开更多
The background pulp potential of zinc anode slime,and its influence on the occurrence of lead,silver and xanthate,were investigated with thermodynamic method.The thermodynamic conclusion and XRD analysis pointed out t...The background pulp potential of zinc anode slime,and its influence on the occurrence of lead,silver and xanthate,were investigated with thermodynamic method.The thermodynamic conclusion and XRD analysis pointed out that in zinc anode slime,the thermodynamically stable compound of xanthate is dixanthogen,anglesite is the only mineral of lead,and kerargyrite is one of silver minerals occurring.Microflotation tests on single minerals of anglesite and kerargyrite in sulfuric acid solution by amyl dixanthogen indicated that dixanthogen has a much stronger collecting ability to kerargyrite than to anglesite.Molecular dynamic simulation indicated that amyl dixanthogen can only be adsorbed on the surface of kerargyrite in the presence of SO42-.The FTIR tests also verified the selective adsorption of amyl dixanthogen on the surface of kerargyrite in the presence of SO42-.展开更多
The hydrophobic flocculation of marmatite fines in aqueous suspensions induced by butyl xanthate (KBX) and ammonium dibutyl dithiophosphate (ADD) was investigated using laser particle size analysis, microscopy ana...The hydrophobic flocculation of marmatite fines in aqueous suspensions induced by butyl xanthate (KBX) and ammonium dibutyl dithiophosphate (ADD) was investigated using laser particle size analysis, microscopy analysis, electrophoretic light scattering, contact angle measurement and infrared spectroscopy. The studies were performed on single minerals with size 〈20 μm by varying several parameters, including pH, collector concentration and kerosene addition. The results show that the floc fotation closely correlated with the size of flocs and the particle hydrophobicity, but was not lowered with increasing the particle surface charges due to collector adsorption. Under good operating conditions, the floc flotation of marmatite fines as a function of KBX and ADD can all reach floatability over 90%, in comparison with conventional flotation obtaining floatability of about 60%. It also has been found that a small addition of kerosene greatly improved the floc flotation because of the formation of oil films on marmatite particles. The results of FTIR spectra indicate that adsorption of the two collectors onto marmatite were chemical adsorption.展开更多
Xanthates are organic synthesized substances with a potentially wide range of applications. They may serve as essential components of many compounds or materials that also play a vital role in various industrial and s...Xanthates are organic synthesized substances with a potentially wide range of applications. They may serve as essential components of many compounds or materials that also play a vital role in various industrial and socio-economic processes. Addressing the question of the use of xanthates without considering their toxicity, and their decomposition process and products would be ecologically and healthily less sustainable. To date, related information is still dispersed and less known to the public. Therefore, this work provides a comprehensive overview of the existing information on the essentiality, fate, ecotoxicity, and health effects of xanthates and associated compounds. According to available information from scientific, technical, and professional circles, xanthates are diverse, usually with a carbon chain of two to six carbon atoms. They play a crucial role in the sectors of the mining and mineral processing industry, agriculture, wastewater treatment, metal protection, rubber vulcanization, the pharmaceutical industry, and medicine. Xanthates’ degradation under different factors and mechanisms, which determine their fate in the environment, leads to the formation of toxic substances, mainly carbon disulfide, carbonyl sulfide, hydrogen sulfide, and hydrogen peroxide. Xanthates and xanthates degradation products are seriously hazardous to humans, animals, soil and aquatic organisms, enzymatic system, etc. Simultaneous exposure to xanthates and metals results in the magnification or reduction of their toxicity level, depending on the exposed organisms. Such toxicological dimensions should attract more scientific and public attention for more safe production, use, storage, and disposal of xanthates. Due to the high affinity of xanthates for metal, xanthates-modified compounds are efficient metal chelating agents. Such a property should be explored to develop potentially low-cost and effective alternatives for metal removal and recovery from contaminated media. The same applies to developing appropriate methods for the evaluation and management of the simultaneous presence of xanthates and metals in the environment.展开更多
This study investigated the effects of H2O2 treatment on xanthate interaction and flotation separation of chalcopyrite and pyrite by making use of a series of laboratory flotation experiments and surface analysis tech...This study investigated the effects of H2O2 treatment on xanthate interaction and flotation separation of chalcopyrite and pyrite by making use of a series of laboratory flotation experiments and surface analysis techniques.Flotation test results showed that H2O2 treatment influenced the flotation behaviors of the two minerals;however,flotation of pyrite was depressed more significantly than that of the chalcopyrite.Under well-controlled H2O2 concentration,the selective separation of chalcopyrite from pyrite was realized at pH 9.0,at which the recovery of chalcopyrite was over 84%and that of pyrite was less than 24%.Zeta potential,UV-visible and IR spectrum measurements revealed that the collector interacted differently with the two minerals after H2O2 treatment,and the surface of chalcopyrite adsorbed much greater amount of xanthate than that of the pyrite.IR and XPS analyses showed that the H2O2 treatment significantly changed the surface properties of pyrite to very hydrophilic species that inhibited the adsorption of collector and thus depressed the floatability of pyrite.While,the surface of chalcopyrite remained mildly inert to H2O2,as a result,the adsorption of xanthate and its oxidation to dixanthogen were very effective,which enhanced the flotation of chalcopyrite.展开更多
The objective of this study is to investigate the improvement possibilities of the floatability of galena with ultrasonic application in the presence of potassium ethyl xanthate(KEX). For this purpose, micro-flotation...The objective of this study is to investigate the improvement possibilities of the floatability of galena with ultrasonic application in the presence of potassium ethyl xanthate(KEX). For this purpose, micro-flotation experiments were carried out in addition to surface chemistry studies including zeta potential, contact angle, and bubble-particle attachment time measurements at various ultrasonic power levels and conditioning time. The results showed that, the maximum micro-flotation recovery of 77.5% was obtained with 30 W ultrasound power and 2 min conditioning time. In addition, more negative zeta potential values were obtained with ultrasound as well as higher contact angle and lower bubble-particle attachment time, which indicated the increased hydrophobicity of galena with ultrasound.展开更多
In this paper,the effect of sodium butyl xanthate(NaBX)adsorption on the surface of bornite at different pH on flotation was studied by adsorption kinetic and thermodynamic.The flotation results demonstrated that the ...In this paper,the effect of sodium butyl xanthate(NaBX)adsorption on the surface of bornite at different pH on flotation was studied by adsorption kinetic and thermodynamic.The flotation results demonstrated that the recovery was the highest when pH was 9 in NaBX solution(4×10^?5 mol/L).The adsorption kinetics showed the reaction of NaBX on the bornite conformed to the second order kinetic equation;it belonged to the multimolecular layer adsorption of Freundlich model;the maximum adsorption rate constant was 0.30 g/(10^?6 mol·min),and the equilibrium adsorption capacity was 2.70×10^?6 mol/g.Thermodynamic calculation results indicated that the adsorption process was spontaneous chemisorption,and the adsorption products of NaBX on bornite surface were cupric butyl xanthate,ferric butyl xanthate and dixanthogen,which were confirmed by infrared spectrum measurements.展开更多
The flotation of hemimorphite using the S(Ⅱ)–Pb(Ⅱ)–xanthate process,which includes sulfidization with sodium sulfide,activation by lead cations,and subsequent flotation with xanthate,was investigated.The flotation...The flotation of hemimorphite using the S(Ⅱ)–Pb(Ⅱ)–xanthate process,which includes sulfidization with sodium sulfide,activation by lead cations,and subsequent flotation with xanthate,was investigated.The flotation results indicated that hemimorphite floats when the S(Ⅱ)–Pb(Ⅱ)–xanthate process is used; a maximum recovery of approximately 90% was obtained.Zeta-potential,contact-angle,scanning electron microscopy–energy-dispersive spectrometry(SEM–EDS),and diffuse-reflectance infrared Fourier transform spectroscopy(DRIFTS) measurements were used to characterize the activation products on the hemimorphite surface and their subsequent interaction with sodium butyl xanthate(SBX).The results showed that a Zn S coating formed on the hemimorphite surface after the sample was conditioned in an Na2 S solution.However,the formation of a Zn S coating on the hemimorphite surface did not improve hemimorphite flotation.With the subsequent addition of lead cations,Pb S species formed on the mineral surface.The formation of the Pb S species on the surface of hemimorphite significantly increased the adsorption capacity of SBX,forming lead xanthate(referred to as chemical adsorption) and leading to a substantial improvement in hemimorphite flotation.Our results indicate that the addition of lead cations is a critical step in the successful flotation of hemimorphite using the sulfidization–lead ion activation–xanthate process.展开更多
Preparation of orange peel xanthate and its adsorption behaviors of five heavy metals(Cu 2+ ,Cd 2+ ,Pb 2+ ,Zn 2+ and Ni 2+ ) were studied.FTIR spectra,Zeta potentials and TG analysis were used to characterize prepared...Preparation of orange peel xanthate and its adsorption behaviors of five heavy metals(Cu 2+ ,Cd 2+ ,Pb 2+ ,Zn 2+ and Ni 2+ ) were studied.FTIR spectra,Zeta potentials and TG analysis were used to characterize prepared orange peel xanthate.Effects of various parameters including equilibrium pH,initial metal ion concentration and adsorption time on the adsorption processes for the five metal ions were investigated.It was found that for all five metal ions,the adsorption isotherms agreed Langmuir model very well and the maximum adsorption capacities of Cu2 +,Cd 2+,Pb 2+,Zn 2+and Ni 2+were obtained as 77.60,76.57,218.34,49.85 and 15.45 mg/g,respectively.All adsorption processes can attain equilibrium within 20 min and kinetics was well fitted by psesudo-second order equation.It is proposed that the adsorption mechanism was complexation.展开更多
The reversible addition-fragmentation chain transfer (RAFT) miniemulsion polymerization of vinyl acetate (VAc) mediated by methyl (methoxycarbonothioyl) sulfanyl acetate (MMSA) was carried out. The results sho...The reversible addition-fragmentation chain transfer (RAFT) miniemulsion polymerization of vinyl acetate (VAc) mediated by methyl (methoxycarbonothioyl) sulfanyl acetate (MMSA) was carried out. The results showed that polymerizations initiated by AIBN and KPS proceeded in a controlled way. The RAFT miniemulsion polymerization of VAc initiated by KPS showed the shorter inhibition period, higher propagation rate coefficient and final conversion than those in experiment initiated by AIBN. When the monomer conversion reached 25%, the polydispersity index (PDI) of polymer became broad, which was related to chain transfer reaction in RAFT miniemulsion of VAc.展开更多
To investigate effect of metallic ion activation on different particle sizes of quartz in butyl xanthate solution,six common ions(Pb^(2+),Cu^(2+),Fe^(3+),Fe^(2+),Mg^(2+) and Ca^(2+)) were introduced as activators.The ...To investigate effect of metallic ion activation on different particle sizes of quartz in butyl xanthate solution,six common ions(Pb^(2+),Cu^(2+),Fe^(3+),Fe^(2+),Mg^(2+) and Ca^(2+)) were introduced as activators.The approaches of micro-flotation,adsorption test and zeta potential measurement were adopted to reveal the mechanism of ion activation.The results show that Pb^(2+),Cu^(2+) and Fe^(3+) are effective activators for the flotation of quartz in butyl xanthate solution because of their absorption on activated quartz surface.Average recoveries of fine particles(<37 μm) are greater than those of coarser particles(37-74 μm),suggesting that the former is easier to be activated and more likely to be floated and thus entrained in sulphide concentrate.From another perspective,addition of metallic ions(Pb^(2+),Cu^(2+) and Fe^(3+)) renders zeta potentials move positively,and addition of the same metallic ions and butyl xanthate makes zeta potential drop apparently,which support a mechanism where they adsorb onto quartz surface,resulting in an expected increase in butyl xanthate collector adsorption with a concomitant increase in the flotation recoveries.展开更多
A continuous online in situ attenuated total reflection Fourier-transform infrared(ATR-FTIR)spectroscopic technique was used to investigate the adsorption and desorption kinetics of heptyl xanthate(KHX)on the surface ...A continuous online in situ attenuated total reflection Fourier-transform infrared(ATR-FTIR)spectroscopic technique was used to investigate the adsorption and desorption kinetics of heptyl xanthate(KHX)on the surface of ZnO and Cu(Ⅱ)activated ZnO.The results showed that Cu(Ⅱ)facilitated the xanthate adsorption process on the surface,and led to the formation of cuprous xanthate(CuX),dixanthogen(X_(2))and xanthate aggregates.The adsorption of xanthate on the surface of ZnO and Cu(Ⅱ)activated ZnO was found to both follow the pseudo-first-order kinetic model.When the NaOH solution was used as a desorption agent,the adsorbed xanthate can largely be removed due to the competition between OH^(−)and HX−.However,for Cu(Ⅱ)activated ZnO,the peak intensities at 1197 and 1082 cm^(−1) had no obvious weakening,and the absorption intensities at 1261 and 1026 cm^(−1) increased in the first 5 min,indicating an ion-exchange reaction between OH^(−)and surface zinc bonded xanthate HX−and the reorganization of adsorbed xanthate.展开更多
Heterogeneous Fenton-like process using fly ash as a catalyst was studied to degrade n-butyl xanthate form aqueous solution. The different reaction parameters on the degradation efficiency of the process were investig...Heterogeneous Fenton-like process using fly ash as a catalyst was studied to degrade n-butyl xanthate form aqueous solution. The different reaction parameters on the degradation efficiency of the process were investigated. The fly ash/H2O2 catalyst possesses a high oxidation activity for n-butyl xanthate degradation in aqueous solution. It is found that both the dosage of catalyst and initial solution pH significantly affect the n-butyl xanthate conversion efficient. The results indicate that by using 1.176 mmol/L H2O2 and 1.0 g/L fly ash catalyst with mass fraction of 4.14% Fe(III) oxide at pH 3.0, almost 96.90% n-butyl xanthate conversion and over 96.66% COD removal can be achieved within 120 min with heterogeneous catalysis by fly ash. CS2 as an intermediate of n-butyl xanthate oxidation. Finally, it is demonstrated that the fly ash/H2O2 catalytic oxidation process can be an efficient method for the treatment of n-butyl xanthate containing wastewater.展开更多
Wolframite notation with benzyl arsonic acid and sodium butyl xanthate is studied,at first.It shows the efficiency of mineral processig is good when the two agents are added together.Then the synergism of sodium butyl...Wolframite notation with benzyl arsonic acid and sodium butyl xanthate is studied,at first.It shows the efficiency of mineral processig is good when the two agents are added together.Then the synergism of sodium butyl xanthate and benzyl arsonic acid is studied also by HPLC.展开更多
A subbituminous coal was oxidized with air at 150℃on a fixed bed for 4 h and xanthated with carbondisulfide in a basic solution,at 30 or 5-10℃.This xanthated coal was evaluated for the removal of Hg^(2+)and Cd^(2+)f...A subbituminous coal was oxidized with air at 150℃on a fixed bed for 4 h and xanthated with carbondisulfide in a basic solution,at 30 or 5-10℃.This xanthated coal was evaluated for the removal of Hg^(2+)and Cd^(2+)from 7,000 mg/L aqueous solutions;metal concentrations were detemmined by atomic absorption spectrometry.The ionexchange of the xanthated coal was compared against those of the original subbituminous coal,a sulfonated subbituminouscoal,activated carbon,commercial activated carbon,and commercial synthetic resin.The commercial synthetic resinshowed the highest exchange capacity(concentration factor 98%)followed by the xanthated coal(concentration factor 96%).The retention of cadmium on the sulfonated subbituminous coal was lower(exchange capacity 0.56 meq/g)thanthat of xanthated coals(1.85±0.09 meq/g).Our xanthated coal showed a better Cd^(2+)removal(8l%o against 15%)than anon preoxidized 40-h-xanthated coal,which shows that oxidation of coal increased the amount of oxygenated groups whichenhanced xanthation.展开更多
Water-insoluble bagasse xanthates were prepared by xanthation of alkalified celluloses by treating bagasse with chromium hydroxide reauction effluent.The removel of nickel from both test solutions and electroplating i...Water-insoluble bagasse xanthates were prepared by xanthation of alkalified celluloses by treating bagasse with chromium hydroxide reauction effluent.The removel of nickel from both test solutions and electroplating industrial wastewater samples with BX was investigated. The process was studied taking into account such parameters as pH of water, precipitation time, xanthate dosage and storage time of BX. These products were found to be highly efficient in removing nickel. The residual con centration of nickel after treatment can be reduced to a value Of the ordor of 0. 01mg·1 ̄-1.展开更多
The construction principle of the system for determination of xanthate concentration,which consists of an Ionselective electrode(ISE) and a microprocessor based SDI analyzer,was described in the paper.The performances...The construction principle of the system for determination of xanthate concentration,which consists of an Ionselective electrode(ISE) and a microprocessor based SDI analyzer,was described in the paper.The performances of the developed system were discussed in details.The results both detected in solutions and in sulfide mineral flotation system were given; also the results by ultraviolet spectrometry were compared with those by the developed system.展开更多
Three HPLC methods for the separation and determination of xanthate mixtures are described.The chromatographic behaviours,advantages and application ranges of various:methods have been discussed in detail.A calculatio...Three HPLC methods for the separation and determination of xanthate mixtures are described.The chromatographic behaviours,advantages and application ranges of various:methods have been discussed in detail.A calculation method for determining the results of individual xanthates from the complicated chromatographic peaks of xanthate mixtures is presented.The limits of detection are 0.15-2.0ng.展开更多
Cobalt isopropyl xanthate thin films (CXTFs) were deposited via chemical bath deposition onto different substrates:commercial glass (CG), indium tin oxide (ITO), and poly(methyl methacrylate) (PMM). Isoprop...Cobalt isopropyl xanthate thin films (CXTFs) were deposited via chemical bath deposition onto different substrates:commercial glass (CG), indium tin oxide (ITO), and poly(methyl methacrylate) (PMM). Isopropyl xanthate was synthesized according to a method described in the literature. The cobalt nitrate and isopropyl xanthate were mixed in a beaker, which allowed the thin films to be deposited via a simple ion-ion mechanism. The transmission, reflectivity, refractive index, dielectric constant, and optical conductivity were investigated for various thin films coated onto different substrates. An ultraviolet-visible spectrophotometer was used to measure the optical properties of the thin films. The lowest value of the transmission and the highest value of the refractive index were observed for the thin films deposited onto PMM. The structure of the cobalt xanthate was characterized by Fourier transform infrared (FTIR) spectroscopy, which was measured using a Perkin-Elmer Spectrum 400 spectrometer. The stretching vibration of the Co-S bonds was observed at 359 cm^-1 in the FTIR spectrum of the CXTFs.展开更多
基金Projects(51464006,51164001)supported by the National Natural Science Foundation of ChinaProject(GJR201147-12)supported by Guangxi Higher Education Institutes Talent Highland Innovation Team Scheme,ChinaProject(2012MDZD038)supported by the Key Scientific Research Project of Guangxi University for Nationalities,China
文摘Six kinds of galena with different impurities were synthesized and the effects of impurities on the floatability of galena were investigated. The thermodynamic and kinetic parameters on the galena surface were measured using microcalorimetry, and the adsorption configuration and energy of butyl xanthate on the surfaces of galena with different impurities were simulated by density functional theory. Flotation experiments showed that Ag and Bi significantly promoted the recovery of galena, while Zn, Sb, Mn, and Cu reduced the recovery of the flotation. Microthermokinetic results indicated that the absolute value of xanthate adsorption heat was directly proportional to the flotation recovery of galena. Adsorption heat and reaction rate coefficients of xanthate on galena containing Ag or Bi were larger than those on pure galena, but smaller on galena containing Cu or Sb. Additionally, the relationship between the heat of unsaturated adsorption of xanthate and the adsorption energy of impurity atom on galena surface was investigated.
基金Project(51274255)supported by the National Natural Science Foundation of ChinaProject supported by the Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China
文摘The effects of galvanic interaction between galena and pyrite on their flotation and electrochemical characters were studied by electrochemical,adsorption,flotation and FTIR techniques,respectively.Electrochemical tests indicate that galena is electrochemically more active than pyrite and serves as an anode in galvanic combination with pyrite.The galvanic current density from a mixture of galena and pyrite is 4 times as high as the self corrosion current density of galena,which indicates that the corrosion rate of galena is accelerated.Adsorption tests show that the adsorption of butyl xanthate on galena surface is enhanced,and affected by a combination of pyrite-galena mixtures and conditioning time.Compared with individual mineral particles,galvanic interaction reduces the floatability difference between galena and pyrite.The flotation recovery of galena decreases while that of pyrite increases when two minerals are mixed together due to the influence of galvanic interaction on the formation of hydrophilic/hydrophobic product.The FTIR results show that the formation of dixanthogen on pyrite surface is depressed due to the galvanic interaction.
基金Project (51174229) supported by the National Natural Science Foundation of China
文摘The background pulp potential of zinc anode slime,and its influence on the occurrence of lead,silver and xanthate,were investigated with thermodynamic method.The thermodynamic conclusion and XRD analysis pointed out that in zinc anode slime,the thermodynamically stable compound of xanthate is dixanthogen,anglesite is the only mineral of lead,and kerargyrite is one of silver minerals occurring.Microflotation tests on single minerals of anglesite and kerargyrite in sulfuric acid solution by amyl dixanthogen indicated that dixanthogen has a much stronger collecting ability to kerargyrite than to anglesite.Molecular dynamic simulation indicated that amyl dixanthogen can only be adsorbed on the surface of kerargyrite in the presence of SO42-.The FTIR tests also verified the selective adsorption of amyl dixanthogen on the surface of kerargyrite in the presence of SO42-.
基金Project(51274255)supported by the National Natural Science Foundation of ChinaProject supported by the Foundation of State Key Laboratory of Comprehensive Utilization of Low-Grade Ores(Zijin Mining Group Co.,Ltd),China
文摘The hydrophobic flocculation of marmatite fines in aqueous suspensions induced by butyl xanthate (KBX) and ammonium dibutyl dithiophosphate (ADD) was investigated using laser particle size analysis, microscopy analysis, electrophoretic light scattering, contact angle measurement and infrared spectroscopy. The studies were performed on single minerals with size 〈20 μm by varying several parameters, including pH, collector concentration and kerosene addition. The results show that the floc fotation closely correlated with the size of flocs and the particle hydrophobicity, but was not lowered with increasing the particle surface charges due to collector adsorption. Under good operating conditions, the floc flotation of marmatite fines as a function of KBX and ADD can all reach floatability over 90%, in comparison with conventional flotation obtaining floatability of about 60%. It also has been found that a small addition of kerosene greatly improved the floc flotation because of the formation of oil films on marmatite particles. The results of FTIR spectra indicate that adsorption of the two collectors onto marmatite were chemical adsorption.
文摘Xanthates are organic synthesized substances with a potentially wide range of applications. They may serve as essential components of many compounds or materials that also play a vital role in various industrial and socio-economic processes. Addressing the question of the use of xanthates without considering their toxicity, and their decomposition process and products would be ecologically and healthily less sustainable. To date, related information is still dispersed and less known to the public. Therefore, this work provides a comprehensive overview of the existing information on the essentiality, fate, ecotoxicity, and health effects of xanthates and associated compounds. According to available information from scientific, technical, and professional circles, xanthates are diverse, usually with a carbon chain of two to six carbon atoms. They play a crucial role in the sectors of the mining and mineral processing industry, agriculture, wastewater treatment, metal protection, rubber vulcanization, the pharmaceutical industry, and medicine. Xanthates’ degradation under different factors and mechanisms, which determine their fate in the environment, leads to the formation of toxic substances, mainly carbon disulfide, carbonyl sulfide, hydrogen sulfide, and hydrogen peroxide. Xanthates and xanthates degradation products are seriously hazardous to humans, animals, soil and aquatic organisms, enzymatic system, etc. Simultaneous exposure to xanthates and metals results in the magnification or reduction of their toxicity level, depending on the exposed organisms. Such toxicological dimensions should attract more scientific and public attention for more safe production, use, storage, and disposal of xanthates. Due to the high affinity of xanthates for metal, xanthates-modified compounds are efficient metal chelating agents. Such a property should be explored to develop potentially low-cost and effective alternatives for metal removal and recovery from contaminated media. The same applies to developing appropriate methods for the evaluation and management of the simultaneous presence of xanthates and metals in the environment.
基金Projects(51704329,51705540) supported by the National Natural Science Foundation of ChinaProject(2015CX005) supported by the Innovation Driven Plan of Central South University,China+1 种基金Project(B14034) supported by the National “111” Project,ChinaProject(2018TP1002) supported by the Collaborative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China
文摘This study investigated the effects of H2O2 treatment on xanthate interaction and flotation separation of chalcopyrite and pyrite by making use of a series of laboratory flotation experiments and surface analysis techniques.Flotation test results showed that H2O2 treatment influenced the flotation behaviors of the two minerals;however,flotation of pyrite was depressed more significantly than that of the chalcopyrite.Under well-controlled H2O2 concentration,the selective separation of chalcopyrite from pyrite was realized at pH 9.0,at which the recovery of chalcopyrite was over 84%and that of pyrite was less than 24%.Zeta potential,UV-visible and IR spectrum measurements revealed that the collector interacted differently with the two minerals after H2O2 treatment,and the surface of chalcopyrite adsorbed much greater amount of xanthate than that of the pyrite.IR and XPS analyses showed that the H2O2 treatment significantly changed the surface properties of pyrite to very hydrophilic species that inhibited the adsorption of collector and thus depressed the floatability of pyrite.While,the surface of chalcopyrite remained mildly inert to H2O2,as a result,the adsorption of xanthate and its oxidation to dixanthogen were very effective,which enhanced the flotation of chalcopyrite.
基金the Research Fund of Istanbul University under grant FAB-2017-25658.
文摘The objective of this study is to investigate the improvement possibilities of the floatability of galena with ultrasonic application in the presence of potassium ethyl xanthate(KEX). For this purpose, micro-flotation experiments were carried out in addition to surface chemistry studies including zeta potential, contact angle, and bubble-particle attachment time measurements at various ultrasonic power levels and conditioning time. The results showed that, the maximum micro-flotation recovery of 77.5% was obtained with 30 W ultrasound power and 2 min conditioning time. In addition, more negative zeta potential values were obtained with ultrasound as well as higher contact angle and lower bubble-particle attachment time, which indicated the increased hydrophobicity of galena with ultrasound.
基金Projects(51504053,51374079)supported by the National Natural Science Foundation of ChinaProject(2015M571324)supported by the Postdoctoral Science Foundation of China
文摘In this paper,the effect of sodium butyl xanthate(NaBX)adsorption on the surface of bornite at different pH on flotation was studied by adsorption kinetic and thermodynamic.The flotation results demonstrated that the recovery was the highest when pH was 9 in NaBX solution(4×10^?5 mol/L).The adsorption kinetics showed the reaction of NaBX on the bornite conformed to the second order kinetic equation;it belonged to the multimolecular layer adsorption of Freundlich model;the maximum adsorption rate constant was 0.30 g/(10^?6 mol·min),and the equilibrium adsorption capacity was 2.70×10^?6 mol/g.Thermodynamic calculation results indicated that the adsorption process was spontaneous chemisorption,and the adsorption products of NaBX on bornite surface were cupric butyl xanthate,ferric butyl xanthate and dixanthogen,which were confirmed by infrared spectrum measurements.
基金financially supported by the State Key Development Program for Basic Research of China (No.2014CB643402)the Collaborative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources of Central South University
文摘The flotation of hemimorphite using the S(Ⅱ)–Pb(Ⅱ)–xanthate process,which includes sulfidization with sodium sulfide,activation by lead cations,and subsequent flotation with xanthate,was investigated.The flotation results indicated that hemimorphite floats when the S(Ⅱ)–Pb(Ⅱ)–xanthate process is used; a maximum recovery of approximately 90% was obtained.Zeta-potential,contact-angle,scanning electron microscopy–energy-dispersive spectrometry(SEM–EDS),and diffuse-reflectance infrared Fourier transform spectroscopy(DRIFTS) measurements were used to characterize the activation products on the hemimorphite surface and their subsequent interaction with sodium butyl xanthate(SBX).The results showed that a Zn S coating formed on the hemimorphite surface after the sample was conditioned in an Na2 S solution.However,the formation of a Zn S coating on the hemimorphite surface did not improve hemimorphite flotation.With the subsequent addition of lead cations,Pb S species formed on the mineral surface.The formation of the Pb S species on the surface of hemimorphite significantly increased the adsorption capacity of SBX,forming lead xanthate(referred to as chemical adsorption) and leading to a substantial improvement in hemimorphite flotation.Our results indicate that the addition of lead cations is a critical step in the successful flotation of hemimorphite using the sulfidization–lead ion activation–xanthate process.
基金Project(50774100)supported by the National Natural Science Foundation of China
文摘Preparation of orange peel xanthate and its adsorption behaviors of five heavy metals(Cu 2+ ,Cd 2+ ,Pb 2+ ,Zn 2+ and Ni 2+ ) were studied.FTIR spectra,Zeta potentials and TG analysis were used to characterize prepared orange peel xanthate.Effects of various parameters including equilibrium pH,initial metal ion concentration and adsorption time on the adsorption processes for the five metal ions were investigated.It was found that for all five metal ions,the adsorption isotherms agreed Langmuir model very well and the maximum adsorption capacities of Cu2 +,Cd 2+,Pb 2+,Zn 2+and Ni 2+were obtained as 77.60,76.57,218.34,49.85 and 15.45 mg/g,respectively.All adsorption processes can attain equilibrium within 20 min and kinetics was well fitted by psesudo-second order equation.It is proposed that the adsorption mechanism was complexation.
基金supported by the National Natural Science Foundation of China(No.20836007)
文摘The reversible addition-fragmentation chain transfer (RAFT) miniemulsion polymerization of vinyl acetate (VAc) mediated by methyl (methoxycarbonothioyl) sulfanyl acetate (MMSA) was carried out. The results showed that polymerizations initiated by AIBN and KPS proceeded in a controlled way. The RAFT miniemulsion polymerization of VAc initiated by KPS showed the shorter inhibition period, higher propagation rate coefficient and final conversion than those in experiment initiated by AIBN. When the monomer conversion reached 25%, the polydispersity index (PDI) of polymer became broad, which was related to chain transfer reaction in RAFT miniemulsion of VAc.
基金Project(51274255)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China+1 种基金Project(2016RS2016)supported by Hunan Provincial Science and Technology Leader(Innovation Team of Interface Chemistry of Efficient and Clean Utilization of Complex Mineral Resources),ChinaProject supported by the Postdoctoral Research Station of Central South University,China
文摘To investigate effect of metallic ion activation on different particle sizes of quartz in butyl xanthate solution,six common ions(Pb^(2+),Cu^(2+),Fe^(3+),Fe^(2+),Mg^(2+) and Ca^(2+)) were introduced as activators.The approaches of micro-flotation,adsorption test and zeta potential measurement were adopted to reveal the mechanism of ion activation.The results show that Pb^(2+),Cu^(2+) and Fe^(3+) are effective activators for the flotation of quartz in butyl xanthate solution because of their absorption on activated quartz surface.Average recoveries of fine particles(<37 μm) are greater than those of coarser particles(37-74 μm),suggesting that the former is easier to be activated and more likely to be floated and thus entrained in sulphide concentrate.From another perspective,addition of metallic ions(Pb^(2+),Cu^(2+) and Fe^(3+)) renders zeta potentials move positively,and addition of the same metallic ions and butyl xanthate makes zeta potential drop apparently,which support a mechanism where they adsorb onto quartz surface,resulting in an expected increase in butyl xanthate collector adsorption with a concomitant increase in the flotation recoveries.
基金supported by the National Natural Science Foundation of China (Nos.51274104,50874052)the National Basic Research Program of China (No.2011CB933700)。
文摘A continuous online in situ attenuated total reflection Fourier-transform infrared(ATR-FTIR)spectroscopic technique was used to investigate the adsorption and desorption kinetics of heptyl xanthate(KHX)on the surface of ZnO and Cu(Ⅱ)activated ZnO.The results showed that Cu(Ⅱ)facilitated the xanthate adsorption process on the surface,and led to the formation of cuprous xanthate(CuX),dixanthogen(X_(2))and xanthate aggregates.The adsorption of xanthate on the surface of ZnO and Cu(Ⅱ)activated ZnO was found to both follow the pseudo-first-order kinetic model.When the NaOH solution was used as a desorption agent,the adsorbed xanthate can largely be removed due to the competition between OH^(−)and HX−.However,for Cu(Ⅱ)activated ZnO,the peak intensities at 1197 and 1082 cm^(−1) had no obvious weakening,and the absorption intensities at 1261 and 1026 cm^(−1) increased in the first 5 min,indicating an ion-exchange reaction between OH^(−)and surface zinc bonded xanthate HX−and the reorganization of adsorbed xanthate.
基金Project(CZQ13002)supported by the Special Fund for Basic Scientific Research of Central Universities,China
文摘Heterogeneous Fenton-like process using fly ash as a catalyst was studied to degrade n-butyl xanthate form aqueous solution. The different reaction parameters on the degradation efficiency of the process were investigated. The fly ash/H2O2 catalyst possesses a high oxidation activity for n-butyl xanthate degradation in aqueous solution. It is found that both the dosage of catalyst and initial solution pH significantly affect the n-butyl xanthate conversion efficient. The results indicate that by using 1.176 mmol/L H2O2 and 1.0 g/L fly ash catalyst with mass fraction of 4.14% Fe(III) oxide at pH 3.0, almost 96.90% n-butyl xanthate conversion and over 96.66% COD removal can be achieved within 120 min with heterogeneous catalysis by fly ash. CS2 as an intermediate of n-butyl xanthate oxidation. Finally, it is demonstrated that the fly ash/H2O2 catalytic oxidation process can be an efficient method for the treatment of n-butyl xanthate containing wastewater.
文摘Wolframite notation with benzyl arsonic acid and sodium butyl xanthate is studied,at first.It shows the efficiency of mineral processig is good when the two agents are added together.Then the synergism of sodium butyl xanthate and benzyl arsonic acid is studied also by HPLC.
文摘A subbituminous coal was oxidized with air at 150℃on a fixed bed for 4 h and xanthated with carbondisulfide in a basic solution,at 30 or 5-10℃.This xanthated coal was evaluated for the removal of Hg^(2+)and Cd^(2+)from 7,000 mg/L aqueous solutions;metal concentrations were detemmined by atomic absorption spectrometry.The ionexchange of the xanthated coal was compared against those of the original subbituminous coal,a sulfonated subbituminouscoal,activated carbon,commercial activated carbon,and commercial synthetic resin.The commercial synthetic resinshowed the highest exchange capacity(concentration factor 98%)followed by the xanthated coal(concentration factor 96%).The retention of cadmium on the sulfonated subbituminous coal was lower(exchange capacity 0.56 meq/g)thanthat of xanthated coals(1.85±0.09 meq/g).Our xanthated coal showed a better Cd^(2+)removal(8l%o against 15%)than anon preoxidized 40-h-xanthated coal,which shows that oxidation of coal increased the amount of oxygenated groups whichenhanced xanthation.
文摘Water-insoluble bagasse xanthates were prepared by xanthation of alkalified celluloses by treating bagasse with chromium hydroxide reauction effluent.The removel of nickel from both test solutions and electroplating industrial wastewater samples with BX was investigated. The process was studied taking into account such parameters as pH of water, precipitation time, xanthate dosage and storage time of BX. These products were found to be highly efficient in removing nickel. The residual con centration of nickel after treatment can be reduced to a value Of the ordor of 0. 01mg·1 ̄-1.
文摘The construction principle of the system for determination of xanthate concentration,which consists of an Ionselective electrode(ISE) and a microprocessor based SDI analyzer,was described in the paper.The performances of the developed system were discussed in details.The results both detected in solutions and in sulfide mineral flotation system were given; also the results by ultraviolet spectrometry were compared with those by the developed system.
文摘Three HPLC methods for the separation and determination of xanthate mixtures are described.The chromatographic behaviours,advantages and application ranges of various:methods have been discussed in detail.A calculation method for determining the results of individual xanthates from the complicated chromatographic peaks of xanthate mixtures is presented.The limits of detection are 0.15-2.0ng.
文摘Cobalt isopropyl xanthate thin films (CXTFs) were deposited via chemical bath deposition onto different substrates:commercial glass (CG), indium tin oxide (ITO), and poly(methyl methacrylate) (PMM). Isopropyl xanthate was synthesized according to a method described in the literature. The cobalt nitrate and isopropyl xanthate were mixed in a beaker, which allowed the thin films to be deposited via a simple ion-ion mechanism. The transmission, reflectivity, refractive index, dielectric constant, and optical conductivity were investigated for various thin films coated onto different substrates. An ultraviolet-visible spectrophotometer was used to measure the optical properties of the thin films. The lowest value of the transmission and the highest value of the refractive index were observed for the thin films deposited onto PMM. The structure of the cobalt xanthate was characterized by Fourier transform infrared (FTIR) spectroscopy, which was measured using a Perkin-Elmer Spectrum 400 spectrometer. The stretching vibration of the Co-S bonds was observed at 359 cm^-1 in the FTIR spectrum of the CXTFs.